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Magnetic-field infiuence on polaronic electrons on liquid-helium films
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Using the harmonic-oscillator algebra, we calculate the ground-state energy of the system of an
electron coupled to a ripplon on the outer surface of the liquid-helium film under the inhuence of a
magnetic field of arbitrary strength. Analytical expressions obtained for limiting cases of strong
field and weak field with the weak-coupling strength are essentially in agreement with those existing
in the literature.

I. INTRODUCTION II. THE HAMILTONIAN

There exists a considerable amount of work, both
theoretical' and experimental, ' ' on the system of
electrons on the surface of liquid helium. Because of the
combined e6'ect of the attractive image potential and the
surface barrier, electrons are confined to move on the
outside surface of the liquid and form an ideal two-
dimensional (2D) system. Aside from the fundamental
proporties of the 2D electron gas, the polaronic states on
the surface of liquid helium have attracted attention in
recent years. A polaron is a system of an electron cou-
pled to the ripplon field, an elementary excitation of the
liquid-helium surface. The system is of particular in-
terest, because the strength of the electron-ripplon cou-
pling can be changed by adjusting the thickness of the
film or by changing the substrate.

The problem was first formulated by Jackson and
Platzman and then treated by others ' using di6'erent
methods. We investigate in this paper the ground-state
energy of a 2D polaron on the liquid-helium surface when
a magnetic field of arbitrary strength is applied normal to
the surface. Since we are only concerned with the weak
coupling, no indication of phase-transition behavior ' '
is expected. We use in our calculation the algebra of
harmonic-oscillator operators introduced by Suzuki and
Hensel. ' The algebra was first employed by Larsen' to
treat the 2D polaron in polar crystals. Its major advan-
tage is that the complicated sum over the products of all
the matrix elements and energy denominators can be re-
placed by a much simpler algebra. The method has been
extended by two of the present authors to study the inter-
face polaron in magnetic fields' ' with expected results.

Consider a film of liquid helium of thickness d. Its free
surface is taken to be the xy plane, so that the space is
vacuum when z )0 and the substrate with dielectric con-
stant e when z & —d. The magnetic field B~ is along the
positive z direction. For an electron interacting with the
ripplon on the free surface, the Hamiltonian of the cou-
pled system is given by
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132
2e BM

coq = 'k+ —k tanh(kd)
P

1/2

(2a)

Vz = [2maA' g'k tanh(kd)/Smco&]' (2c)

The notation is as follows. The electron mass is I, its po-
sition r, and its momentum p. The operator az (az)
creates (annihilates) a ripplon of wave vector k and fre-
quency cuI, . p and 0. are the density and surface tension
of the liquid helium, respectively, and g' is the accelera-
tion caused by Van der Waals coupling between the Quid
and the substrate. The surface area of the helium is
denoted by S and the electron-ripplon coupling constant
o.' is defined by
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(2d)
where we have made use of the matrix element

(plL Ip) =e ""'~'p' (10)
2 1eg=eE'"'+

4d E+ 1
(2e) In the following, we treat H' as a small perturbation with

the unperturbed ground-state energy

H =Hp+H„, (3)

Ho= (2 3+—,')+ gficoi, ai,ai, ,
2m k

(4a)

H,„=g ( Vq LI, Mi, a q+ VqLi, 'Mi 'ai, ) .
k

(4b)

The Suzuki-Hensel harmonic-oscillator operators in (4)
are defined as

where the capillary constant k, =(pg'/o')'~ . E'"' stands
for the normal component of the external electric field. It
is seen from the definition that a depends on the film
thickness and the characteristics of the substrate. If we

0
assume that the film thickness d= 100 A, then we have in
cgs units ' g'= 10 g, k, = 10 cm ', where g is the gravi-
tational acceleration.

As proposed by Larsen'", the Hamiltonian (1) becomes

E'=(pl~', &IJ & =f~, /2,
where

li &=1M&.lo, ) = (B')~ 0&, lp„& . (12)

Because of the complicated dispersion relation (2b) and
the interaction energy (2c), analytical expression for the
ground-state energy can only be obtained in approxima-
tion. Following Ref. 6, we consider a linearized cutoff
ripplon spectrum, that is, cok=sk with the cutoff wave
number k =k„where s =(g'd)'~ for k (ko. This has

0
been shown" to be a good approximation for d & 100 A.
Thus, the ground-state energy up to the second-order
perturbation is found to be

1 P . +P5'x 4y ' py+ 4x

B = 2 — —(x+iy),
2&%
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(sb)
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= —ah'co, (1—e ' ') . (13)

LI, =exp (k„+ik )A — (k ik )—2 (6a)
Since cop/cu, « 1, we find by expanding the exponential

function and neglecting terms higher than second order

Mi, =exp (k —iky )B — (k +iky )B&fi
(6b)

b,E = aficoo+ fico—, ( coo—/co, ) (14)

III. STRONG-FIELD LIMIT

The ground-state energy of a two-dimensional polaron on
the liquid-helium film in strong magnetic field is therefore

2

Similar to the case of the electron-phonon system, ' '
the unperturbed eigenstates can be written as

ll) =(n!M') ' (3 )"Ip) „(B )™lp) igni, ), (7)

where the vacuum states of 3 and B are defined by
2 0) „=BIp) ii =0 and the ripplon vacuum state is given
by ai, lpi, ) =0. The strong-field limit is according to Ref.
14, (co, /coo) =A, ~~, where

E =E +hE= —,'%co, 1+a COp —aACOp,

IV. ARBITRARY MAGNETIC FIELD

which is in agreement with the result of Ref. 7.

(ls)

co, = =eB~/mc,
2m

cop —Ilk /2m

(8a)

(8b)

In an arbitrary magnetic field, the electron is no longer
confined to the lowest Landau level. The Hamiltonian is
still given by (3) but the unperturbed eigenstates are

In the strong-field limit, the electron can only be found
in the lowest Landau level n=0. The effective Hamil-
tonian of the system is then

Ii & =(n!M!) '"(&')"Ip&~(B')Mlp&~lp& (16)

H =H,~+H',
R s =—%co + g fico' a i ai

k

a''= g V„*e-'" "C'(M„a„'+M„-'a„),
k

(9)

(9a)

(9b)

and the unperturbed eigenenergies

E =(n+ —,')iiico, .

The second-order perturbation energy from H' is

(17)
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where we have made use of the relation

(n An), +fico„) 1
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and the approximation of the linearized cutoff ripplon
spectrum. It is noted that Eq. (18) is a limiting case of
Eq. (18) of Ref. 7 when the two parameters V and W in
that paper are taken to be equal to one another. The in-
tegral in (18) is still difficult to evaluate for arbitrary A, ,
for which numerical calculation is necessary. The result
is plotted in Fig. 1 as a function of A. . The dashed line
representing the strong-field limit (13) is also drawn for
comparison. It is observed that Eq. (13) is practically ac-
curate for A, ~

—,'. The dotted line represents the weak-
field limit, which is discussed below.

In the strong magnetic field limit, A. ~ ~ and
e '~0. Equation (18) becomes identical to (13), as ex-
pected. In the weak-field limit, A, ~0 and e '= 1

A, t+ —,'A, t—. Thus Eq. (18) becomes

aAe,
AE = —2agAcoo[1+ rt lng —g ln( 1+g) ]—,(19)

( I+g)
where we have defined the parameter q=sk, /coo. The

—2agAcoo[1 —g ln[(1+ii)/g] J . (20)

When the terms involving logarithms are neglected, as
they are much smaller than unity, Eq. (20) reduces to the
result of Ref. 7. When the fourth-order term is not in-
cluded, it becomes the result of Ref. 9.

If we define the cyclotron frequency of the polaron in a
magnetic field as co,

*=f3 /2m *, we find from (15) and (20)
the effective mass of the polaron in weak and strong mag-
netic fields, respectively:

—12'
m =m 1

(1+ii)
=m [1+2a/( I+g) ], (2la)

m'=m 1+a
'2 —1

C00
=m [1—a(coo/co, ) ] . (21b)

Therefore, the polaron effective mass is smaller than the
bare electron mass in the strong field and is greater than
the bare mass in the weak field. Our calculation shows
that the polaron effective mass is a continuous function of
the magnetic field as it goes from m /m ) 1 in the low-
field limit to I*/m (1 in the high-field limit. This is
different from the variation of the effective cyclotron
mass, ' which is defined through the cyclotron resonance
frequency.

V. DISCUSSION

first term is the polaron self-energy, and the second term,
which arises from the fourth-order term —,'A, t, modifies
the electron Landau levels in the form of mass renormal-
ization, as we shall see. The ground-state energy of a
two-dimensional polaron on the liquid-helium film is
therefore given by

E= [n+ —,
' —a/(I+g) ]A'co,

3

LJJ

CI

-210—

-3
10

r

10 / I l I i II Ill I I

1O4 10~ 1O-' 10 10

FIG. 1. Ground-state energy of a 2D polaron on the liquid-
helium film in a magnetic field of arbitrary strength. The solid
line represents results for an arbitrary field, the dashed line
represents results in the strong-field limit, and the dotted line
represents results in the weak-field limit.

We have calculated, in the presence of a magnetic field
of arbitrary strength, the ground-state energy of a 2D po-
laron on the outer surface of the liquid-helium film in the
weak-coupling limit. We find that the polaronic energy
correction tends to increase monotonically in magnitude
with increasing magnetic field as shown in Fig. 1. We
also find that the interaction with ripplons results in the
shift of the electron Landau levels. In the strong-field
limit, the electron is most likely restricted to the ground
level, which is shifted upward, while in the weak-field
limit, the levels are shifted downward due to the ripplon
effect. Consequently, the effective mass of the polaron is
larger (smaller) than the electron mass in the weak
(strong) magnetic field.

The three polaronic states discussed in Ref. 9 can be
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reproduced from our result (18) in appropriate limits. In
the strong-field limit, or when A, ~~, the polaron is
magnetically trapped with ahcoo as the limit of the trap-
ping energy, and the polaron effective mass approaches

the electron band mass from below. In the weak-field
limit, or when A, —+0, the self-trapping energy follows
from (19). It is —2agA'coo for strong coupling and ap-
proaches zero in the weak-coupling limit.
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