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Scaling theory for the optical properties of semicontinuous metal films
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The optical properties of thin semicontinuous metal films are calculated within the framework of
the scaling theory of percolation. The effective ac conductivity is calculated over a length scale
determined by the optical frequency. The relevant length scale depends on the frequency through
the anomalous diffusion relation. At finite frequencies the ac conductivity fluctuates over the sur-
face of the film, resulting in fluctuations of the local optical response. These fluctuations are de-

scribed by a broad bimodal distribution. The optical response of the whole film is then calculated
by averaging the local contributions, using the above distribution function. We find that the inter-
cluster capacitance is essential in understanding the optical response of a percolating film. Numeri-
cal calculations based on this model show excellent agreement with experimental data over the en-

tire range of surface coverages.

I. INTRODUCTION

The optical properties of metal-insulator mixtures have
been much investigated, both experimentally and theoret-
ically. Semicontinuous metal films [two-dimensional (2D)
material] are normally prepared by thermal evaporation
or sputtering of the metal on an insulating substrate, and
cermets (3D material) by coevaporation or cosputtering
of both metal and insulator.

In the growing process, small metallic grains, with typ-
ical size of 5 —30 nm (controlled by the preparation condi-
tions) are formed on the substrate. For semicontinuous
metal films, as the film grows further, the filling factor in-
creases and coalescence occurs, so that irregularly shaped
clusters are formed. As more metal is evaporated, these
clusters grow further and form fractal structures, the size
of which diverges as the film approaches the percolation
threshold. At that point, a spanning or percolating clus-
ter of metal is formed so that there now exist continuous
conducting paths from one end to the other end of the
sample. Even in the presence of quantum tunneling, the
metal-insulator transition is very close to this point. At
higher surface coverage, the film is mostly metallic with
voids of irregular shape, and finally the film becomes con-
tinuous.

The optical properties of such films show anomalous
phenomena, which are absent both in the bulk metal and
in the insulator. An anomalous resonant absorption peak
is found in the visible or near-infrared (ir) regime, giving
rise to anomalous behavior both in the transmittance and
in the reflectance of these films. ' In the ir regime, the
transmittance of these films is much higher than that of a
continuous metal film, while the reAectance is much
lower. Close to the metal-insulator crossover, and well

before and after it, additional absorption is found, which
can be as high as 40%%uo.

'

Several effective-medium theories were proposed for
the optical properties of such films, based on the static
approximation. The simplest descriptions, where exact
information on the microgeometry is not needed, are the
Maxwell-Garnett (MG), " the Bruggemann (BR),' and
modifications of these two approaches. Good agreement
with experimental results is found as long as the filling
factor (metal volume fraction for cermets and percentage
of surface coverage for semicontinuous metal films) is ei-
ther very low or very close to 1, i.e., either a small quanti-
ty of metallic grains embedded in an insulating matrix or
a small quantity of insulating grains embedded in a me-
tallic matrix. As the filling factor approaches the inter-
mediate value where a metal-insulator transition occurs,
the measured absorption peak becomes wider than the
calculated one, and the ir transmittance and reflectance
deviate from the predicted values. The discrepancies are
especially large close to the metal-insulator transition,
even when the component parameters are adjusted and
allowed to assume unphysical values.

Optical properties of discontinuous gold films ' are in
good agreement with the MG theory for very low filling
factors, and worse for larger ones. The measured absorp-
tion peak is wider than the MG one, and the ir transmit-
tance is much lower than the calculated value. Measure-
ments on Au-SiOz and Ag-Si02 mixtures are in reason-
able agreement with modified MG theories' for metal-
rich or insulator-rich samples, but large discrepancies are
found near the metal-insulator transition, especially in
the ir. Fitting of Pt-A1203 data to both MG and BR
theories near the metal-insulator transition shows that
the BR theory is more applicable, as the two com-
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ponents (metal and insulator) play a similar role. In this
case, good agreement between theory and experiment was
found over a wide range of filling factors; yet the agree-
ment close to the percolation threshold was poor, and un-
physical parameter values had to be used in the fitting
process.

Investigation of a number of percolating films very
close to the percolation threshold show the following
common properties: (1) a very weak wavelength depen-
dence in the near-ir regime, (2) the transmittance decreas-
ing linearly with increasing filling factor, while the
refiectance exhibits the opposite trend, and (3) metallic to
dielectric crossover observed in optical behavior only for
long enough wavelengths (at smaller wavelengths, one.
cannot differentiate between "metallic" and "dielectric"
films that are very close to the electrical percolation
threshold).

Recently Yagil and Deutscher suggested another ap-
proach to the understanding of optical properties near
the percolation threshold, ' based on the inhomogeneity
of a percolating film on length scales smaller than the
percolation correlation length. In that description, the
optical properties, i.e., reAectance, transmittance and ab-
sorptance, constitute a measurement on a typical length
scale of size L(co). Each area of this linear size is either
metallic or dielectric, and the optical response of the
whole film can be obtained by summing over these local
contributions. Using this approach, the optical proper-
ties described above are recovered, at least qualitatively.
A quantitive model, based on the experimental results of
Gadenne et al. ' ' but applicable only to the optical
reflectance, was recently suggested by Robin and Souil-
lard. ' In that calculation similar scaling assumptions are
made, and the reAectance of a single cluster is calculated
in a simplified model. A detailed quantitative theory
with which the reflectance, the transmittance, and the ab-
sorptance can be consistently calculated is still lacking.

In this study we apply the scaling theory of percolating
random resistor networks to describe the optical proper-
ties of thin semicontinuous metal films: We calculate the
effective (complex) conductivity and show that at finite
frequencies it fluctuates over the film. The length scale of
the Auctuating regions is determined by the anomalous
diffusion relation. We find that the Auctuations are de-
scribed by a wide bimodal distribution function. The
average effective conductivity calculated from this distri-
bution differs significantly from the most probable value.
Therefore, instead of using a single average effective con-
ductivity, we use the local effective conductivities to cal-
culate the local optical properties, such as the local ab-
sorption. The total absorption is then found by averaging
the local contributions. In the range of filling factors
where the fiuctuations are unimportant (far from the per-
colation threshold), our model is in agreement with the
simple effective-medium theories at long wavelengths. At
shorter wavelengths, where the MG resonance occurs,
our model could and should be modified to include this
phenomena. In the range of wavelengths that we have fo-
cused upon (A, ~ 1.5 pm), and in the not extremely dilute
case (metal fraction ~0. 1), that resonance is unimpor-
tant, and therefore we have ignored it. From our calcula-

tions, we conclude that over a wide range of filling factors
around the percolation threshold, the optical properties
are dominated by the fluctuations and, therefore, cannot
be described by a simple effective dielectric constant. We
show that the intercluster capacitance plays an important
role in determining the optical response of a percolative
film. Excellent agreement is found between the experi-
mental data and a numerical calculation based on our
model.

The rest of this article is organized as follows: In Sec.
II we describe the optical properties of thin homogeneous
films and review the effective-medium theories. In Sec.
III we describe this model in detail. Comparison with ex-
perimental results is shown in Sec. IV and the con-
clusions are given in Sec. V.

II. EFFECTIVE MEDIUM THEORIES

There are two effective-medium theories commonly
used to describe electromagnetic properties of hetero-
geneous media. The first one, known as the Maxwell-
Garnett theory (MG), " is applicable in composites con-
sisting of spherical grains of one component embedded in
a matrix of the other component. In the MG approach
one considers an average cell consisting of a spherical in-
clusion covered by a layer of host so that in each such
cell a proper filling factor f is maintained. In an external
electric field, a dipole moment is induced on the in-
clusion. The effective dielectric constant is then deter-
mined by the requirement that when the average cell is
replaced by a sphere of the same volume completely filled
by the effective medium, the induced dipole moment
remains unchanged. This procedure, using the static di-
pole induced on a dielectric sphere, leads to the following
equation for the effective dielectric constant eM&..

~MG ~2

G+2e2
~2

6i +262
(2.1)

where E'& and e2 are the dielectric constants of the in-
clusion and the host respectively.

Since the first appearance of the MG theory, various
corrections to its simple form have been studied exten-
sively. In particular, Cohen et al. ' have considered ellip-
soidal inclusions, Bergman1516 and Kantor and Berg
man' have examined contributions of higher multiple
moments. Bedeaux and Vlieger' extended MG theory
treatment to a two-dimensional layer of spheres, and
Bobbert and Vlieger' discussed the interaction of this
layer with the substrate.

If all of these corrections are taken into account, MG
theory gives reasonable agreement with experiment, pro-
vided that its basic assumptions hold, i.e., one component
is present in the form of small spherical or nearly spheri-
cal inclusions. At higher volume fractions of this com-
ponent, when it starts to form clusters of irregular shape,
MG theory yields a calculated transmittance that is much
higher than observed in experiment. The disagreement
between MG and experiment is strongest close to the per-
colation threshold, where both metal and insulator form
large clusters and no clear distinction between "host"
and "inclusions" can be made.
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A more symmetrical description, the Bruggemann'
effective-medium theory (BR), seems to be better near the
percolation threshold. In the BR model, both com-
ponents are assumed to be present as small spheres em-
bedded in the supposedly uniform effective medium with
volume fractions f and 1 f, r—espectively. The condition
that the total dipole moment induced in these spheres
vanishes leads to the equation

oy I-

0.6 t

Q4

Colculated R, T, A:Gold Film

~1 ~BR &BRf +(1 f ) — =0 .
~1 2~BR ~2+ 2~BR

(2.2)

4Vr0. d,

co( 1 +i cow)
(2.3)

where ~ is the relaxation time. In the case of an incident
wave normal to the film surface, the reflection and
transmission amplitudes are given by

2iKd

2 2iKd (2.4a)

2
i (,K —k)d

2e 2iKd (2.4b)

where x =(I —k)/(K+k), k =co/c, K is the complex
wave number inside the film K=(i/e)co/c, and d is the
film thickness. Reflectance, transmittance and absorp-
tance of a 100-A-thick metal film as a function of its dc
conductivity are plotted in Fig. 1.

In the long-wavelength limit when ~~&&1, Ed &&1,
and co«o.d„ the reflected and transmitted amplitudes
reduce to

1+
2&G 0 dc

1

27780 dc1+

(2.5a)

(2.5b)

Notice that these expressions do not depend on the wave-
length. In the efFective-medium description, the effective

Both the MG theory and the BR theory are long-
wavelength approximations: They assume that the wave-
length is much larger than any other length scale in the
system. This assumption is not always satisfied, since the
relevant wavele~nth is that inside the medium which is
given by A,o/Qe„where ko is the wavelength in vacuum
and e, is the bulk effective dielectric constant of the mix-
ture. This can turn out to be much smaller than the
wavelength in the pure insulator. In fact, when applied
to semicontinuous metal films, BR typically yields an
effective wavelength (skin depth) comparable to the film
thickness, which is the smallest length scale. We con-
clude, therefore, that any application of MG or BR
theories and their modifications is inherently inconsistent
close to the percolation threshold.

We present now a brief summary of the optical proper-
ties of a homogeneous metal film. The complex dielectric
constant of a metal is connected to its dc conductivity 0.d,
via the Drude formula:

0'
0

~ y ~s ~

Z«(O" 4«(O" 6 «iOii' 8 «iOia

onductivity (sec —')

FIG. 1. ReAectance, transmittance, and absorptance of a
homogeneous Drude metal film versus dc conductivity for a
wavelength of 2.5 pm. The conductivity of a bulk Au film is
3.5 X 10' sec '. This graph was calculated using the exact for-
mulas of (2.4). We have checked and found that if we use in-
stead the approximate formula (2.5), the results change by at
most a few percent.

III. SCALING THEORY

Transmission electron micrographs (TEM's) of a typi-
cal semicontinuous metal film reveal an irregular network
of metal grains forming large ramified clusters. The clus-
ter sizes are characterized by the percolation correlation
length g, which diverges when the surface-coverage pa-
rameter p approaches the critical value p, . At length
scales smaller than g, both the metal clusters and the in-
sulator (void) clusters separating them have a similar
fractal structure. The scaling theory of electric transport
on percolating networks has been studied extensively in
recent years. ' It was found that on length scales
much larger than g, the film appears homogeneous and
its conductivity is size independent. On the other hand,
if one measures the conductivity of a small piece of the
film of linear size smaller than g', the measured value
differs for different pieces of the same film and its average
value depends on the size of the measured pieces. These
fluctuations reflect the inhomogeneous nature of the frac-

dc conductivity is a function of the volume fraction f.
As f varies from 0 to 1, o z, changes by many orders of
magnitude, approaching the bulk metallic conductivity
(3.5 X 10' sec ' for gold). From (2.5) it follows that
there is a sharp crossover from insulating behavior
(!r!«1, !t!=1) to metallic behavior (!t!«1, !r!=1)
when o z, approaches c/2~d. For a 100-A-thick film, this
crossover occurs when o~, =5X10' sec ' (Fig. 1). We
note that although (2.5) is not valid for all values of co and
0., we have verified that it is a good approximation
throughout the crossover region. Typically, when the
effective dc conductivity of the composite is used in (2.5),
the predicted crossover with f is much sharper than ob-
served in experiment. ' Unphysical values of various pa-
rameters are usually required in order to broaden the pre-
dicted transition.
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tal network on length scales shorter than the percolation
correlation length. The average conductivity obtained
from a large number of measurements is length depen-
dent and increases as the pieces size decreases. It must be
emphasized that the average conductivity cannot give a
complete description of the optical properties of percolat-
ing films, since the dependence of the absorption on the
conductivity is strongly nonlinear, as shown in the previ-
ous section. The absorption depends, therefore, on the
precise shape of the conductivity distribution and not
only on the average conductivity.

A dc measurement probes the conductivity on a length
scale determined by the sample size. Measuring at a
finite frequency co introduces an additional length scale
L(co). Optical measurements are thus a finite-size probe,
where the ac conductivity is measured over this length
scale. Several approaches have been used to determine
the dependence of L (co) on co. In the anomalous diffusion
picture, a random walk on the percolation backbone is
considered. Due to the fractal nature of the percolating
network, the mean-square distance traveled by a random
walker scales with the travel time t as

( 2(r) ) r2/(2 0+) (3.1)

where 2+0 is the fractal dimension of the random walk.
For a homogeneous system, 8=0 and (3.1) gives the usual
linear dependence of the mean-square distance on the
travel time. For the two-dimensional percolation prob-
lem, the scaling theory gives g=(p —P)/v=0. 79. The
frequency m of the applied field determines the travel
time t. During this period of time, the random walker
traverses a region of finite linear size given by

L( ) =Bg (Xgg )&/(2+8) —1/(2+9) (3.2)

where o. and o.; are the conductivities of the good and
the bad conductor, respectively. This expression was
proposed originally for the case of dc conductivity but
can be used also to describe ac conductivity. In that case
both o. and o.; will be complex. All the lengths are
measured in units of the typical grain size ao, thus both L
and the correlation length g' are dimensionless. The scal-
ing function F(z) has the following limiting forms.

where A, is the wavelength, 8 is a coe%cient of order 1,
and go is defined by (3.5) below.

The anomalous diffusion picture assumes that the ran-
dom walker travels on a single cluster whose size is larger
than L(co). In the case of ac current, the above relation
is valid as long as all capacitance-related impedances are
much larger than that of the metallic path.

The conductivity and capacitance of this finite region
can be very different from the long-length-scale conduc-
tivity and capacitance measured over the entire film.
Moreover, at length scales shorter than the percolation
correlation length, the electrical properties of a finite-size
region are different at different locations in the same film.

The average conductivity of a good-conductor —bad-
conductor mixture of linear size L, near the percolation
threshold of the good conductor, is given by

(3.3)

For large values of ~z ~, the form is

F(z) = 3 z" '"+'
~z

~

))1, (3.4a)

but for small ~z~, the form depends upon whether there
exists a conducting path connecting opposite sides of the
sample. If such a path exists, then

F(z)= Ai+ Azz, ~z~ &(1 (metallic behavior) . (3.4b)

and the sample is insulating for a dc signal. In other
words, at intermediate length scales, where
~(o, lo. )L'"+' ' (&1, there is a clear distinction be-
tween conducting and insulating parts of a fractal,
whereas at very large scales where
~(o;lo. )L'"+' '~ ))1, the existence of a conducting
path becomes unimportant and the conductivity is given
by Eqs. (3.3) and (3.4a).

The exponent v in (3.3) determines the scaling behavior
of the percolation correlation length as p approaches p„

(3.&)

p and s are the dc conductivity and capacitance ex-
ponents, respectively (s is also the superconductivity ex-
ponent, for a metal-superconductor mixture). In simple
percolating systems (e.g. , a binary random-resistor net-
work), all the critical exponents appearing in (3.3) have
universal values that depend only on the dimensionality
of the system. In two dimensions, the critical exponents
have the values v= —', and p=s=1.3, both in site and
bond percolation. Continuum percolation may cause
some changes in these values, as will be discussed in the
next section.

The nonuniversal coefficients, such as go, p, and
Ao, . . . , A4 depend on the details of the microgeometry.
Their values cannot be determined from the scaling
theory of percolation and must be adjusted to the particu-
lar system in question.

The simple scaling expression (3.3) is valid only as lorrg
as L is smaller than the correlation length g. At length
scales much larger than g, the network is homogeneous
and its conductivity is governed by g, rather than by L:

o,„=o g
"/ F. ((o., lo )g'"+'/ ), L ))g . (3.6)

It seems therefore desirable to introduce the effective
length scale L&, with the following properties:

L(co) L(co) (((
L(co) ))g (3.7)

Now one can represent the conductivity in a form valid
on any length scale:

(3.8)

In this case, the conductivity is determined mainly by the
metal and the dielectric properties of the insulator only
provide a small correction. If there is no conducting path
across the sample, then

F(z) = /I 3z+ A ~z, z
~
(& 1 (dielectric behavior ),

(3.4c)
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This form is equivalent to the usual representation of the
conductivity as a function of tao scaling variables:

o. =o L )' F((o /(r )L')'+' L /g') (3.9)

We turn now to the discussion of the conductivity Auc-
tuations. Consider first a mixture of conductor with
specific conductivity cro and perfect insulator ((r =0), di-
vided into a set of squares of linear size L. A fraction f
of these squares will have a conducting path connecting
opposite sides. The dc conductivity of all squares that do
not have such a path is equal to zero. Therefore, the dc
conductivity distribution function can be broken into two
parts:

P(cr) =(1—f )5((r )+fP(o;L, oo, g.), . (3.10)

where P(cr;L, o.o, g) describes the distribution of conduc-
tivities of conducting squares.

Near the percolation threshold, where L/g «1, the
probability f of finding a conducting square has the fol-
lowing scaling properties: '

f f, -+(—L /g)' (3.1 1)

where f, is the value off at p =p, . For self-dual lattices,
f, =

—,'. If the dual symmetry is broken, as usually hap-
pens in continuum percolation, the correlation length is
equal to go '~p —p, ~

above p, and to g'() '~p —p, ~

below p, . Inserting these expressions for g into (3.11), we
find

(3.12)

Since the slope of f must be continuous at p =p„ the
coefficients u+ must satisfy

' 1/v
Q+ go

u

u+=1 f, . —

This ansatz differs from all the other scaling assumptions
made in connection with the percolation problem: It al-
lows us to use a simple expression, namely, (3.12) to de-
scribe the entire range of possible values of f, by the use
of a single variable length scale L&.

The probability distribution P(o",L, o o,j ) has been
studied in some detail only at p =p, (infinite g'), by con-
sidering an ensemble of samples of linear size L. A corn-
puter simulation by Rammal, Lemieux, and Tremblay
has shown that this distribution scales with the sample

The scaling relation (3.11) holds only if L «g'. In order
to avoid introduction of an additional scaling function
f(L, g), we will make the following ansatz. We assume
that Eq. (3.12) is valid for arbitrary values of L and g,
provided that L is replaced by L&. One can easily check
that, for L ))g, correct limits are obtained if we make
the following choice of parameters:

(g(
—

)
)
i/v

( g( + )
)

i /v+ ( g(
—

)
)

i /v

size as L " . This result, together with the homogenei-
ty of the distribution, implies that at p, the probability
distribution can be written as a function of a single scal-
ing variable z = cr /cr, „(L). The resulting distribution
P, (z) is universal, i.e., it does not depend either on the
length scale or on the details of the underlying lattice.
Since P, (z) has been studied numerically, we will treat
it as a known function. IfpAp„ the distribution of z de-
pends also on the size of the squares, which we will take
to be L (co): When L (co) /g « 1, the distribution
P(z;L(co)/g) reduces to P, (z), but in the opposite limit
L(co) /g))1, (b,o. )/(o ) —[L(co)/g], and
P(z; L (co)/g) is then a Gaussian distribution whose
width scales as [L(a) ) /g] '. Note that L (co) is used here
and not L& so that when L(co) ))g, P(z, L(a) )/g) tends
to a 5 function.

Consider now the expectation value of some physical
quantity which depends on the dc conductivity, e.g. , the
absorptance /I ((r ). We can replace integration over o by
integration over z=(r/o, „(L&),obtaining

3 =f, J /I(o„(L(z "))P,(z)dz, p =p, , (3.13)

where o„(L&)=.(roL&
"/. Since A( (=r0)=0, only the

conducting squares give a nonzero contribution. Equa-
tion (3.13) gives the absorptance at p =p, . A reasonable
generalization of (3.13) to arbitrary values ofp is

/I =fJ /I (o „(L&z /"))P(z;L(co)/g)dz, (3.14)

where, in general, z is complex and the integration is two
dimensional.

If the specific conductivities of the two components
differ by several orders of magnitude, as in the case of
metal-insulator films, it is still possible to distinguish be-
tween metallic and dielectric squares. We will assume
that the contribution of the metallic squares to the expec-
tation value of A(o ) is still given by (3.14), where cr,„ is
now determined by (3.8) and (3.4b). Although their dc
conductivity vanishes, the dielectric squares have
nonzero ac conductivity, so that their contribution to the
absorption cannot be neglected. It is reasonable to as-
surne that the absorption in the dielectric squares can be
calculated by replacing f by 1 f in (3.14) and takin—g (r,„
from (3.8) and (3.4c). The total absorptance is thus calcu-
lated from

3 =f J/I(o, „( )(L~z "))P (z;L(a))/g)dz

+(1 f )j /I (o,„(;)(L—~z "))P;(.z;L(co)/g)dz,

(3.15)

where P and P, are the distribution functions of the me-
tallic and dielectric complex conductivities, respectively,
and may be reasonably described by the real function
P(z;L(co)/g) of Ref. 42.

IV. COMPARISON W'ITH EXPERIMENTAL RESULTS

In this section we present a comparison of the model
with recent experimental results. The experimental data
obtained by Gadenne, Yagil, and Deutscher' provide
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most of the data needed for this comparison. The optical
properties of semicontinuous gold films were measured
during the growth process at two different wavelengths:
1.7 and 2.2 pm. The data include reAectance, transmit-
tance, and absorptance over the entire surface coverage
range. In the regime that we investigated, the film con-
sists of metallic islands whose vertical thickness stays ap-
proximately constant as more gold is deposited. It is the
lateral dimension of the grains, as well as their total num-
ber, which increases, and along with them the fraction of
surface covered by the metal. The nominal thickness is
characterized by the mass of gold per unit area, D, as
measured with the help of a piezoelectric monitor upon
which an identical film is simultaneously deposited. The
critical value of D at which the film begins to conduct
electricity is denoted by D, . The corresponding fractions
of surface covered by metal are denoted by p and p, . Ex-
perimental results' show that the normalized mass-
thickness parameter 5D =(D D, )/D—, is approximately
equal to the normalized surface-coverage parameter
5p=(p —p, )/p, . The experimental curves thus provide
the dependence of the optical properties on the surface-
coverage parameter.

Figure 2 shows the reAectance and transmittance of the
Au film as measured, i.e., the optical properties of the
film together with the glass substrate. A sharp drop in
the optical transmittance is found already well below the
percolation threshold, where the reAectance is changing
much more slowly. Near the percolation threshold, both
the refiectance and the transmittance are linear in 5D and
are weakly wavelength dependent. Well above the
threshold, the reAectance increases rapidly and the
transmittance becomes low, approaching the typical
response of a homogeneous metal film. Close to the per-
colation threshold, and over a wide range before and
after it, strong optical absorption is observed, as shown in
Fig. 3 (in this case the substrate e6'ect is excluded, as the

borosilicate glass is absorbing at 2.2 pm). This strong ab-
sorption is observed in the regime where both the
reAectance and transmittance are low and depend linearly
on the surface coverage.

Calculation of the optical properties using our scaling
model requires several assumptions for the unknown scal-
ing functions. In the following, a brief description of the
parameters and function used in our calculation is given.

The film consists of metal clusters separated by vacu-
um, thus the two basic ac conductivities have the forms

o, =od, /(1 —ivor),

cTp = 1 coCO

(4.1)

(4.2)

04
(o

Optical Absorption

C:a
a. Q2—

C)

0 h~

-0.6 -Q2 Q2

(D-D, ) iD,

where o.d, is the dc conductivity of a continuous metal
film, r is the relaxation time inside the metal grains (nor-
mally shorter than the bulk value), and Co is of the order
of the capacitance per unit thickness between two adja-
cent metal grains. Interband transitions are unimportant
above 0.6 pm (2 eV).

The characteristic length L& equals L(co) for L(co) (g
and to g for L(co)) g, with a parabolic smoothing func-
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FIG. 2. Measured reflectance and transmittance of a
semicontinuous Au film- at 1.7 and 2.2 pm as a function of the
thickness parameter 5D = (D —D, ) /D, = (p —p, ) /p, (from Ref.
10). The data include the substrate effect. At 2.2 pm the sub-
strate is absorbing, the transmittance is thus lower than the 1.7-

pm values.

FIG. 3. Measured (from Ref. 10) and calculated absorptance
of a semicontinuous Au film (i.e., the fraction of incident radia-
tion that is absorbed by the film) as a function of the thickness
parameter 5D. The microgeometry of the actual films for
0.3 ~ 5D ~ 0.6 is of long and narrow cracks rather than granular
voids, as assumed by the model, resulting in enhanced absorp-
tion. (a) X=1.7 pm. (b) A, =2.2 pm.
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(4 4)

These are used to obtain the complex dielectric constant
as

. 4mo.
EO+ l (4.5)

where eo is the ionic contribution to the dielectric con-
stant. Dividing the film into squares of linear size L& and
different values of e, the reflectance and transmittance of
each square is calculated using the formulas for a thin
homogeneous film with the same dielectric constant. The
optical response of the whole film is then given by the
generalized relation (3.15), where the distribution func-
tions P (z, L(co)/g) and P, (z, L(co)/g) are unknown.
We have assumed that both of these functions in the ac
case have the same form that was found by Rammal
et al. for the dc case. We use this function in (3.15),
where z is a real variable, even though the local conduc-
tivities that appear there are complex. The use of this
function provides a proper coupling between the contri-
butions of the metallic paths and the capacitive links, and
the proper dc limit when the frequency vanishes. To sim-
plify calculations, the distribution function of Ramman
et al. is approximated by a log-normal distribution. The
optical reflectance is thus given by

R =ffR (L(z " )P (z;L(co)/g)dz

+ ( 1 f )fR, (L&z
"—/ )P, (z; L (co ) /g) dz, (4.6)

where R (L) and R, (L) are the reffectance of a metallic
and a dielectric square of linear size L, and f, is given by
(3.12). The optical transmittance and absorptance are
calculated in a similar form.

In general, the scattering amplitude would have to be
calculated as function of the scattering angle. This calcu-
lation would yield both specular and nonspecular scatter-
ing, and would depend on the spatial correlation function
of the ffuctuating local conductivity (analogous to the
form factor). In our case, the nonspecular scattering is
negligible, ' experimentally. This means that the only
important Fourier components of the correlation func-
tion have either q =0 (the transmitted wave) or q=2
times the normal component of the incident wave vector

tion at L(co) =g. Using the anomalous diff'usion relation
(3.2) and the scaling relations (3.4) and (3.8), we get the
following results for the metallic and dielectric conduc-
tivities at the length scale L =L&..

3 io.d,
cr (L)= L

1+co v

(the specularly refiected wave). In this situation the total
absorption coefficient is correctly calculated by summing
the local absorption coefficients from all parts of the film,
as done in (3.15). But in order to calculate the specular
reAection and transmission coefficients we would have to
integrate the scattered field from the different parts of the
film before calculating the scattered intensity, which
would depend on the above mentioned correlation func-
tion. This would be a very difficult undertaking, since the
length scales of the inhomogeneity are neither uniformly
small nor uniformly large compared either with the wave-
length or with the skin depth. Moreover, the film thick-
ness as well as the skin depth are so small that one is real-
ly in the regime of the anomalous skin effect, where the
use of a local conductivity o. is strictly invalid. We there-
fore calculated the total reAectance coefficient by in-
tegrating its "local value" over the film, using (4.6): The
local reflectance coefficient was calculated using the local
value of cr, as though we had a uniform film with that
value of o. .

A similar procedure was used to calculate the total
transmittance coefficient. At present, we are unable to
provide a full justification for this procedure, except in
the calculation of the total absorption coefficient. It is
nevertheless striking that we can get such good agree-
ment with experiment, as we show below.

Although there are no fitting parameters in our model,
the comparison to experimental results is somewhat deli-
cate, as some of the physical parameters and all the scal-
ing function coefficients are unknown. In principle, all
the physical parameters could be measured separately, by
nonoptical measurements, and the coefficients of the scal-
ing functions could thus be obtained. In the comparison
with the results of Gadenne, Yagil, and Deutscher, some
of these values were indeed estimated in this way, while
others had to be adjusted using the optical measurements.

From the experimental data, the critical mass thick-
ness D, equals 75 A, a typical grain size (channel width)
is 300 A, the physical thickness of the film is 100 A, and
the bulk dc conductivity equals 3 X 10' sec '. The value
found for the conductivity exponent p was 1.43 rather
than the theoretical one (1.3). This is interpreted as due
to the continuum percolation character of the samples, as
discussed by Halperin et al. The optical relaxation
time ~ was determined by adjusting the calculated values
of 2 and R to the measured values, using the functional
form of Theye: 1/~ = 1/7.o+ 6 co . The values of T
found in this way are of the order of 2 X 10 ' sec, which
is smaller than the electrical relaxation time and is wave-
length dependent. In the experimental data of Ref. 10,
Im(e) of the continuous film is larger than the values re-
ported by Theye, thus the relaxation time should indeed
be shorter. For a single capacitive link, Co is of order
unity, since the separation between two adjacent grains,
the grain size, and the film thickness are all of the same
order.

The width of the distribution function for the local ac
conductivity was taken as 0.3, for best fit with the distri-
bution reported by Rammal et al. The coefficients
A &, A2, A3, and /14 in (3.4) and B of (3.2) are of order
unity.
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Using the above relations and constants, the optical
properties of films similar to those measured by Gadenne
et al. can be calculated for arbitrary surface coverage pa-
rameter and wavelength. Use of the anomalous diffusion
relation restricts this calculation to the regime where
both ~o2/o &~ and ~o;/0.

~
are small. For the highest fre-

quency used here (X=1.7 pm, co= l. 1X10' ), these two
quantities are 0.015 and 0.35, respectively. At lower fre-
quencies ~o2/o, ~

vanishes as co and ~o, /o.
~

vanishes at
least at co' . We therefore do not expect a significant de-
viation from the anomalous diffusion picture due to the
capacitive corrections.

The calculated absorption is shown in Fig. 3, together
with experimental data. The agreement is excellent ex-
cept for the range 0.3 ~ 6D ~ 0.6, where the measured ab-
sorption is somewhat higher than the calculated value.
This will be discussed later. Close to the percolation
threshold the correlation length is larger than the anoma-
lous diffusion length L(co), thus the optical properties are
calculated over the length scale L(co). Both the wide dis-
tribution of the local ac conductivities and the interclus-
ter capacitance enhance the optical absorption. Strong
absorption arises from parts of the film, where the local
conductivity is moderate and the capacitance is apprecia-
ble. The wide region of strong absorption, both above
and below the percolation threshold, is identified as the
region where L(co) (g. This region is wide and depends
weakly on the optical frequency because L(co) is much
smaller than the optical wavelength, and only increases
as a weak power of 1/co, as given by the anomalous
diffusion relation (3.2).

As g drops below L(co), either above or below p„ i.e.,
both in the metallic and in the dielectric regimes, the ab-
sorption decreases dramatically. In the dielectric case,
the absorption is due to Joule losses in a metallic cluster
which is connected to neighboring clusters by the inter-
cluster capacitance. The current density in such a cluster
is greater than what it would be in an isolated cluster, re-
sulting in enhanced absorption. In the metallic regime,
reduced conductivity together with a positive contribu-
tion to the real part of the dielectric constant, due to ca-
pacitance effect in the voids, enhance the absorption.
Strong absorption is thus found whenever clustering
occurs, on both the dielectric and the metallic wings of
the percolation threshold.

In the range 0.3 ~6D ~0.6, the calculated absorption
is somewhat lower than the measured one. The micro-
geometry in this regime deviates appreciably from the
simple network percolation picture: Long and narrow
cracks are found rather than small spherical voids, and
these cracks become thinner with increasing surface cov-
erage. The basic capacitive link Co is thus not constant
and increases with increasing surface coverage. In the
above calculation, Co was kept constant, resulting in a
value for the film capacitance that is too low. Therefore
the calculations presume a film that is more metallic than
the actual film, and the calculated variation of the optical
properties with p is thus too strong.

The experimental curves for the measured reAectance
and transmittance contain the substrate effect, whereas
the calculation was done for a free standing film. There-

+(1 f ) JP, (z, L(co—))R, (z)dz . (4.7)

Since the two integrals depend only on L(co) and are in-
dependent of p, this relation reduces to that suggested by
Yagil and Deutscher

R =fR ' (L(co))+(1 f )R,'(L(co)) . — (4.&)
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FIG. 4. Calculated reflectance and transmittance of a
semicontinuous Au film at 1.7 and 2.2 pm as a function of the
coverage parameter 5p. The data does not contain the substrate
e8'ect.

fore, the comparison in this case is somewhat less quanti-
tative. In particular, the borosilicate substrate is absorb-
ing at 2.2 pm, thus the measured transmittance for the
low-surface-coverage regime in 2.2 pm is lower than the
value at 1.7 pm (see Fig. 2), in contrast with the predicted
behavior which is that the transmittance at 2.2 pm is
slightly higher than at 1.7 pm (see Fig. 4). The calculated
reAectance and transmittance are shown in Fig. 4, and
the measured values in Fig. 2. As shown in these two
graphs, the characteristic behaviors of both the
reAectance and transmittance found in the experimental
results are fully recovered. The transmittance shows a
sharp change whenever clustering begins, a weak varia-
tion close to the percolation threshold with linear depen-
dence on the surface-coverage parameter p, and a rather
sharp drop to very low values in the metallic region. A
similar behavior is found for the reAectance data: a sharp
drop in the metallic region when dielectric clusters first
appear, linear surface-coverage dependence close to p„
and a rather sharp decrease in the dielectric region. As
in the case of the absorptance, the calculated reAectance
and transmittance in the nearly metallic regime are some-
what different from the experimental values, resulting
from the details of the exact microgeometry.

Close to p„a linear surface-coverage dependence is
found in both the transmittance and the reAectance. In
our model, the optical properties in this regime depend
on a constant length scale L&=L(co) (&g, P and P,
reduce to the universal distribution function P„and (4.6)
can be written in the form

R =f JP, (z, L (co) )R (z)dz



11 350 YAGIL, YOSEFIN, BERGMAN, DEUTSCHER, AND GADENNE 43

A similar relation holds for the transmittance. A linear
dependence on the surface coverage is thus obtained as
long as f is linear with p, which is the case close to p, [see
(3.12)].

For comparison, we show in Fig. 5 the results of apply-
ing Bruggemann's effective-medium approximation to
calculate e,s [see Eq. (2.2)] for this experiment, and then
using that value in Eqs. (2.3) and (2.4) to calculate R, T,
and A. It is clear that this kind of approach cannot begin
to explain the optical measurements.

Experimental data show that the transmittance and
reflectance of films at p, are constant in the range
1.5-2.5 pm. The transmittance increases with wave-
length for films slightly below p, and decreases in the op-
posite case. This behavior is fully recovered in our
calculations, as shown in Fig. 6, using the parameters de-
scribed above. A weak wavelength dependence is found
as long as T, T', R,', and R' are only weakly wave-
length dependent. This is the case in the range 1.5 —2. 5

pm, where co&=1 and where these quantities are also
nonmonotonic. For longer wavelengths, the calculated
reflectance of a film at p, decreases with increasing wave-
length, while the transmittance increases. Changing the
film parameters yields similar results, where the
reflectance and transmittance can have arbitrary values
and the weak wavelength dependence region can be ex-
tended up to 5 pm.

The calculated optical properties at much longer wave-
lengths are shown in Fig. 7, using again the same parame-
ters. At p„ the reflectance decreases with increasing
wavelength, in agreement with the scaling calculation
performed by Robin and Souillard. ' For pWp„ the film
becomes homogeneous at such long scales [g((L(co)]
and the model reduces to a Drude metal. As shown in
Sec. II, a thin metallic film may have any value for R, T,
and A, depending on the product o.d, where o. is the dc
conductivity and d is the film thickness. It is important
to emphasize that at long wavelengths the relaxation time
~ and the capacitance effect are negligible, thus only the
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FIG. 6. Calculated reflectance, transmittance, and absorp-
tance of semicontinuous Au films for several values of the cover-
age parameter 5p as indicated on the graph, in the wavelengt h
range 1.5 —2. 5 pm.

dc conductivity controls the optical properties. When
the film is absorbing, the optical properties become wave-
length independent, as shown in Fig. 7, in agreement with
the approximation discussed in Sec. II.

In summary, the calculated optical properties are in
excellent agreement with the experimental data discussed
above, and in general agreement with the experimental
data on all percolating films close to the percolation
threshold.
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FIG. 5. Calculated reflectance, transmittance, and absorp-
tance obtained from Bruggemann's effective-medium approxi-
mation at 2.2 pm.

V. CONCLUSIONS

In this model we have shown that for semicontinuous
metal films close to the percolation threshold, when the
anomalous diffusion length L(co) is smaller than the per-
colation correlation length g, a scaling description is
more applicable than an effective-medium approach. The
following points are important in calculating the optical
properties.

(1) Optical measurements probe the film on a finite
length scale L(co). The local ac conductivity must be cal-
culated using finite-size scaling on that length scale.

(2) On the scale of L(co), the local ac conductivity fiuc-
tuates over the film, and a wide bimodal distribution.
must be used to describe these fluctuations.

(3) The metallic clusters are fractals, therefore L(co)
depends on the optical frequency through the anomalous
diffusion relation, and is much smaller than the optical
wavelength.

(4) Intercluster capacitance gives rise to a nonzero con-
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FIG. 7. Long-wavelength behavior of semicontinuous Au
films for several values of the coverage parameter 6p as indicat-
ed on the graphs. (a) Reflectance. (b) Transmittance. (c) Ab-
sorptance.

tribution from regions of zero dc-conductivity. The ca-
pacitance between adjacent clusters is very important in
producing the optical response.

(5) The optical properties of the whole film are calcu-
lated by summing over the local contributions of small
regions of linear size L(to). The average ac conductivity
does not reproduce the optical response correctly.

Optical measurements provide remarkable information
about the microgeometry of semicontinuous metal films.
A careful study of both the optical and the electrical
properties of such films can be very useful for measuring,
experimentally, such fundamental properties as critical
exponents, scaling relations, and distribution functions.
In addition, the crossover between different asymptotic
behaviors can be studied. For example, the optical ab-
sorption in the range L(to) =g is sensitive to the exact
form of the scaling function.

Optical measurements can also serve as a nondestruc-
tive method for examining the degree of homogeneity of
thin films. As discussed in the previous section, small
cracks and voids introduce extra capacitance which
enhances the optical absorption. Again, microgeometri-
cal details on length scales much shorter than the optical
wavelength can be perceived in such measurements. We
have shown that it is the fluctuations in the local conduc-
tivity that are crucial for determining the optical proper-
ties of a percolating medium. This work also includes an
attempt to include capacitance effects as well as anoma-
lous diffusion in the calculation of ac electrical properties
of a percolating system.

We conclu'de by emphasizing the importance of micro-
geometrical effects in determining the optical response of
semicontinuous metal films, and the remarkable amount
of information obtainable from optical measurements.
Measurements of semicontinuous metal films at longer
wavelengths are needed to observe the crossover from in-
homogeneous to homogeneous behavior.

ACKNOWLEDGMENTS

This research was supported in part by the C.N.R.S.,
by a grant from the US-Israel Binational Science Founda-
tion, and by the Oren Family Foundation.

*Present address: Cavendish Laboratory, Madingley Road,
Cambridge CB3 OHE, UK.

~R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys.
Rev. B 8, 3689 (1973); P. Sheng, Phys. Rev. Lett. 45, 60
(1980).

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi,
Phys. Rev. B 18, 674 (1978).

P. Gadenne, Thin Solid Films 57, 77 (1979).
4S. Berthier, J. Lafait, C. Sella, and Thran-Khanh-Vien, Thin

Solid Films 125, 171 (1985).
5Y. Yagil and G. Deutscher, Thin Solid Films 152, 465 (1987).
P. Gadenne, A. Beghdadi, and J. Lafait, Opt. Commun. 65, 17

(1988).
P. Gadenne, these d' etat, Universite'de Paris VII (1986).

M. Kunz, G. A. Niklasson, and C. G. Granqvist, J. Appl. Phys.
64, 3740 (1988).

9K. A. Khan, G. A. Niklasson, and C. G. Granqvist, J. Appl.
Phys. 64, 3327 (1988).
P. Gadenne, Y. Yagil, and G. Deutscher, J. Appl. Phys. 66,
3019 (1989).

~~J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203,
385 (1904).

' D. Bruggemann, Ann. Phys. (Leipzig) [Folge 5] 24, 636 (1935).
Y. Yagil and G. Deutscher, Appl. Phys. Lett. 52, 373 (1988).

i4T. Robin and B. Souillard, in Proceedings of 2nd International
Conference on Electrical Transport and Optical Properties of
Inhomogeneous Media, Paris, 1988, edited by J. Lafait and D.
B. Tanner (North-Holland, Amsterdam, 1989); Physica A



11 352 YAGIL, YOSEFIN, BERGMAN, DEUTSCHER, AND GADENNE

157, 285 (1989).
D. J. Bergman, Phys. Rev. 8 19, 2359 (1979).
D. J. Bergman, J. Phys. C 12, 4947 (1979).
Y. Kantor and D. J. Bergman, J. Phys. C 15, 2033 (1982).

~88. Bedeaux and J. Vlieger, Thin Solid Films 102, 265 (1983).
P. A. Bobbert and J. Vlieger, Physica A 147, 115 (1987).

2oSee, for instance, M. Born and E. Wo1f, Principles of Optics
(Pergarnon, New York, 1975), 5th ed. , p. 325.

A. P. Young and R. B. Stinchcombe, J. Phys. C 8, L535
(1975).

A. L. Efros and B. I. Shklovskii, Phys. Status Solidi 8 76, 475
(1976).
R. B. Stinchcombe and 8. P. Watson, J. Phys. C 9, 3221
(1976).
S. Kirkpatrick, Phys. Rev. 8 15, 1533 (1977).
D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977).

2 J. P. Straley, Phys. Rev. 8 15, 5733 (1977).
R. Rosman and B. Shapiro, Phys. Rev. 8 16, 5117 (1977).
M. J. Stephen, Phys. Rev. 8 17, 4444 (1978).
R. Fisch and A. B. Harris, Phys. Rev. 8 18, 416 (1978).
B. Derrida, D. Stauffer, H. J. Herrmann, and J. Vannimenus,
J. Phys. Lett. 44, L701 (1983).
J. G. Zabolitzky, Phys. Rev. 8 30, 4077 (1984).

H. J. Herrmann, B. Derrida, and J. Vannimenus, Phys. Rev. 8
30, 4080 (1984).
C. J. Lobb and D. J. Frank, Phys. Rev. 8 30, 4090 (1984).
A. B. Harris and T. C. Lubensky, Phys. Rev. 8 35, 6964
(1987).

35T. C. Lubensky and A. B. Harris, Phys. Rev. 8 35, 6987
(1987).
D. J. Frank and C. J. Lobb, Phys. Rev. 8 37, 302 (1988).
J. Adler, Y. Meir, A. Aharony, A. B. Harris, and L. Klein, J.
Stat. Phys. (to be published).
Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50,
77 (1983).
J. P. Straley, J. Phys. C 9, 783 (1976).
J. P. Straley, J. Phys. C 13, 819 (1980).
H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, in
Real Space Renormalization, edited by T. W. Burkhardt and
J. M. J. Van Leeuwen (Springer, Berlin, 1982).
R. Rarnmal, M. A. Lemieux, and A. M. S. Tremblay, Phys.
Rev. Lett. 54, 1087 (1985).
J. P. Straley, J. Phys. C 12, 3711 (1979).

44M. L. Theye, Phys. Rev. 8 2, 3060 (1970).
458. I. Halperin, S. Feng, and P. N. Sen, Phys. Rev. Lett. 54,

2391(1985).


