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Using Monte Carlo simulations, we study the thermodynamics of a two-dimensional U(l)
lattice gauge theory with Higgs scalar, which is derived from the t- J model of electrons as
its Ginzburg-Landau theory. The U(l) gauge variables describe resonating valence bonds of
spins, while the Higgs scalar represents the phase degrees of freedom of doped holes. Radial
components of gauge variables are treated dynamically. We find a peak in the specific heat,
which may be a precursor of a genuine superconducting phase transition that one would obtain
when a weak three dimensionality is included.

To study phase transitions and critical phenomena,
identification of their universality classes (symmetry, di-
mensionality, etc. ) is essential. The exciting high-
temperature superconducting phase transition of copper
oxides seems just to call for an analysis on this point. As
a microscopic model for these materials, the t- J model,
originating from the Hubbard model with strong corre-
lations, has acquired increasing interest. Its local U(1)
gauge symmetry in the half-filled case (i.e. , no holes)
has been recognized in its Ginzburg-Landau (GL) the-
ory in terms of resonating valence bonds (RVB). With
doped holes, the GL theory may be characterized as a
U(1) lattice gauge theory with Higgs scalar The hol.es
are interpreted there as a Higgs scalar, while the singlet
spin pairs are described by U(1) lattice gauge variables.
Its action can be represented solely in terms of com-
plex gauge-invariant link variables that describe nearest-
neighbor hole pairs and serve as an order parameter of su-
perconductivity. However, being compared with the con-
ventional U(1) lattice Higgs model that has been stud-
ied in particle physics, the present model has a couple
of features that may diA'erentiate the universality class;
e.g. , (i) it always contains an even number of link vari-
ables in the action, while the conventional theory has a
single-link coupling, rejecting the kinetic and mass term
~D&P~ + m )g'i~ and (ii) the radial components (i.e. , am-

plitudes) of gauge variables are to be independent degrees
of freedom, while they are set to unity in Ref. 6.

As the first step towards understanding this GL the-
ory, Monte Carlo (MC) simulations have been done in
Ref. 4 in a simplified system in which the amplitudes of
link variables are fixed to be a constant determined by
a mean-field theory (MFT) of the GL theory. Recently,
N akaj ima and Hori also made MC simulations, using
the amplitudes fixed by the MFT of Ref. 2 at half-filling,

and including more interaction terms. Although these
give some interesting features on the phase dynamics of

GL theory, neglect of the dynamics of radial components
leads one to miss certain important features: (a) In
the half-filled case in two dimensions, it gives rise to a
second-order phase transition by a condensation of am-
plitudes. It is spurious due partly to the MFT of am-

plitudes, since the system is equivalent to the antiferro-
magnetic (AF) Heisenberg model there and the Merrnin-
Wagner theorem prohibits such a transition. (b) In the
RVB picture, every spin belongs to a single RVB, as in a
system of dimers. In a diAerent context of a large-N anal-

ysis of the t-J model the possibility of a dimer ground
state at a certain parameter region has been pointed out.
To allow for dimerlike configurations of hole pairs, it is

essential to relax their radial components.
In this paper we report on the MC simulations per-

formed for the GL theory, including the radial compo-
nents of hole pairs. Concerning point (a) above, we find
no genuine phase transition at half filling, now yielding a
result consistent with general considerations. Concerning
point (b), we compare the average value of the amplitude
with its value in MFT, finding large fluctuations.

Let us summarize the model of Ref. 5. We start with
the t-J Hamiltonian in the slave-boson and fermion rep-
resentation,

+—) [(atcra)~(ato a)~+& —(ata) (ata)~+&I. (1)

z specifies a site on the d-dimensional lattice. The direc-
tion index p runs from 1 to d. We use it also for the lat-
tice unit vector; hence a nearest-neighbor (NN) link may
be written as (z, z + p). The original electron operator
C has a spin index o = 1, '2 and is expressed as e a
where e~ is a canonical boson operator and creates the
charged-hole state, while at is a canonical fermion op-
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erator and creates the neutral spin state. Reflecting the
completeness, they are constrained as ata~ + etc~ = 1.
[We use the notation (ata) = P at a, etc. ; rr are
Pauli matrices. ] The chemical potential p, is to be cho-
sen so that the electron density n = P Ct C satisfies
{n ) = 1 —6 (0 & b & 1). The path-integral expression
of the partition function Z = Tr exp( —PH) is given by

as J P b &b & in terms of the RVB variable b &x,p &P

(a +& qa 1 —a~+& ra~ q)/~2 sitting on (z, z + P), one

may introduce an independent complex link variable B „
for b & through the Stratonovich-Hubbard transforma-
tion. Then Z becomes

Z = [dP] [da dB„] exp (

Z = [dA] [de da], exp drA

A= —) [u ~ —iP A (w u —1)] —H,

(2) A = —) [aa —tb) Py„ay„a P
p

—p, (aa)~] —) [BB—v J(Bb+ bB)]~„.
where the three-component variable u (r)

(a 1, a~2, e )(r) is a function of the imaginary time
r = (0, P) and describes classical paths. u stands for
Ou /Or. a ~ is a Grassmann number while e is a com-
plex number. We denote their conjugates with overhead
bars. H in the action A is obtained from H by substitut-
ing (a, e ) by cu . The A integration ensures the con-
straint stated above. At the level of expectation values,
it reads (a a + e e ) = 1. Since p, gives the condition
(a~a~) = 1 —6, the hole concentration is determined as

(e e ) = 6, as expected.
Below we respect the local constraints approximately,

i.e. , at the level of expectation values. So we write e
as e = ~bP, P = exp(iy ), with a r-independent
angle p . Since the J term in A can be rewritten

To integrate over the spin field a~~ we write it as
Ia:—P a introducing other Grassmann variables a

Then P appear only through the combinations M &
——

P B»g +&. Physically M & (multiplied by 6) represents
the hole-pair field. It carries the charge 2e and is invari-
ant under the U(l) local gauge transformation; B &

~
exp(ig )B „exp(i8 +„), (a, P ) ~ exp(i0 )(a, P )
(with a unchanged). The model is now a U(1) gauge
theory, since the measure [da dB„] = [da dM„] and the

I
action themselves are invariant. The integration over a
gives rise to the determinant of their quadratic kernel I .
As before, 4 by expanding Tr ln(1 ) with respect to M & up
to O(M4), and keeping only the static (r-independent)
modes of M &, we obtain the GL theory:

Z = [dM] „exp(AGL),

AGL ——Ao+ AM,

(4)

Ap ——2Pp, V(1 —6) + 2 ) ln 1 + exp P
~

2th ) cos p„—p,
I Q

AM=c2) M„M„+ or ) M+, „M „+a2) M „M
&1@8& &)P

+03 (M~pM~ —v v + M~ —p pM~ v v + M~p M~v + M~ —p pM~ )+ cv~ c ~

x,pgv

) ~(2 Pep + Px —p, pPxp) Es,p&v(PxpPxv + Px —p, pPz +PxvpPa —v, v + Px. p, @PE—v,v)—
—A ) (M „M +„M +, „M „~c.c.),

where p &
—~M „~. (V = I" is the number of sites;

p&
——27rk„/L, with k&

——1, 2, . . . , L.) Each term of A~ is
illustrated in Fig. 1. The coefficients c2 —J(Gpp+Gii)—

p, al = JG11 02 —J(G11+G02) i' —J(G11+G03)
J Gqq/2 are defined here in terms of the thermal Green's
functions G;z (Ref. 11) given in B,ef. 4.
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FIG. 1. Interaction terms in GL theory of Eq. (4). The
segments express link variables M „(with arrow) or p „=
~M „[ (without arrow). The solid circles locate the site 2:.

We performed MC simulations in two spatial dimen-
sions. We think that simulations in pure two dimensions
are worth doing because (i) the results are indispensable
for an identification of the universality class, and (ii) the
observed three dimensionality is actually very weak; a
typical ratio n [:—J,/J &

——(t, /t &)2] of interplane
and intraplane electron hoppings in high-T, material is
estimated as O(10 s).i2

The Metropolis algorithm was used with typical sweeps
of 10 000 times with six local hittings over a lattice of the
size 20 x 20 with the periodic boundary condition. The
GL coeKcients were calculated numerically for infinite
lattice and for J = 0.1 eV and t = 0.3 eV, using Matsu-
bara Green functions and an expression of the density
of states in terms of elliptic integrals. The system is
frustrated since o.q, A & 0 by definition, and we found

0, o.3 & 0. We have learned that the value of
p, should be chosen carefully because, for (n ) = no +

nM, the contribution n~ from AM grows larger at lower
temperatures. (Here no denotes the contribution from
Ao. ) In Fig. 2, their typical behavior and a value of p,
are shown.

In Fig. 3, curves of the specific heat per site C„ for
T are plotted. At 6 = 0, we found no clear indications
of a phase transition as previously stated. Already at
6 = 0.02, it has a clean peak at the temperature T
17.5 K. As 6 increases, the peak height decreases and the
peak location shifts to higher T. At b = 0.07, no peak
remains any longer but the gradient of C„with respect
to T changes rather sharply at T 50 K, where the low-

T branch (LTB) of C„meets the high-T branch (HTB).
For larger 6, globally speaking, the LTB becomes higher,
while the HTB bocomes lower. They cross each other at
6 0.09. At 6 = 0.10, the LTB is higher than the HTB.

VVe do not think these curves exhibit any signature
of genuine phase transitions. Our guess is mainly based
upon the following points: First, the argument given by
Hohenberg et al. allows us to expect no breakdown of
global U(l) phase symmetry in the two dimensions (2D)
also in our system. Second, we observed almost no size
dependence of C„. Simulations for smaller lattices such
as 8 x 8 (for, say, b = 0.04, 0.07) give curves that look
almost the same as those in Fig. 3. Rather, we think
of these peaks and sharp changes of derivative as precur-
sors of a genuine (second- or higher-order) phase transi-
tion into the superconducting phase, which the system
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FIG. 2. p, ,(AO + Aar) plots the chemical potential for 6 =

0.07. The squares show the corresponding (n ) (:—na + n~),
which is loca, ted at the desired value 1 —6' = 0.93 (dashed
line). The crosses show no's. For reference, we plot the values
p, = p, (AO) determined by using Ao only. They give no+n~
shown by the circles.
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FIG. 3. Specific heat C vs temperature T. The lines are
drawn as guides to the eye, respecting other data points mea-
sured for every step of AT=2 —2.5 K. For b = 0 (marked by
pluses), we found no sharp peaks up to T = 400 I&. They ap-
proach the asymptotic value limr C„=k[2+(1—b) ln([1—
b']/[1 + b])]. In the inset, locations of peaks of C„or sharp
changes in dC„/dT are marked. Results for 6' = 0.08, 0.09,
0.11, and 0.13 are included. T for b = 0.16 was below 20 K.
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may exhibit when three dimensionality is included. It
will be associated with the nonvanishing order parameter
squared, lim~~ y~ ~)(M~&M»)~. In the Higgs model of
Ref. 6, a phase transition into the Higgs phase, in which
gauge-invariant link variables have coherent phases and
develop nonvanishing expectation values, is observed in
three and four dimensions. So the expected supercon-
ducting phase may be characterized as a Higgs phase.
Furthermore, for a very weak three dimensionality, the
transition point may be located near these peaks and
changes of derivative —the places where LTB and HTB
meet. This expectation is suggested from the behavior
of the classical XY model, which is realized as certain
limiting cases of general gauge Higgs models, including
the present one. In the X'Y model, the C„peak loca-
tion and the Kosterlitz-Thouless (KT) transition point
deviate by 20% in 2D and the second-order transition
point shifts from the KT point logarithmically with re-
spect to small n. In the inset of Fig. 3 the locations of
such peaks and sharp changes of dC„/dT are collected in
the 6-T plane.

In Fig. 4, the fluctuations of p2, (P p~„)/dU, are

illustrated. In the MF treatment of Ref. 4, p~ starts from
a finite value (say, 1.88 x 10 s for 6 = 0.07) at low T and
vanishes at finite T (153 K for 6 = 0.07), while in the
dynamical MC~ treatment it starts from a larger constant
[the coefficients scale as cq, o;, A = O(P) for small Tj
and increases as limT p = kT, since c2 ~ —P dom-
inates over cri s, A = O(p ), o2 ——O(p ) at high T. The
importance of fluctuations seems beyond doubt. How-

ever, it requires more study to judge whether a dimer
phase takes place somewhere. For 6 = 0, the coeK-
cients are given as c2 —JP~/4 —P, cr; = 0, A = J2P4/96,
and p starts from zero at T = 0. This difference
is due to the extra local U(l) gauge invariance [under
M „~exp(io )M & exp(io +„)] at 6 = 0. There M „
fluctuate wildly and an expansion up to O(M ) might
not be sufficient to describe AF transition even in three
dimensions; Larger loops ofI &'s might be relevant. For
6 g 0 this U(l) symmetry is broken due to the t term of
(1) and Eq. (4) is sufficient to describe a Higgs phase.

Finally we point out that, even though a powerful tech-
nique to study phase transitions, the GL theory is not
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a suitable tool to analyze the behavior of the system
near T 0, since (i) the effective expansion parame-
ter Pi/2p

& may become quite large and (ii) modes other
than the static one may become important. For this pur-
pose, a generalized gap equation will be useful.
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FIG. 4. p —= p „dV vs T. As T ~ oo, they

approach kT (shown as the straight line), the leading term of
the high-temperature expansion. Continuous curves with the
su%x MF express the results of fixed p ~ in the mean-field
treatment up to O(p ) given in Ref. 4 (where the same values
t = 0.3 eV, J = 0.1 eV were used). For 6 = 0, p is given by
96(—1+ PJ/4)/7 J P and vanishes at T = 290 K.
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