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(r) =exp(ip, (f) r) g czexp(igx), (9)

where p,.(f) is the initial (final) momentum of the electron
and the g are the reciprocal-lattice vectors. When this
expression is inserted into the expression for the matrix
element [Eq. (8)], the result, neglecting a spin-dependent
term, is

1j(k)= g c~cz+x(p;+g)5(p, —pf —k —K), (10)
/AC

where
K=g —g' (1 1)

is the momentum absorbed by the crystal lattice. (Al-
though the above analysis was carried out for an electron,
analogous equations may be derived for positrons. The
only difference is that the potential in the Schrodinger
equation [Eq. (7)] will have the opposite sign; the many-
beam form of the wave function [Eq. (9)] can still be used.
Therefore, the results found for electrons will be equally
applicable for positrons. )

The differential intensity for a given polarization is, by
Fermi's Golden Rule,

e k
dk dn (12)
dk dQ 2~ E'

where co is the energy difference between the two levels in
the rest frame of the electron and e; are the photon polar-
ization vectors. The photon polarization is given by the
difference in intensity for the two polarizations, dI, and
dI2, normalized by the total intensity, dI, +dI~

leads to a Pauli-type equation for the large components
o"V(E —V+m) 'cr VP++(E —V —m)P+ =0 . (5)

Since the potential is inaependent of y and z, the solution
of the wave equation can be written in the form

"exp[~(i2.~+I,3»)]e(x)X .

We now take advantage of the fact that the particles of
interest have kinetic energy on the order of 1 MeV, which
is much larger than the planar potential energy, which is
on the order of 10 eV. This allows us to transform Eq. (5)
into a one-dimensional, relativistic Schrodinger equation

B2 + V(x)Q=E2$, (7)
2ym (lx2

where y is the relativistic factor and Ej is the transverse
energy of the electron.

Now consider the emission of a photon by the chan-
neled electron. Using quantum electrodynamics, the
single-photon spontaneous emission rate is proportional
to the square of the radiative-transition matrix element,
which is given by

j(k)= f+ft(r)a+;(r)exp( —ik r)d'r,

where k is the photon momentum. In the many-beam
formulation, the spatial part of the wave function is writ-
ten as

FIG. 2. Geometry of the channeling radiation problem. The
set of vectors (k, e&, e&) form an orthogonal basis.

dI i
—dI2

dI) +dI2
(13)
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Following Kumakhov, ' let us choose the photon po-
larization vectors as shown in Fig. 2. Let e& be perpen-
dicular to the plane formed by the photon momentum
and E2, and let E'p be in the yz plane at 90' to the direction
of the particle's motion. Here we consider only the case
of forward emission, where the particle's momentum and
the photon's momentum are parallel. The quantity dI2 is
seen to be zero, which tells us that the radiation is com-
pletely perpendicularly polarized with respect to the
emission plane, which is the plane described by k and e2.
Since the emission plane corresponds almost exactly to
the channeling plane, the planar channeling radiation will
be almost completely polarized in the direction normal to
the channeling plane.

This result is in agreement with the results of Bloom
et a/. , which were obtained from a classical, Monte Car-
lo calculation, as well as those of Saenz et a/. , which
were found using a single-plane type of approximation.
The agreement with the work of Saenz et a/. is in con-
trast to the situation for axial channeling, where results
for polarization calculated in the single-string approxima-
tion (analogous to the single plane in planar channeling)
are significantly different from the results obtained in the
many-beam approach.

In summary, we have shown that the channeling radia-
tion emitted in the forward direction by planar channeled
electrons and positrons is completely linearly polarized,
in the direction perpendicular to the emission plane.
This result is true for any type of crystal and for any
choice of crystal plane, provided only that the angle L9 is
less than the critical channeling angle.
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