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The integer topological invariant called the Chem number is calculated for a quasi-one-
dimensional conductor in the magnetic-field-induced spin-density-wave state. Due to the
nonzero value of the Chem number the Hall conductivity per layer has the quantized value
o „=2Le /h and in the effective action of the system there is a so-called Hopf term, which de-
scribes topologically nontrivial configurations of the spin-density-wave polarization vector. The
dependence of the integer number L on magnetic field H is calculated in the parquette approxi-
mation. The theory is applied to the Bechgaard-salt family of organic conductors (TMTSF)qX,
where TMTSF is tetramethyltetraselenafulvalene.

I. INTRODUCTION

Hall plateaus of good quality with the ratios 1:2:3:4:5
are observed in the quasi-one-dimensional conductor
(TMTSF)2PFs where TMTSF is tetrarnethyltetra-
selenafulvalene. The ratio of the components of resis-
tivity tensor p y/p is large. It equals 75 —22, depend-
ing on the number of the plateau, and strongly decreases
in the narrow regions between plateaus. Such behavior
clearly shows that it is really a quantum Hall eAect. The
Hall plateaus are observed also in (TMTSF)&C10q.
In more detail the experiments will be discussed in Sec.
V of the paper in comparison with the theory. Com-
prehensive reviews of the subject, both theoretical and
experimental, can be found in Ref. 6.

(TMTSF)2X crystals consist of conducting chains.
The interchain overlap of the electron wave functions is
considerable in one direction. In another direction it is
very small, so it will be neglected in the paper. Thus the
compounds may be thought of as two-dimensional mate-
rials with strong quasi-one-dimensional anisotropy. The
magnetic field is applied perpendicular to the planes of
the chains.

The peculiar features of the (TMTSF) 2X com-
pounds are the appearance of magnetic-field-induced
spin-density waves (FISDW's) and the cascade of phase
transitions between them. As was shown in Refs. 7-11,
the wave vector of a FISDW deviates from the value 2k~
(k~ is the Fermi momentum) by an integer number I—
multiplied by the magnetic wave vector

q = ebH/c,

where 6 is the distance between the chains, H is the mag-
netic field, e is the electron charge, c is the velocity of
light, and the Planck constant divided by 2', fi, is set

to unity. It was shown in Ref. 12 that in the FISDW
state there is the integer quantum Hall eA'ect with the
value o

&
——2Le2/h per plane. Unlike in semiconductors,

the quantum Hall effect in the (TMTSF)2X compounds
appears only as the result of the phase transition into
the FISDW phase, which is the state of the Hall dielec-
tric. The transitions between the plateaus, related to the
change of I as a function of H, are also phase transitions.

The Streda formula was utilized in Ref. 12 to derive
o. &. In the present paper, following Ref. 14, the same
result is obtained by calculating for the FISDW state a
so-called Chem number which is the topological invari-
ant of electron wave functions. The advantage of the
method is that it manifests explicitly topological invari-
ance of the Hall conductivity. It guarantees that o.

&
does

not depend on any perturbation of the model parameters
and is integer quantized. In this way it is easy to calcu-
late cr

& in the case of .coexistence of several FISDW's
with diA'erent values of L. The coexistence may have
a relation to the explanation of the puzzling self-similar
treelike phase diagram of (TMTSF)2C104.r5

The conductivity tensor for FISDW's was calculated in
Ref. 16 (see also Ref. 17). Unfortunately, the quantized
contribution to o „was completely lost in this paper. On
the other hand, this theory describes very well the Hall
effect in the FISDW phase with L = 0, which also exists
in (TMTSF)zPFs. ' 2.

In Ref. 18 the Hall conductivity was discussed using a
quasiclassical consideration of electron orbits in the pres-
ence of impurities. It was claimed there that there are
plateaus but the value of o.

&
at the plateau is not integer

quantized and depends on the impurities. In the present
paper the eAect of the impurities is not coiisidered.

The paper is organized in the following way. In Sec. II
the Chem number is calculated for the FISDW state.
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To simplify the calculations a number of assumptions
are made in this section. These assumptions are relaxed
in Sec. III, to show that the result is quite general. In
Sec. IV the dependence I (H) is calculated using the par-
quette method. Obtained results are compared with ex-
periment, in Sec. V. In Sec. VI it is shown that so-called
Hopf term is present in the FISDW state in the effective
action of the n field, where n is the polarization vector
of FISDW. Conclusions are given in Sec. VII.

II. CALCULATION OF THE CHERN NUMBER

For simplicity let us consider initially the case of spin-
less fermions with magnetic-field-induced charge-density-
wave (FICDW's) instead of FISDW's. This permits us
to study separately the orbital eAect of magnetic field,
which is the most important. The spin generalization
will be done in Sec. III E.

The Hamiltonian of the fermions is as follows:

—ivy + e~(ky —qz) E(z)
A'(z) i v 0,. + e~ (ky + Q„—qz) (2)

Here z is the coordinate along the chains, v is the Fermi
velocity, k& is the momentum in the direction perpendic-
ular to the chains, and e~(k&) is the dispersion law of
perpendicular motion which obeys the condition

dk„e~(k„) = 0.

The amplitudes of tunneling between the nearest and the
next-nearest neighboring chains Sq and t2 are assumed to
be nonzero, so that

s~(kz) = —2t] cos k& —2t2 cos(2k„).

In the gauge A&
——Hz, A = A, = 0 the magnetic field

appears in Hamiltonian (2) through the Peierls-Onsager

substitution k& ~ k& —qz. Note that the actual carriers
in the (TMTSF)2X compounds are holes, so the charge e

in (1) is positive. The vector @ = (g+(z, k„),g (z, k„+
T

Q&)) is the column vector of fermion wave functions.
The index + denotes two types of fermion with longitu-
dinal momenta close to jk~. The factors exp(+ik~z)
are extracted from the wave functions and the dispersion
law of the longitudinal motion is linearized in (2) in the
vicinity of 6k~. The complex function A(z) represents
the order parameter of FICDW's. Q& is the wave vector
of the order parameter in the y direction. It will be seen
below that A(z) may depend periodically on z.

Now let us make the transformation of the wave
functions:

Q+(z, ky) exp[—i I' d( e~(ky —()/vq]
0'-(e, ke+9 e) eel ref' d( ee(&e+Qe -C)/e~])

After substitution of (5) in (2) the transformed Hamiltonian H', acting on the vP', has the form:

H' = dk y

2x
( e'eO A(e] exp] ——'b rl(lee (ke —() + ee(ke + Qe —(]]]

)c.c. 'l V 0~

where c.c. stands for the complex conjugate of the other off-diagonal matrix element. Below the primes at g' are
omitted. Due to condition (3) the phase factor in (6) is a periodic function of cgz with the period 2' and can be
expanded in the Fourier series with some coefBcients f (Q„):

dk y

2x
I iva,. A(z)) f„,(Q„)ex—p[im(k„—qz)] )

dz @',
2V g

(7)

where c.c. stands for the complex conjugate of the other ofF-diagonal matrix element.
Now, according to Refs. 7-11, let us assume that A(z) has the form

A(z) = Eo exp( —iI qz) (8)

with some integer I. Physically it means the appearance of the FICDW with the longitudinal wave vector Q,.
2k~ —I q. After substitution of (8) in (7) we have
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( —ivy h. o exp( —iLk&)) fl.+ exp[im(k& —qz)] )
dz vP*

c.c. 1VO~
(9)

where c.c. stands for the complex conjugate of the other
oA-diagonal matrix element.

As was indicated in Refs. 19, the magnetic Beld in-
duces the charge-density wave (CDW) because the one-

loop staggering susceptibility of electrons becomes loga-
rithmically divergent when temperature T is lower than
the orbital magnetic energy

0 = vq = ebHv/c

Taking also into account that the interaction constant
between electrons is small, this means that the FICDW
transition temperature T, is always smaller than Q.

I

As the thermodynamics of the FICDW state is BCS-
like, so Ao T, and we assume that

Lo && Q.

In this case the eA'ect of each nondiagonal term in the
sum in (9) can be studied separately. After Fourier trans-
formation over z it becomes clear that the mth term in
the sum (9) opens the gap 2~40 fr.+ ~

in the spectrum
at the wave vectors k~ = +my/2. Let us initially re-
strict the consideration to the simplest, so-called single-
gap approximation when all the terms in (9) are ne-
glected except the term with rn = O. This term gives the
gap at k = 0 that is at the Fermi level:

dk

2x
dk ~.(~ ~ )

vk, AD fl (Q„)exp( lI &„)
) (

„—
)

27l c c —vk

To calculate (T» at zero temperature the well-known formula (see Refs. 24 and 14) is utilized:

dk
0 &y = —'LC

27'

dk= —ie
27r

dk„O(g,
~

B~@,)
2x Bk,. 0k„

dky 0 0~@)
2~ Bk '

Ok„

&(O. l &I@.)
o(k„Ok

~l&.)

In formula (13) the integral is taken over the Brillouin
zone and the summation is taken over all completely oc-
cupied fermion bands. It is assumed that there are no
partially filled bands. The wave functions ~g, (k, k&)) are
the normalized eigenvectors of the IIamiltonian, ~vhose

number of components, generally speal~ing, is equal to
the total number of bands in the energy spectru&ii.

Let us consider initially the case q„= 0. In tliis case
the band structure of the model (12) is the following. The
wave functions are defined on the Brillouin zone torus
((Ii~~ & k~, 0 & k„& 2~, where k = I~ ~ kl; for 6
I'ermions. There is a, gap A = 2~40fl.

~

at the Briliouin
zone boundaries ~I~

~

= k~ and there is one completely
filled fermion band under the Fermi energy. Let us start

I

from some point (K, k„), which is suKciently far from
the Brillouin zone boundaries v(Iio + k~( )) ~A~, and
change I~~ along the closed line encircling the torus at
fixed k&. The fermion wave function ~g(li, k„)) changes
as a function of K and, when we return to the start-
ing point, -it will coincide with the starting wave func-
tion ~g(Ix, kz)) = ~$0) multiplied by the phase factor
exp[i/(k„)] = exp(iLk&). It appears due to the phase
factor of the nondiagonal matrix element, in Hamiltonian
(12) when we cross the region ~Ii

~
k~ (k —0) near

the gap (see similar calculations in Sec. VII 8 of Ref. 14).
From t,his consideration follows that the first term in Eq.
(13) equals

:mll

ie " —(@0~exp[—ig(k„)]Bi exp[i/(ky)]~go) —(@0~0p [@0)= [P(2~) —P(0)]e /(27r) = Le /27r = Le jh,
0

(14)

where the dimensional Planck constant h is restored in
the last equality.

The second term in (13) is equal to zero. In this term
the expression under the integral can be rewritten as the

difFerence (@~Bi. ~g)[&" 0 . But the Hamiltonian (12) at
k& ——2a is just the same as at k&

——0, thus the wave
functions are also the same, so the difference equals zero.

The conclusion is that for the model (12) the Hall con-
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ductivity is integer quantized:

O'„=Le /h

It will be shown in Sec. III E that the inclusion of spins
doubles the result:

(sp&nsl 2L 2/l
Zg

These results coincide with the ones found in Ref. 1.2.

III. SOME C ENERALIZATIONS

In this section some of the assumptions made in the
previous section to derive (15) are relaxed.

A. Multiple maps

I,et us relax the single-gap approximation (12) and
take into account all nondiagonal terms in matrix (9).
In this case the Brillouin zone has dimensions ~k

p/2, 0 & k& & 2x. There are many fermion bands
under the Fermi level. When we change k along the
closed loop encircling the Brillouin zone torus at the
fixed value k„, the wave function ~g, ) gets the phase
factor exp[i/(n l(k&) + iP(s l(k&)]. The phase P, (k„) ap-
pears while crossing the region near the top gap and the
phase P, (k&), the region near the bottom gap. It is easy

(a)

to see from the behavior of the eigenvectors of (12) that
the gap with the number rn gives opposite phase con-
tributions pP for the upper and the lower neighboring
bands. " So instead of (14) we now have

OO OO

--, = 2. .).[~". «, )+~!'(k, )] i,;=. =, , ).[~,-(k, ) - ~-,+ (,)] i,.;=.
a=i m=0

= [Pp(2+) —$0(0)]e /(2x) = Le /2',

and result (14) is reproduced. In formula (17) the first
sum is taken over the numbers of the occupied bands,
beginning from the upper band, and the second sum is
taken over the numbers of the gaps, starting from the
gap at the Fermi level.

For Hamiltonian (9) we have

(k„) = (L —m) k„, (18)

B. Transverse wave vector

so each band contributes one quantum to the Hall con-
ductivity. Formula (18) becomes not valid far from the
Fermi level, where the linearization of the dependence
s(k ) breaks. But this does not matter for result (17)
which does not depend at all on the exact expressions for

(k&) at m g 0, because they cancel each other in sum
(»).

In conclusion, result (15) is also valid in the multiple-
gap approximation.

quires, is equal to P(k&) = MLk& + vr(M —1)L. We
substitute the phase in formula (14) and take into ac-
count that the Brillouin zone for k& is now reduced to
0& ky &2~/M:

o „=[P(2x/M) —P(0)]e2/(2~)' = Le2/27r. (19)

Result (19) is the same as in (14). The generalization
to the case Qv ——2irX/M is straightforward and gives
the same result. An irrational Qz/2x can be represented
as the limit of a sequence of rational values. So for the
irrational Q„/2' result (15) also holds.

In conclusion, o» does not depend on the transverse
wave vector of the FICDW order parameter.

C. Three-dimensional case

I et us include in Hamiltonian (2) the tunneling along
the third z direction perpendicular to the planes of the
chains with the dispersion law

I et us consider the case when the FICDW order pa-
rameter has the wave vector Q&

——2'/M in t, he y di-
rection. The Hall conductivity may be calculated in
the single-gap approximation (12), where now g(k, k„)
is equal to the column vector (g+(k, k„), il (k, k& +
Q&)) . Let us repeat the reasoning following formula
(13). After the change of Il along the line encircling the
Brillouin zone along the x direction, we do not get, the
initial wave function ~@(Ii,k&)) but obtain the function
exp(iLk&)~@(I&, k& + 27r/M)). To get the initial wave
function it is necessary to repeat this operation M times.
The total phase, which the wave function ~g(I~, k„)) ac-

s, (k, ) = —2ts cos k, . (2o)

(
—2t3 cos k, 0

0 2t3 cos k, (21)

has to be added to matrix (2). The transformation

Q = Q' exp(2i2:ts cos k, /n) (22)

Due to this term the FICDW acquires the wave vec-
tol Q: ll 111 tile z dlrectlon. Thlls the vec-
tor of wave functions in (2) becomes equal to

(@+(x,k„, k, ), @ (z, k„+ Q„,k, + x)) and the diago-
nal matrix
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eliminates term (21) from the Hamiltonian. We return
to the initial problem (2) and all the results, obtained
above, hold. In formula (13) the integration

dk, /2x

has to be added. As the function under the integral
does not depend on k, , integral (23) gives simply the
factor of unity. This means that the Hall conductivity
per layer even in the three-dimensional case is exactly
given by expression (15). This result is in accordance
with a general consideration of the three-dimensional
quantum Hall effect (see also Ref. 13). There are two
important points here. Spectrum (20) has the property
of the perfect nesting which permits the energy gap to
cover the whole three-dimensional Fermi surface. There
are no topological changes of the Fermi surface along the
-z direction.

D. Coexistence of several order parameters

A(z) = ) 4, exp( —iL~qz). (24)

To calculate 0» in this case let us follow the single-
gap approximation. It is clear from Eq. (14) and the
discussion before it that the integer I, which appears in

(15), is, in fact, the phase acquired by the nondiagonal
matrix element in (12) when kz goes from 0 to 2~, divided
by 2~ and taken with the opposite sign. In the case when
several order parameters coexist the nondiagonal matrix
element is equal to

It was assumed in Sec. II that the order parameter of
the FICDW has the form (8). But in the general case
several order parameters with diA'erent values of I.z may
coexist:

To find the Hall conductivity it is necessary to find the
change of the phase of the complex number (25) when k„
goes from 0 to 2'. This phase, divided by 2z and taken
with the opposite sign, is the integer number, which must
be substituted instead of L in formula (15).

For given values of Az f& and L~ it i.s easy to perform
this procedure. One particular case is extremely simple—when for some I the partial gap ~A(f(~ is larger than
the sum of all other partial gaps:

l(&tfil & ) . I&~f~ I

(gr)
(26)

In this case the Hall conductivity is determined by the
largest term of (25) only:

(27)

When two order parameters coexist the Hall conductivity
is determined by the value Lz, whose partial gap ~Az fz ~

is larger.
In conclusion, if several order parameters coexist the

Hall conductivity is not the superposition of the par-
tial Hall conductivities but is determined by the winding
number of the complex function (25).

E. Spins

Let us now include in the consideration the spins of
electrons. The corresponding Hamiltonian can be ob-
tained from (2) if we assume that the elements of matrix
(2) are themselves matrices 2 x 2 with respect to the spin
indices. Zeeman terms —@~Ho., should be added to the
diagonal elements of matrix (2). They are eliminated by
the transformation

( @+exp(i @I'H zo, /v).
( g' exp( iIJ, IiHzo, /v)— .

4(ky) = ) 4, f, exp( —iL, ky). (25)
After transformation (28) the nondiagonal element of (2)
has the form

~( ) (
Ai(z) exp( pipzHzv, /v) A,—(z) —iAv(z)

(z) + i A„(z) Et(z) exp(2ipii Hzo, /v).
Let us consider firstly the case when A~ = 4& ——0.

In this case spins up and down are decoupled. Choosing
Ly y in the form

At t ——Ao e p(+x2ipH o, z/v —iLqz),

we eliminate the oscillating factors from (29) and return
to the problem of Sec. II separately for spins up and
down. For each spin we have expression (15), and totally,
we have (16) .

Let us consider now the case A~ ——A~ ——0, By a
phase transformation of wave functions it is possible to
set, A&

—0 in (29). Let us repeat the reasoning af-

ter formula (13). If we start from the wave function

~gt(I~, k„)) then after the trip around the Brillouin zone
we receive the wave function exp(iLk&)~gt(I~, k„)). To
restore the initial wave function we have to repeat this
procedure once more. So the total phase acquired is equal
to 2Lk&. Thus the answer is given by formula (16).

IV. PARqUETTE APPROACH

In the preceding sections formula (15) for tlie Hall con-
ductivity was derived. According to this formula the
dependence (r»(H) is determined by the dependence
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L(H) T. he dependence I(H) should be, strictly speak-
ing, determined at zero temperature T, where formula
(15) is valid. But it is more simple to find the depen-
dence I,(H) at the transition line T,(H) from the metal-
lic to the FICDW phase. Both in experimenti s and in
theory the values of the magnetic field, at which
the transition from one FISDW phase to another appears,
depend very slightly on the temperature. So the topol-
ogy of the phase diagram in the H —T plane is such
that the sequence of the integer numbers I under the
monotonous change of H is exactly the same at T = 0
and at T = T,(H). Additional harmonics (24) of the or-
der parameter, which may appear away from the metal-
FICDW transition line, also does not change the value
of L provided their amplitudes are suKciently small (see
Sec. III D). So, this section is devoted to the calculation
of the dependence L(H) at T = T, (H), which is argued
to be the good approximation to the dependence L(H)
atT=O.

The general way to solve this problem is the
following. In the -metallic phase at the given value of
H it is necessary to determine as a function of T the
electron-hole susceptibility with respect to the appear-
ance of the infinitesimal order parameter (8). At some
temperature T,(L, Q&) the susceptibility becomes singu-
lar. The FICDW order parameter appears with the val-

Il = Ilo+ II (31)

The first term Ho is the same as (2) but with 4 = 0
because now we are in the metallic phase at T ) T, :

ues L and Qz, corresponding to the highest temperature
T, (L, Q„) below this temperature.

There are, basically, two approaches to the calculation
of the susceptibility. In one approach the susceptibil-
ity is calculated as the sum of the ladder diagrams in the
electron-hole channel, " . In the limit T, (( 0 in this
approach the values L and Q&, which maximize

~
fL, (Q&) ~

in (9), also maximize T, (L, Q&). The numerical cal-
culation of the susceptibility was done for the spectrum
(4) in Ref. 11. The result is that L acquires subsequent
integer numbers 0, 1, 2, 3, ... as 1/H increases from the
zero value with the characteristic period ebv/ct2

Another approach, ~ where the so-called parquette
approximation is used, is more general. It takes into ac-
count not only the contribution to the susceptibility of
the electron-hole loops but also the contribution of the
electron-electron loops which are both logarithmically di-
vergent as functions of temperature. This approach is
briefly outlined below and the results for I.(H) are pre-
sented.

The starting Hamiltonian consists of two terms:

Ho ——). dky

2x
dz [ &~v qt (z, k„)c}.y. (z, k„) + s, (k„—gz) g.'(z, k„)g. (z, k„)]. (32)

The second term H;„& describes the interaction between the fermions:

dz " qt (z k{ })yt (z k{ })y (z k{ })@ (z k{ })$(k{i}+ I„-{ } —I;{ } —k{4})
jrQQ

(33)

where G is the interaction constant.
Now let us make transformation (5) and denote g' (z, k&) = a (z, k&). The transformed Hamiltonians have the

following form:

Ho ——). dz[ invat (z, k—y)r} a (z, k„)], (34)

co 4 ( x dk{i}'}
H;„, =G

—OO y
—7l

x a (z k{'})a (z k{'})S(k{'}+ k{'}—k{'}—k{'})

where the matrix element of scattermg g(z, k„,k„,k„,k„) is equal to(~) (2) (3) (4)

8ii, k{'}—k{'} . k{'}—k{"} (k{'}+ k{'}
g(z, k, k },k, k ) =exp cos " " sin " " cos

(35)

+ cos(k„—k„)sin(kz } —
k& ) cos(k{ }+ k{ } —2qz)

4itg
(36)

In formula (36) the explicit form of dispersion law (4) was used.
We see from (36) that the matrix element of scattering g(z, kz, k&, kv, k& ) periodically depends on qz. Let us



43 QUANTUM HALL EFFECT IN QUASI-ONE-DIMENSIONAL. . . 11 359

expand it in the Fourier series with respect to qz:

g(z, k&'1, k~'1, k~'&, kt."&) = ) g(m, k~'1, k~'1, kE'1, k~'1) exp(imqz). (37)

The Fourier harmonics with m g 0 do not conserve the momentum k . In these scattering vertices the logarithmic
singularity is cut off at the energy of order mA, so they will be neglected. 2 What remains is the term of (37) with
m = 0. With this term Hamiltonian (35) can be rewritten as

Knt:=G dpi'
27r

y

2' dz f(qy, py)at+(z, ky)at (z, ky + qy + py)

xa (z, k„+ q„)a+(z, k„+p„), (38)

where q& and p& are the total and the relative momenta in the transverse direction in the electron-hole channel and

f(qy, py) = do Sitg qy . p„ 4it2
2K

exp — cos —" sin —" cos 8 — cos q sin p cos(20)0 2 2
(39)

Now let us calculate the sum of so-called parquette diagrams which consist of electron-electron and electron-hole
loops inserted into each other. . The reason for the selection of such diagrams is that the loop consisting of two
lines, one belonging to the + and another to the —fermion, is divergent as lnio(l/T). Summing these diagrams we
find the renormalized scattering vertex p((, qw, py) which now depends on temperature T through the variable

JG/
Inia —,

27l V T (4o)

where the cutoff energy 0 is magnetic energy (10). The renormalization at the energies larger than 0 is not essential. -'

The dependence y((, qy, py) on ( is determined from the parquette or the renorrnalization-group equations, derived
for the model in Refs. 26 and 27:

d~(& qy py) dk

2
"h'(& qw kw)&(& qy Py "y) &(& qy+Py ky kw)&(& qw "w Py kw)I

~(0, qw, py) = sgn(G)f (qw p. ) (42)

(43)

where P is some coefficient. Singular vertex (43) is char-
acterized by the parameters I, Qy, and (, . With ver-
tex (43) the susceptibility can be easily calculated, 29 and
it appears that the values I and Q„of (43) are just
the parameters of order parameter (8) which occurs at
T ( T, . The transition temperature T, is determined
by the value of (,:

T, = Qexp( —2vrv(, j(G~). (44)

Thus the procedure of determining of the phase dia-
gram is as follows. For some value of H initial conditions
(42) and (39) are calculated numerically. With these ini-
tial conditions Eqs. (41) are solved numerically by the
fourth-order Runge-Kutta method. At some value of the
"time" g = (, the solution becomes the singular one of

It was shown in Ref. 29 and for the present model
in Refs. 26 and 27 that the stable singular asymptotic
solution of Eqs. (41) has the form of a so-called moving
pole:

~(& qy py) =e»(iLpy)X —&+~(qw —Qy)'I '

the form (43), characterized by some values I and Qy.
Then the value of H is changed and the procedure is re-
peated. In such a way the dependence of I, Qw, and (,
on H is found. The calculations are done for both signs
of G and for different values of the ratio t2//i.

The results of the numerical solution are shown in Ta-
ble I for G ( 0. This case is the most interesting because
all compounds, where the cascade of FIBBED transitions
is observed, are superconductors at H = 0. The depen-
dence Qy(H) is not shown because 0 y does not depend
on Q„. Generally, Q„depends continuously on H.

In the second column of the table the dependence
(,(H) is shown for t2 jti —— 0.02. Taking into ac-
count (44) it follows that T, has a global maximum at
8ti /A —5. The transition temperature decreases both
when H decreases toward zero and when H increases to-
ward infinity. ~8 There are also oscillations in the de-
pendence T,(H) with the period in 8ti/0 approximately
equal to x, due to which the dependence is nonmono-
tonic. When the value tq/ti is increased, the dependence
(,(H) (not shown in the table) changes smoothly and the
period of oscillations changes only slightly.

Concerning the values of L in the table we note that, as
follows from (39)—(43), the sign of I is determined by the
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TABLE I. Results of the numerical solution of Eqs. (41). In the first column the values of Sti/0
are indicated. In the first row the values of t2/ti are indicated. The value of the integer L as a.

function of Sti/0 and t2/ti is shown in the table, except in the second column where the value t',
as a function of Sti/0 is shown for t2/ti = 0.02.

0.25
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5

6.5
5.2
4.1
3.7
3.5
3.7
4.2
5.3
5.6
3.5
3.2
3.4
4.1
5.4
7.5
5.4
4.7
4.6
4.9
5.7
6.8
6.3
5.1
4.9
5.0
5.6
6.6
7.7
6.5
6.0

0.02

—1
—1
—1
—1
—1
—1
—1
—1

0
0
0
0
0
0
1

—1
—1

1
1

—1
2
0
0
0
0
0
0

—2
1
1

0.1

0
0
1

—1
—1

1

1
—1
—1

0
0
0
0
0

—2
—2

1
1

0.2

0
0
1

—1
—1

1
1

—1
—1

0
0
0
0
0

—2
—2
—1
—1

0.25

—1
0
0
0
0
0
0
0

0.3

0
Q

0
0

—2
—2
—2

0.4

0
0
0
1
1

—1
1

—1
—1

Q

0
2

2
1

—2
—2
—2
—2

0.5

—1
—1
—1
—1
—1
—1
—1

Q

0
0
Q

0
0
Q

1
1
1
1
1
1

—1
2
2

1
1

—1
—2
—2
—2

—1
—1
—1
—1
—1
—1
—1

2
Q

0
Q

—1
—1

1

1

1

1
1

1

1
1
1
1
1

—3
—3
—1

3
—1

sign of tg.. I ~ —I, when t2 ~ —t2. The results, shown

in the table, correspond, in fact, to the case t2 & 0. It
follows from the table that I = —1 when H ~ oo for
any value of tq/ti. This result was obtained analytically
in Refs. 26 and 27 in the case t2 ——0. When H decreases,
then I always acquires the value I = 0. Further behavior
of I under the decrease of H strongly depends on the
value of t2/ti. The dependence of L on both H and
ts/ti seems to be rather chaotic. The only observation
is that the sign of L is oscillating and ~L~ increases, in
general, when H decreases. The table demonstrates that
in the case G & 0 the solution of Eqs. (41) is strongly
sensitive to initial conditions (42), which are determined
by the parameters ti/0 and tq/ti. Strong sensitivity to
the initial conditions is the characteristic property of the
chaotic dynamical systems. So, it is not excluded that
here we are faced with the intriguing possibility of the
chaos in the renormalization-group equations.

The results of calculations in the case G & 0 are not
shown in the table, because they are rather simple. In
the limit H —+ oo I = 0. When H decreases I ac-
quires subsequent integer numbers. The sign of I. is con-

stant. The dependence (,(I/H) is nonmonotonic due
to the oscillations with the period I/t2. The depen-
dence L(H) is the same in the parquette and in the ladder
approximations. The latter corresponds to the neglect-
ing of the second term in Eqs. (41). The dependence
(,(H) is also qualitatively the same except in the region
H ~ oo, where T, ~ 0 in the parquette approximation
and T, ~ const in the ladder approximation. So,
except the phenomenon of the reentrance to the metallic
phase at large H, the ladder approximation is the good
one in the case 6 ) 0.

V. COMPARISON WITH EXPERIMENT

The FISDVV is found experimentally in the three
compounds (TMTSF)2PFs, ' (TMTSF)2C104, and
(TMTSF)qReOq. The Hall conductivity has not been
measured yet in (TMTSF)2Re04, so we discuss here the
behavior of the first two compounds.

In (TMTSF)qPFs the Hall conductivity per layer is
found experimentally to be equal to 0 „=2I.e2/h, ' in
accordance with (16). For reasons unclear the value of



43 QUANTUM HALL EFFECT IN QUASI-ONE-DIMENSIONAL. . . 11 361

TABLE I. (Continued).

8ti/0
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5
32.0

g2 t1

6.0
6.4
7.1
8.0
7.1
6.1
6.0
6.2
6.9
8.2
8.5
7.3
7.0
7.1
7.6
8.3
9.2
7.7
7.0
6.9

8.2
9.5
8.9
8.0
7.8
8.1
8.7
9.6
9.5
8.1
7.7
7.8
8.4
9.4

0.02

1
—3
—3
—3

0
0
0
0
0

—4
—5

1
1
1
5

—5
—5

0
0
0
0
0

—6
1

1

1

1

1

7
0
0
0
0
0
0

0.1

1
—3
—3
—3

0
0
0
0
0

1
1
1
1
1

—5

0
0
0
0
0

—4
—1
—1
—1
—1

1
—6

0
0
0
0

0.2 0.25 0.3

3
3
4
4

D.4

—2
—2
—2
—2

3
2
3
3

—4

3
3
3

3
3
3
3
3

—1

3
3

—6
—1
—1
—1

0.5

—2
—2
—2
—2
—2

3
3
3
3
3
3
3
3

—4

—6
5
5

—3

o», found in Ref. 2, is two times larger. In a very strong
magnetic field close to the experimental limit there is the
FISDW phase where o & and o are very small and ther-
mally activated. This is presumably the FISDW phase
with I = 0. Under the decrease of H the sequence of
the quantum Hall FISDW phases appears with I equal
subsequently to I, 2, 3, 4, 5.~ 2 For a lower magnetic field
there are no well pronounced Hall plateaus. The sign of
o» is constant and negative in the quantum Hall regime.
It is opposite to the sign in the low-H region where the
carriers are holes. The described dependence I (H) seems
to be in excellent agreement with the theoretical results
in the case 0 ) 0 (see Sec. IV).s2 The sign of L can be
easily fitted theoretically by taking the appropriate sign
of to.

Nevertheless earlier experiments reveal a more
complex picture. In Ref. 35 a,n oscillatory behavior of

the sign of p~& was found. The reversals of the sign of
p & were also found in Ref. 36 in the quantum Hall re-
gion later studied in Ref. 2. In Ref. 1 the reversals of the
sign of p» were found in the transient regions between
the plateaus.

It is impossible to explain the oscillatory sign of the
Hall eA'ect within the model with G ) 0. On the other
hand it is easy to do so in the case G ( 0 (see Table
I). Unfortunately, the absolute value of L in the table
changes with H too chaotically. This may be a math-
ematical drawback of the parquette approximation, but
the physical idea that in the case G ( 0 the dependence
L(H) may be oscillatory in the sign, seems to be attrac-
tive. The negative sign of G is favorable for supercon-
ductivity, which is really found in all three compounds
in a small magnetic field (see Refs. '26 and 27). The cru-
cial experiment, which may distinguish which sign of G is
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appropriate to (TMTSF)2PFs, is the following. In the
case G ) 0 with the increase of H beyond the present
experimental limit there must appear a reentrant phase
transition to the metallic phase directly from the FISDAV
phase with I = 0. In the case t ( 0 with the increase
of H firstly there must be a transition from J = 0 to
~L~ = I and then the reentrant transition from the phase
~L~ = 1. According to the estimates of Ref. 2, the reen-
trant magnetic field for (TMTSF)2PFs is of the order of
65—90 T.

The situation in (TMTSF)2C104 is different. Due
to the ordering of the anions C104 an additional crys-
talline superstructure doubles the unit cell in the direc-
tion perpendicular to the chains. Thus the results of the
above calculations are not directly applicable in this case.
But the qualitative statement about ~L~ = I in the last
FISDW phase holds. In fact, the crucial experiment, de-
scribed above, has been performed in (TMTSF)2C104.
the metallic reentrance directly from the phase ~L~ = I
has been found. 38 The sign of the quantum Hall eA'ect in
(TMTSF)qC104 is strongly oscillatory, also in qualita-
tive agreement with the results of the calculations in the
case G & 0. So, it seems that in (TMTSF)2C104 really
the sign of G is negative, although further calculations of
the dependence L(H) in the presence of the crystalline
superstructure are desirable in this case.

As was shown analytically in Ref. 27 in the last
FISDW phase before reentrance ~L~ = I and Q&

—x.
It follows from formulas (29), (59), and (60) of Ref. 27
that with the parameters of the FISDW state, indicated
above, the modulation of the spin density is equal to zero

or, at least, is very small if t2 is taken into account. In
this phase the order parameter is nonlocal, correspond-

ing to the pairing between an electron at one chain and a
hole at the neighboring chain. 27 ~0 So it does not change
the density of spins on one chain. Usually, the appear-
ance of FISDW's manifests itself by the disappearance of
the nuclear magnetic resonance (NMR) signal due to the
eA'ect of the nonhomogeneous local magnetic field created

by the modulated spin density. According to the above
consideration the NMR signal must be present in the last
FISDW phase. One unconfirmed experimental result of
such a type for the smaller values of H was reported in

Ref. 42.
Concerning the dependence T,(H) we find that quali-

tatively the calculated dependence is in agreement with
experiment. T, really has a global maximum at some
value of H (see Fig. 3 of Ref. 5). The nonrnonotonic
behavior of T,(H) in the region of moderate fields was
found experimentally as the partial reentrances of the
metallic phase between the adjacent FISDW phases.
It should be stressed that these qualitative features of
the curve T, (H) are valid theoretically in both cases of
positive and negative Q. 7

A puzzling treelike phase diagram was recently found
in (TMTSF)~C104.i5 Under the decrease of T the
lines of the phase transitions between the FISDAV phases
split into several lines. Then these new lines split and

so on. Surprisingly, these transitions are seen only in
the thermodynamical measurements but do not manifest
themselves in the transport measurements, in particu-
lar, in the value of o. z. I put forward the hypothesis
that' these transitions correspond to the appearance of
additional order parameters (see Sec. III D). Let us dis-
cuss first what may happen in the vicinity of the metal-
FISDW line. Depending on the coefFicients of the Landau
expansion of the free energy the transition between two
FISDW phases may be of the first or second order. In the
latter case, in fact, there are two lines of phase transitions
so that in the intermediate phase the two FISDW order
parameters coexist. I suggest that under the lowering
of temperature more and more FISDW order parameters
may coexist. Appearance of each new order parameter
is the second order phase transition which can be seen
thermodynamically. But, as shown in Sec. III D, pro-
vided the amplitudes of them are sufFiciently small, the
value of o

&
remains constant. The value of o. probably

also does not change very much because the gap is always
present at the Fermi level. To justify this hypothesis it
is necessary to develop the thermodynamical description
of the FISDW at T & T, . Unfortunately, it is not clear
how to continue the parquette technique for T ( T, . The
thermodynamics of the FISDW at T & T, was studied
in Refs. 20—23 and 9 in the mean-field approximation in
the case G ) 0. The above-described phenomenon has
not been found. So it may be intrinsically related to the
case G & 0 where the parquette method is necessary to
obtain the phase transitions.

It was mentioned in Sec. III E that, with the spins
taken into account, the two types of the FISDVV order
parameters are possible. Referring to the direction of H
they can be called the longitudinal FISDW with AT 1 g 0
and the transverse FISDW with 4 „g 0. It was argued
in Sec. 7 of Ref. 27 that for the realistic values and signs
of gi and g2 the longitudinal FISDAV with the two incom-
mensurable potentials Lt and L~ is more favorable. But,
generally speaking, the most preferable type of FISDAV

may depend on H. It is tempting to interpret the phase
transition around 17 T, observed in the transport and
in the thermodynamical measurements, as the phase
transition between the longitudinal and transverse types
of FISDW. If both types of FISDW have the same value
of L (~L~ = I) then 0» does not change at the phase
transition, while o may change if the gap at the Fermi
level changes. Precisely such behavior has been found
experimentally (see Fig. 2 of Ref. 4).

VI. TOPOLOGICAL HOPF TERM

A. Isotropic case

In the absence of a magnetic field the SDW order pa-
rameter has a vector nature:

(45)

Here Ao is the absolute value of the order parameter,
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the vector n determines the polarization of SDW, and the
Pauli matrices cruz act on the spin indices of electrons. In
the absence of relativistic eA'ects the energy of the system
does not depend on the direction of n. The magnetic field
breaks this spin invariance by distinguishing the direction
along H. Formally it happens due to the appearance
of the Zeeman term in the Hamiltonian. For simplicity
let us initially consider the artificial case when there is
no Zeeman term: Ij:@ ——0. In this case the global spin
rotational symmetry is preserved.

Let us integrate out fermions to find the effective ac-
tion of the n field, which may slowly vary in space-time
(z, y, t). The effective action can be found as a series in
powers of gradients on the n field. Apart from the stan-
dard term (gradn) it may also contain the topologically
nontrivial Hopf term. This term can be written in the
following form:

(49)

O=,Trfd~ fdk,
aa-' aa-' aa-'

0~ Ok Ok„

(50)

where a(u, k~, k&) is the electron Green function. The
equivalence of expressions (50) and (13) for o „was
shown in Ref. 53. From formulas (16) and (49) it fol-
lows that

C =21.

domain wall in between, where n rotates between up and
down directions.

In Refs. 51 and 52 it was shown that the value of the
coefficient C in (46) and the value of the quantum Hall
conductivity are determined by the same expression:

o,„=Ce /h,

Cs„pS dz 8p (6 ApFv

I'„, = ri(O„n x O„ii),

rlp+v —~v+p = +@vs p = ~& 2:& y.

(46)

(47)

(48)

Thus in the FISDW phase the Hopf term (46) is present
with coefficient (51). According to theory it means
that the skyrmions are bosons with the integer spin L in
the FISDW state. The quantum numbers of skyrmions
depend on H due to the dependence I(H) manifested
through the dependence a z(H)

Here c&„p is the completely antisymmetric Levi-Civita
tensor of rank 3. For a given configuration of the n(z, y, t)
field it is necessary to determine first I"& from (47),
then A& from (48), and then S(H) from (46). The co-
efficient C in (46) determines the spin and statistics of
the particlelike topological solitons of the n field, called
skyrmions. In the skyrmion n is up at infinity, down
in the center of the skyrmion and there is a concentric

B. Anisotropic case

Let us now take into account the Zeeman term. It
will be shown that result (51) of Sec. VIA holds, but in
addition an anisotropic term, proportional to n, , has to
be added to the effective action.

To perform calculations explicitly a mean-field theory
is used. The starting Hamiltonian H has the form:

II = IIO+ IIint,

dz'l/) ( {[—2o,'v02. + sg(kv —Qz)]b(g —pIiHcT(~ )1P(yq ) (53)

+int—

The second index of the fermion operators is the spin index.
Using the Hubbard-Stratonovich transformation, Hamiltonian (54) can be rewritten in the form

+int —+D + +A/ y

H~—I&+I'+ I&-I'
y2(g2 —2yi)

(56)

H~ g ——@+(A(„g „+H.c., (57)
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Hc, ——2/4p/ i

—+ n,
2/1 gi. 2

(g2 g2(g2 2gl)
(60)

and contains anisotropic term n, . We assume that g~ is
sufficiently small: ~gi/gg && 1. From (60) we see that
the anisotropic term gives an n-dependent correction to
the coupling constant. The equilibrium value of the order
parameter is

~A~ = Oexp — —+ n,
1 gi

g2 g2(g2 —2gi)
= Ap(1 —n,'gi/g2'). (61)

It is well known that the condensation energy, which con-
sists of (60) and the fermion part, is proportional to iKi

(62)

In these formulas the common integration [see (53)
and (54)] is omitted to make the formulas more trans-
parent. I et us now make the transformation of the
fermions (28) which eliminates the Zeeman term from
(53). Then let us make the transformation
AT t exp(+2ipHza, /v), which restores the form (58) af-
ter the first transformation [see (29) and (30)]. Due
to this transformation, the nondiagonal elements of
the matrix in formula (56) acquire oscillating factors
exp(~4ipHzo, /v). We assume that the components
A~ y of the transformed order parameter are practically
constant in space, so the oscillating nondiagonal terms in

(56) are integrated to zero. Finally, we have

I&+I'+ I&-I'+ g2 —gi ()~ (2+)~ (2)
g2 g2(g2 —2gi)

(59)

I et us discuss what we have received. In Hamiltonian
(57) and (58) the parameters A~ t now physically de-
scribe the potentials with the wave vectors 2k~+ pIiH/v
Each of these potentials is related to the modulation of
charge and, in the general case, is pinned. This means
that the global phases of Ay and Ag, related to the rigid
shifts of the superstructures, are fixed. By an appro-
priate phase transformation of g operators we may set

Taking these considerations into ac-
count, we can rewrite (58) in the form (45), where the n,
component of the order parameter represents two poten-
tials with the periods 2k~ + pI3H/v and the n

&
compo-

nents represent the potential with the period 2k~. The
Hamiltonian Hr, „~ —Hp + H~ ~ has now the form (2)
where the diagonal elements are assumed to be unity ma-
trices 2 x 2 with respect to the spin indices and the nondi-
agonal elements have the matrix form (45). The Hamil-
tonian Hr „ is invariant with respect to SU(2) spin ro-
tations of the fermions. Its eigenvalues do not depend on
the direction of n. If n slowly varies in space-time, then
applying the method of Refs. 51 and 52, we find, after
integrating out fermions from Hr,„,the Hopf term (46)
with the coefficient C (51).

The remaining Hamiltonian (59) can be rewritten as

where A is some coefficient. Substituting (61) into (62),
we find

I'",~ d = const+ 2A~Ap( —2n, .
gg

So, we have found that, in comparison with the
isotropic case, an additional term, proportional to n,
with the coefficient as small as gi/g22, has to be added
to the effective action. I believe that this result is also
true in the case g2 & 0, where the parquette method has
to be applied. In the general case the coefficient before
n, should be considered as a phemonenological param-
eter. The transition between the longitudinal and the
transverse FISDVV's, mentioned in the end of Sec. V, is
related to the change of the sign of this coeKcient.

Depending on the sign of this coefficient two situations
are possible. In one case, n

~~
z is favorable (longitudinal

easy-axis FISDW). In this case the topological excita-
tions of the xx field are skyrmions, which are concentric
domain walls between n up and down.

In another case, ii J z is favorable (transverse easy-
plane FISDW). In this case the topological excitations
are vertices with ii

~~
z in the vortex core. They are

half-skyrmions, so they have spin L/2 and appropriate
statistics. They interact logarithmically.

Further work is necessary to understand the physical
consequences of the presence of term (46) and the possi-
bilities of their experimental observation. One effect was
suggested in Refs. 54 and 51. It is the spin quantum Hall
effect: spins Bow in the direction perpendicular to the
direction of the gradient of H,

VII. CONC' USIONS

The new results found in the paper are listed in this
section.

The new (topological) method has been applied to the
FISDW state to derive the formula cr

&
—2Le2/h for

the quantum Hall conductivity. The method is conve-
nient, in particularly, in the case of coexistence of sev-
eral order parameters. Obtained results may give an ex-
planation of the experimental treelike phase diagram of
(TMTSF) 2C104.'s

The dependence I(H) has been calculated using the
parquette method with the electron tunneling to the
nearest and next-nearest neighboring chains taken into
account. In the case of attraction between electrons
(the sign of interaction favorable to superconductivity)
the dependence L(H) is oscillating in sign. In a strong
magnetic field ~L~ acquires the value 0 and then in a
stronger field —the value 1. The FISDW transition
temperature T, as a function of magnetic field H has
a global maximum at the value of H —tic/ebv There.
are also oscillations in the dependence T, (H) with the
period A(1/H) web@/8cti, due to which the depen-
dence T, (H) is nonmonotonic. These results are in
qualitative agreement with the experimental behavior of
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(TMTSF)2C104. The comparison with the behavior of
(TMTSF) 2 PFs is controversial.

With spins taken into account the two types of FISDW
(easy-axis and easy-plane) are discussed. It is suggested
that in (TMTSF)2C104 at H = 17 T the transition be-
tween these two types takes place.

In the eA'ective action for the n field, where n is the po-
larization vector of the FISDW, a so-called Hopf term is
found. It determines the spin and statistics of solitons of
the n field. The interest to this term has grown recently
in relation to high-T, superconductivity. But at present
in high-T, materials there are no serious indications on
the presence of this term. So, quasi-one-dimensional or-
ganic conductors form the second class of materials after
the He-A films 5 where this term is really present.

1Vote added in proof. The coefIicients of the Landau
expansion, discussed in Sec. V, were calculated recently

by Lebed'. s The coexistence of several FISDW's was ac-
tually found. After submission of this paper I learned of
important papers related to the subject considered.
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