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The polarization of channeling radiation emitted by planar channeled electrons and positrons has
been calculated using the many-beam method. The radiation was found to be almost completely po-
larized in the direction perpendicular to the channeling plane for emission in the forward direction.
This is an exact, analytical result and holds for all instances in which the particles satisfy the condi-

tions for planar channeling.

A charged particle directed into a crystal approximate-
ly parallel to one of the crystal planes will be planar chan-
neled; "2 that is, it will experience a force which will
“steer” the particle along the direction of the plane, pro-
vided that the trajectory is sufficiently different from an
axis of the crystal to avoid being channeled by the axis.
For negatively charged particles, such as electrons, the
channel is provided by the crystal plane, while for posi-
tively charged particles, such as positrons, the channel is
between the crystal planes (see Fig. 1).

In classical terms, the particle’s momentum forms
some small angle 6 with respect to the crystal plane. This
angle must be less than the critical channeling angle 3,
for planar channeling to occur. The critical angle de-
pends on the energy and type of the incident particle, but
is on the order of a few mrad for electrons and positrons
with energies on the order of 10 MeV.

From a quantum-mechanical viewpoint, the channel is
the source of a potential well in the direction transverse
to the particle’s motion, which gives rise to transversely
bound states for the particle. Transitions to lower-energy
states lead to the phenomenon known as channeling radi-
ation. The fact that the transverse potential is periodic
allows the use of the Bloch-function or “many-beam” ap-
proacgl to this problem. This was first done by Andersen
et al.

The quantum-mechanical calculation of axial channel-
ing radiation was first carried out by Kumakhov and
Wedell,* and the following analysis utilizes their develop-
ments. One begins with the time-independent Dirac
equation for an electron moving in a potential V(x)
periodic in the x direction (which is normal to the chan-
neling planes)

[—ig-V—Bm +V(x)|]P=ED, (1)
where m and E are the electron’s mass and energy, a and

B are the standard Dirac matrices, and ¥ (x) is the aver-
age value of V(x,y,z) along the yz plane
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This approximation is valid if the electron is channeled
and its energy satisfies the inequality'

3Ze?

E>—= ~7%90¢eV, 3
21r(Ca)3Ndp ¢ 3)

where Z is the atomic number of the crystal atoms, a is
the Thomas-Fermi screening length, Nd, is the average
number of atoms per unit area of the plane, d, is the dis-
tance between planes, and C is a constant which
Lindhard sets equal to V'3. As will be shown below, the
polarization is not dependent on the form of the atomic
potentials used in Eq. (2).

Separating the wave function into large and small com-
ponents,

FIG. 1. Qualitative illustration of the classical motion of a
channeled positron governed by a planar continuum potential.
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leads to a Pauli-type equation for the large components
aV(E—V+m) 'a-Vé,+(E—V—m)b,=0. (5)

Since the potential is inaependent of y and z, the solution
of the wave equation can be written in the form

6. <expli(p,z +p, ) XY . ©)

We now take advantage of the fact that the particles of
interest have kinetic energy on the order of 1 MeV, which
is much larger than the planar potential energy, which is
on the order of 10 eV. This allows us to transform Eq. (5)
into a one-dimensional, relativistic Schrodinger equation

—1 3
W;‘Q+V(x>¢=m¢ : ™)
where ¥ is the relativistic factor and E| is the transverse
energy of the electron.

Now consider the emission of a photon by the chan-
neled electron. Using quantum electrodynamics,® the
single-photon spontaneous emission rate is proportional
to the square of the radiative-transition matrix element,
which is given by

i) = [ @}(r)a®;(r)exp(—ik-1)d*r (8)

where k is the photon momentum. In the many-beam
formulation, the spatial part of the wave function is writ-
ten as

tppi(f)(r)=exp(ip,-(f)-r) >, cgexpligx) , 9)
g

where p; ) is the initial (final) momentum of the electron
and the g are the reciprocal-lattice vectors. When this
expression is inserted into the expression for the matrix
element [Eq. (8)], the result, neglecting a spin-dependent
term, is

N
J(k)—m%cgc;+1<(px.~+g)5(p,--pf—k—K), (10)

where
K=g—g' (11)

is the momentum absorbed by the crystal lattice. (Al-
though the above analysis was carried out for an electron,
analogous equations may be derived for positrons. The
only difference is that the potential in the Schrddinger
equation [Eq. (7)] will have the opposite sign; the many-
beam form of the wave function [Eq. (9)] can still be used.
Therefore, the results found for electrons will be equally
applicable for positrons.)

The differential intensity for a given polarization is, by
Fermi’s Golden Rule,

din _e? k?
dkdQ 27 E?

8k —kB—)|j&, (12)

where o is the energy difference between the two levels in
the rest frame of the electron and €; are the photon polar-
ization vectors. The photon polarization is given by the
difference in intensity for the two polarizations, dI; and
dI,, normalized by the total intensity, dI, +dI, -
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FIG. 2. Geometry of the channeling radiation problem. The
set of vectors (k,€,&,) form an orthogonal basis.

dIl -'dIZ

sz . (13)

Following Kumakhov,*® let us choose the photon po-
larization vectors as shown in Fig. 2. Let €, be perpen-
dicular to the plane formed by the photon momentum
and €,, and let €, be in the yz plane at 90° to the direction
of the particle’s motion. Here we consider only the case
of forward emission, where the particle’s momentum and
the photon’s momentum are parallel. The quantity dI, is
seen to be zero, which tells us that the radiation is com-
pletely perpendicularly polarized with respect to the
emission plane, which is the plane described by k and €,.
Since the emission plane corresponds almost exactly to
the channeling plane, the planar channeling radiation will
be almost completely polarized in the direction normal to
the channeling plane.

This result is in agreement with the results of Bloom
et al.,” which were obtained from a classical, Monte Car-
lo calculation, as well as those of Saenz et al.,® which
were found using a single-plane type of approximation.
The agreement with the work of Saenz et al. is in con-
trast to the situation for axial channeling, where results
for polarization calculated in the single-string approxima-
tion (analogous to the single plane in planar channeling)
are significantly different from the results obtained in the
many-beam approach.’

In summary, we have shown that the channeling radia-
tion emitted in the forward direction by planar channeled
electrons and positrons is completely linearly polarized,
in the direction perpendicular to the emission plane.
This result is true for any type of crystal and for any
choice of crystal plane, provided only that the angle 0 is
less than the critical channeling angle.
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