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Composite crystals are crystals that consist of two or more subsystems, in first approximation
each one having its own three-dimensional periodicity. The symmetry of these subsystems is then
characterized by an ordinary space group. Due to their mutual interaction the true structure con-
sists of a collection of incommensurately modulated subsystems. In this paper we derive some gen-
eral properties for intergrowth structures, using the superspace-group theory as developed by
Janner and Janssen [Acta Crystallogr. A36, 408 (1980)]. In particular, the pseudoinverse is defined
of the matrices relating the subsystem periodicities to the translation vectors in superspace. This
pseudoinverse is then used to reformulate the relations between the structure and symmetry in

three-dimensional space and in (3+d)-dimensional superspace. As an extension of the theory, sub-

system superspace groups are defined, that characterize the symmetry of the individual, incommen-
surately modulated subsystems. The relation between a unified description of the symmetry and an
independent description of the subsystems is analyzed in detail, both on the level of the basic struc-
ture (translational symmetric subsystems) and on the level of the modulated structure (incommensu-
rately modulated subsystems). The concepts are illustrated by the analysis of the difl'raction symme-

try of the intergrowth compound Hg3 &AsF6.

I. INTRODUCTION

Intergrowth compounds, also called composite crys-
tals, are crystalline compounds that do not possess three-
dimensional translational symmetry. They can be
characterized as a collection of subsystems, each one be-
ing translational symmetric in good approximation.
Each atom belongs to one of the subsystem. The lattice
characterizing the translational symmetry of one subsys-
tem is incommensurate to the translational symmetry of
all other subsystems, thus ensuring the lack of three-
dimensional translation symmetry of the complete sys-
tem. '

Several examples of intergrowth compounds can be
found in the literature. ' In Eu

& Cr2Se&, one sub-
system consists of a three-dimensional net with composi-
tion Crz&Se36. Channels in this net, parallel to the hexag-
onal axis, accommodate either Eu6CrzSe6 (the second
subsystem) or Eu3Se (the third subsystem). Perpendicular
to the chains the repeat distance is the same for all three
subsystems. However, parallel to the channels, the Cr-Se
matrix and both types of chains have a different lattice
constant, providing the incommensurateness in the sys-
tem.

The so-called inorganic misfit layer structures are a
special kind of layer compounds. ' Contrary to periodic
layer compounds (e.g., graphite), these particular com-
pounds consist of alternating layers of different chemical
composition, which provide the two subsystems. At least
one of the intralayer lattice constants of one subsystem is
incommensurate with the lattice constants of the other
subsystem, thus providing the incommensurateness of the

complete system.
It follows, that a composite crystal can be character-

ized by a finite number of at least four periodicities.
In the description given above, the crystal is thought to

consist of translational symmetric subsystems. This is
only an approximation to the real structure, and will be
called the basic structure. Due to their mutual interac-
tion, the subsystems in the real crystal will be modulated.
The modulation of one subsystem is characterized by
modulation wave vectors equal to the periodicities of the
other subsystems. Thus, the real crystal consists of a set
of incommensurately modulated structures. The periods
characterizing the complete system are a combination of
the basic periodicities of the subsystems.

The symmetry of an intergrowth compound can be
characterized by a higher dimensional space group (num-
ber of dimensions greater than three). This theory has
been developed by Janner and Janssen, and is analogous
to the theory of superspace groups as applies to incom-
mensurately modulated structures.

The goal of the present paper is to analyze the implica-
tions of this theory for the description of the symmetry
and structure of composite crystals. First, a review is
given of the notation and basic definitions. Second, a
pseudoinverse is defined for the matrices, Z, relating the
subsystem periodicities with the superspace lattice vec-
tors. This pseudoinverse is subsequently used to define a
set of subsystem space groups and a set of subsystem su-
perspace groups, which, respectively, characterize the
symmetry of the basic structure and modulated structure
of the subsystems. These concepts are illustrated by a
reanalysis of the neutron diffraction data of Hg3 &AsF6
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of Pouget et aI. Finally, the differences are derived be-
tween an approach where the symmetry of each subsys-
tem is treated independently of the symmetry of the other
subsystems and a unified treatment of the symmetry of
the complete crystal (superspace group approach).

It is noted that additional modulations may occur,
which are not related to any of the subsystem basic
periodicities. Such a modulation can be described by
adding an extra dimension to the higher dimensional
space group of the complete system and to each subsys-
tem superspace group, analogous to the way ordinary in-
commensurately modulated structures are described. '

These additional modulations are not considered in this
paper.

II. THE BASIC STRUCTURE

3

~3+j-
i=1

(2)

for j =1, . . . , d.
The spots in the diffraction pattern of the basic struc-

ture of the vth subsystem (main refiections) are at the po-
sitions,

3S=gh„a,*, ,
i=1

where h; are integers. From Eq. (1) follows that all
diffraction spots of the crystal can be written as an in-
tegral linear combination of the basis of M

First, consider the basic structure, for which the coor-
dinates of each atom belong to a periodic point set of one
of the lattices A, v=1, . . . , X. There may be more than
one atom in the unit cell of A . The atoms belonging to
any periodic point set of A, together define the vth sub-
system. By construction, the basic structure of the vth
subsystem has symmetry according to a three-
dimensional space group. Atoms belonging to different
periodic point sets in A may be found equivalent by an
element of this space group.

Let A = Ia„,a ~, a &], with its reciprocal lattice
A*= Ia*„a*2,a,*&]. Then there exists a set of reciprocal
vectors, M*= ta;, . . . , a3+d ], with basis (a,*, . . . , a3+d),
such that"

3+d
a,*;= g Z; a,*. (i =1,2, 3)

j=1
for each v= 1, . . . , X, with Z', v=1, . . . , N is an integral
3 X ( 3+d ) matrix. The basis of M* is chosen to contain
the least possible number of elements. This means that
the basis of M* is formed by of a set of rationally in-
dependent vectors. The number of vectors in the basis of
M* is restricted to a minimum of four and a maximum of
3N.

For convenience we choose the elements of the basis of
M* to be ordered, such that (a*, , az, af ) is a set of in-
dependent vectors. Then, the remaining d vectors can be
written as a linear combination of the first three, thus
defining a (d X 3) matrix o".

3+d
S= y h;a,*. (4)

a,";=(a,', 0), i =1,2, 3,
a 3+j (a&+, , bJ' ), j =1, . . . , d

where b*, j =1, . . . , d is a set of reciprocal basis vectors
perpendicular to physical space. The corresponding
direct lattice X is

d

a„= a;, —g cr;b, a, z+ =(O, b ),
j=l

where b. , j = 1, . . . , d, are the vectors reciprocal to (b*).
By construction the diffraction pattern is now a projec-

tion onto physical space of intensities on the nodes of the
reciprocal lattice X*. Completely analogous to the situa-
tion for incommensurately modulated structures, the
electron density of the composite crystal can be obtained
as a section perpendicular to (b* ) of a density function in
(3+2)-dimensional space. The latter has the periodicity
of X. To describe this density function we will now con-
struct the analog of an atom in (3+d)-dimensional space.

Equation (1) expresses the elements of A* in the ele-
ments of M . Through the projection there is an one-to-
one correspondence between M* and X*. Therefore, Eq.
(1) also gives a relation between A,* and X*. Consider a
point, r, = g;+& x„a„., in higher dimensional space. If r,
is chosen to be in physical space, it follows that Z
defines the relation between the components of rs with
respect to X and with respect to A:

X1

x —Z2

X3

Xs1

Xs, 3+d

A particular embedding of physical space in the (3+d)-
dimensional space is chosen, once the matrices Z and o.

[Eqs. (1) and (2)] are defined. A pseudoinverse of Z',
suitable for this embedding, can then be defined as

For the vth subsystem the indices h; can be obtained
from h; by application of Z,

(h„. . . , h3+d ) =(h~, , h,2, h~~)Z

The diffraction spots obtained according to Eq. (5) do not
constitute the complete set of nodes of M*. Intensity at
missing points is obtained, when we allow the subsystems
to be incommensurately modulated (see Sec. V).

The vectors (ai, az, a/ ) define a lattice in three-
dimensional, physical space. Identifying the remaining
elements of the basis of M* with modulation wave vec-
tors shows the description of the diffraction pattern of an
intergrowth compound [Eqs. (2) and (4)] to be formally
identical to that for an incommensurately modulated
compound. Therefore, as was done by Janner and
Janssen, the theory of superspace groups can be applied
to intergrowth compounds. That means that M* is con-
sidered as the projection of a (3+d)-dimensional recipro-
cal lattice X',
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Zv+Zv )inv

(Zv+Zv~ )inv

X 1

X 3

x'
1

X2 + n2
0

x'
3

(10)

for all n, EZ, i=1,2,3. The inverse of Eq. (8) then gives
the corresponding coordinates in (3 +d )-dimensional
space,

Xs 1
x'

1 n1

where the matrix Z =(Z3Zd ) is written as the juxtaposi-
tion of a 3 X 3 matrix Z3 and a 3 X d matrix Zd. It is easi-
ly verified that Z Y is the 3 X 3 unit matrix.

An atom of subsystem v, together with its translational
equivalents is defined by the positions

Xs4

Xs, 3+d

Xs1

Xsg +
X 3

(13)

Equation (13) represents d linear equations between the
(3+d) variables x„. The form of the superspace atoms as
d-dimensional subspaces then leads to exactly one solu-
tion for the section of an atom [Eq. (12)] with any given
three-dimensional subspace. That is, the atom 3„, gives
rise to point atoms in physical space. Furthermore, the
way of construction of 2„, shows that application of Eq.
(8) to this section gives indeed an atom of subsystem v.

In Fig. 1 we give an illustration for d=1 and two sub-
systems. The incommensurateness is defined by the ma-
trix o. =(a,0,0), with a=0.6 is irrational. The first sub-
system is described by

mensions. Thus, each section can be represented by d
numbers t„.. . , td through the relation

Xs, 3+d x'
3 n3

=Y x +Y' n2
1 0 0 0

Z'= 0 1 0 0

Because Z Y is the 3 X 3 unit matrix and Z is an in-
tegral matrix, it follows that Y n can be written as the
sum of a lattice vector of X and a vector in the d-
dimensional subspace given by Z r, =0. If Z contains
components different from 1, the possibility arises that a
fraction of a lattice vector of X should be added: the su-
perspace lattice then is centered. Again, because all com-
ponents of Z are integers, a basis for the d-D subspace
Z r, =0 can be chosen as d lattice vectors of X, which we
denote by Ie,4, . . . , e, 3+d I. The incommensurability in
o. ensures that the components of e, in Y n are irration-
al. Then the periodicity of the density in superspace,
determines that the higher dimensional equivalent of an
atom in subsystem v, is given by the d-D subspace
Zr =0.s

It is possible now, to choose three lattice vectors of X,
such that all lattice points are part of the d-D subspace,
or any of its translational equivalents. These vectors are
denoted by Ie,'„e,z, e,'3I. Then, the point set is obtained,
equivalent to Eq. (8) in Ref. 4, which represents the
equivalent in higher-dimensional space of a point atom in
physical space:

3

r, r, =x, +c,+ gn;e,";

i =1

0 0 1 0

The 1D, continuous subsp ace then has basis vector
e,4=a,4; the three discrete directions can be chosen as1

e,'; =a„, i=1,2,3. This implies that the atoms of the first
subsystem are point sets parallel to a,4. The second sub-
system is defined by

0 0 0 1

Z'= 0 1 0 0
0 0 1 0

The discrete directions are e„=a,4, and e„=a„,i=2,3.
The continuous direction now is e,4=a, 1. This corre-

E

3+d
+ g x;e„,n, KZ, x, PIR

i =4
(12)

where x, = Y'x, and c, =(c,&, . . . , c, 3+d ) represents the
components of centering translations in (3+2)-
dimensional space, which in any case include the null
vector. The components of r, with respect to the stan-
dard basis of X are obtained when the e„. are expressed by
their (integer) components with respect to [ a„ I . Note
that Eq. (12) does not include the modulations.

Physical, three-dimensional space is a section through
(3+d)-dimensional space perpendicular to the d extra di-

FIG. 1. Projection of the higher-dimensional density func-
tion along a, ~ and a,.3, of a composite crystal with two subsys-
tems and d=1. For each subsystem, there is one atom in the
subsystem unit cell. a» and a» are parallel, but have incom-
mensurate length ratio, they correspond to a, l and a,4, respec-
tively. The intersection with physical space (E ) is shown to
consist of point atoms belonging to two incommensurate lat-
tices: solid circles constitute subsystem 1, open circles define
subsystem 2.
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sponds to superspace atoms which are 1D point sets
parallel to a, &

(Fig. 1).

III. SPACE GROUP SYMMETRY IN SUPERSPACE

The higher-dimensional equivalent of the electron den-
sity function has translational symmetry according to
the lattice X. In particular, the higher-dimensional
equivalent of an atom was constructed [Eq. (12)], which
distributed over the nodes of the lattice X leads to a
periodic arrangement of atoms on A . This means that
the symmetry of a composite crystal can be characterized
by a (3+d)-dimensional space group, here denoted by
G, .

A determination of the higher-dimensional space group
can be done, in part, through analysis of the symmetry
and systematic extinctions of the diffraction pattern.
This is done analogous to the analysis for ordinary struc-
tures and modulated structures. Equation (5) gives the
(3+d)-dimensional indices of all subsystem reflections.
Analysis of the point symmetry of the resulting reOection
positions (h„. . . , h3+d ), and of the systematic absences,
then must lead to the rotational and translational parts of
the elements of the higher-dimensional space group. An
example of such a derivation is given in Sec. VII (see also
Ref. 8).

metry operator I R '~ r"] of subsystem v, in physical
space.

When v'Wv, applying Z to R, I' is not meaningful.
As A„, ' now belongs to another subsystem, R, does not
define some symmetry operator in subsystem v.

Thus, we find that each element of G, gives rise to a
three-dimensional space group element in all, in part, or
in none of the subsystems. The collection of operators
(R ~r ) so obtained for subsystem v, gives the subsystem
space group G . '

A more easy test for (R ~r ) as calculated from Eq.
(14), being an element of G is that (R'~r )HG if and
only if,x=R n is a triplet of integers for all triplets of in-
tegers n.

V. THE COMPLETE STRUCTURE

The interaction between the different subsystems leads
to a modulation of each subsystem, with modulation
wave vectors determined by the periodicities of the other
subsystems. There are 3+0 periodicities present in the
system [expressed by the basis of M* (Sec. II)] so that
each subsystem has a d-dimensional incommensurately
modulated structure.

Disregarding systematic extinctions and nonmeasur-
able intensities, the diffraction of a single modulated sub-
system can have intensity at all nodes of M*,

IV. SUBSYSTEM SPACE GROUP SYMMETRY
3+d

S= g h;a,* (15)

R =ZRYS (14a)

and define ~ as the vector in three-dimensional space:

(14b)

Then, we have shown that for x EA, (R'x +r ) is in
A . Thus (R ~r ) is the matrix representation of a sym-

The analysis was started with the proposition of an in-
tergrowth compound made of the number of subsystems,
each of which has three-dimensional translational sym-
metry. Thus, each subsystem has symmetry according to
a three-dimensional space group, denoted as the subsys-
tem space group G . This neglects the mutual interac-
tion of the subsystems, which will be treated in the fol-
lowing sections. Here, we will show how the subsystem
space group can be obtained from the higher-dimensional
space group for the complete system.

Define (R, ~r, ) to be the matrix representation on X of
the superspace group operator IR, r, I, for active trans-
formation on the coordinates in (3+d)-dimensional
space. Analogously, (R ~r ) and IR ~r J are defined on
A in physical space.

Let x =(x', ,x2, x3) be the coordinates of an atom of
A . Then Y x gives the corresponding coordinates in
superspace [Eq. (11)],which belong to an atom A„; . Be-
cause (R, ~r, ) is a symmetry operator, R, 1"x +r, must

f

be coordinates belonging to some atom A„, equivalent
to A„, . There are only two possibilities. First, v'=v,

I

then A„., '=3„, ' belongs also to subsystem v, and
Z (R, 1' x +r, ) is again an atom of A, . Define R as the
3 X 3 matrix:

This means that the intensity at each di5'raction position
in principle has a contribution of all subsystems. Howev-
er, the main reAections of one subsystem coincide with
the, usually much weaker, satellites of the others, imply-
ing that the dissection of the diffraction pattern into parts
arising from the different subsystems can often be made
in good approximation. '"

Because the number of possible reAection positions
[Eq. (4)] does not increase when the modulation is al-
lowed, the same higher-dimensional space group applies
to the complete structure as the one derived for the basic
structure (Sec. III). It follows that the higher-
dimensional equivalent of the density function still has to
obey the symmetry of the higher-dimensional space
group. However, the subsystems do not need to have
translational symmetry.

For the basic structure, defined by the subsystems hav-
ing translational symmetry, the higher-dimensional
equivalent of the point atoms are d-dimensional sub-
spaces [Eq. (12); Fig. 1]. Removing the condition of
three-dimensional periodicity means that the (3+d)-
dimensional atoms are represented as a collection of wavy
d-dimensional patterns. This wavyness can be a value of
the points belonging to that atom different from Eq. (12)
(displacive modulation), or it can mean a periodic varia-
tion of some other aspect of the atoms (atom number,
orientation of magnetic moment). The periods of this
multidimensional wave are those determined by the lat-
tice X (Fig. 2).

For a given subsystem, let r, represent the basic struc-
ture position as defined in Eq. (12), and with components
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numbers (t„.. . , tz), defining d relations between the
coordinates in superspace,

Xs4

Xs, 3+d td

X

+0 Xsp

Xs3

(13')

Substitution of Eqs. (17) and (18) gives

Xs4

Xs, 3+d td

X

+CT X p

Xs3

(19)

FIG. 2. The same projection as in Fig. 1, but for modulated
subystems. The atoms in superspace are now wavy lines,
representing a displacive modulation in the subsystems, parallel
to E . The actual intersections of these superspace "atoms"
with E' correspond to the modulated positions of the subystem
atoms.

3 3+d
x~k =x~g+c~k+ g;n ~e; k g x;e~;k

i=1 i=4

for k = l, . . . , 3+d. x; runs over all values in R. e„l, are
the (3+d) integer coefficients of e„with respect to the
[a,k] basis of X. A single atom is characterized by one
set of numbers n; EZ, c; CQ, and x; CR, i=1,2,3. For a
displacive modulation, the position, r„of an atom in the
real structure then is,

Substitution of Eq. (16) for x,k and expressing x,k in the
three parameters x; [Eq. (11)], makes it possible to em-
ploy Eq. (19) to express the d parameters x; in the param-
eters x, , n, , and c;, characterizing an atom, and the d pa-
rameters t; The . collection of points in (3+d )-
dimensional space given by the continuous variation of
the x, , is equally well represented by allowing the t, ,
i = 1, . . . , d to assume all real values.

Substitution of x,k(x;;t;) into the argument of the
modulation functions [Eq. (17)] shows them to depend
only on the subsystem basic structure positions, and a set
of real numbers t, , . . . , td, in a linear way. Each set of
values of (t„.. . , tz ) selects one section representing
physical space. The coordinates of the atoms in physical
space are then obtained through Eq. (8) as

x„+u„(x,;t; )
x,k

—x,k +u, I, (x„, . . . , x, 3+q ), k = 1, . . . , 3+d,
(17)

X =Z2

X3 x 3+/ +u 3+/(x,'. ;t; )

(20)

u (x ] x 3+(g ) represents the modulation function,
which is periodic with periodicity 1 in each of its argu-
ments.

Because the effect of the modulation can only be seen
through the displacement of the atoms in phy-
sical space, we require the modulation to be parallel to
physical space. Then, restrictions on the functions
u„(x„,. . . , x, 3+& ) follow from [Eq. (13)]:

u„(x,k )u, 4(x,k )

=cr u, 3(x,k )

u~3(xsk )

(18)

Equations (16), (17), and (18) together define a d-
dimensional collection of points which represents an
atom of subsystem v in higher-dimensional space, and
thus replaces Eq. (12). Of course, for a given structure
the values of x; and the form of the functions
u ' ( x ] x 3+g ) still have to be specified.

A description, which relates this collection of points
more directly to the structure in physical space is ob-
tained as follows. As inferred before, physical space is
obtained by taking any section perpendicular to
(a,4. a, 3+&). Such a section is represented by d real

For x,k given by Eq. (16) or Eq. (12), this indeed describes
an incommensurately modulated structure for the vth
subsystem.

VI. THE SUBSYSTEM SUPERSPACE GROUP

In the previous section we have described the cornpos-
ite crystal as a collection of d-dimensionally incommensu-
rately modulated subsystems. It was argued that this
gives the true structure of such a crystal, with the sym-
metry given by a single (3+d)-dimensional space group.
This higher-dimensional space group is the same as is
necessary to describe the basic structure (Sec. III).

In Sec. IV a space group, G, was defined, which gives
the syrnrnetry of subsystem v. Each subsystem, in the
basic structure, has its own space group, but all the sub-
systems space groups can be derived from the higher-
dimensional space group in a unique way.

Completely analogous, for each subsystem we can
define a subsystem superspace group, G, , which gives the
symmetry of its incommensurately modulated structure.
They can also be derived from the higher-dimensional
space group of the complete system, as we will do here.
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The fundamental periodicities of subsystem v are ob-
tained from M" through application of Z [Eq. (1)]. The
modulation of this subsystem is given by the periodicities
in M* which are missing in A,*. So, we can define a set of
modulation wave vectors q'J, j =1, . . . , d, by

3+dq'= g V,;a,*
i=1

(21)

where V is an integral dx (3+d) matrix. Juxtaposition
of Z and V gives a square matrix of order (3+d),

Z V

PV (22)

3+d
a,";*= g W; a,*

j=1
(23)

The structure and syrnrnetry of the composite crystal are
equivalently described on X as well as on X . The ele-
ments of the higher-dimensional space group on basis
X,(G,') can be obtained from the elements of G, by the
similarity transform

To ensure that the set (q J) describes the modulation in
subsystem v, it is sufticient to require that W is a non-
singular matrix, i.e., its inverse exists.

Analogous to the definition of X* [Eq. (6)] we can lift
the set of points (a*„a'2,a'3, q ', . . . , q"") to a reciprocal
basis X,* in (3+d)-dimensional space. It follows from
Eqs. (1), (6), (21), and (22) that X" can be obtained from
X by a coordinate transformation defined by 8':

For completeness the matrix, o', expressing the modu-
lation wave vectors (q J) in A* is given:

qvl

=( V3+ Vdo )(Z3+Zdo )'""

qVd

v1

av2

v3

(26)

where V = ( V3 Vd ).
Each subsystem is an incommensurately modulated

structure, with a modulation of dimension d. Therefore,
the (3+d)-dimensional space group, G, , describing its
symmetry, must be one of the (3+d)-dimensional super-
space groups as defined by Janner, Janssen, and De
Wolff. Characteristic for the subclass of superspace
groups is that the first three coordinates are not mixed
with the d extra coordinates by any element of the super-
space group. For the intergrowth compounds each sub-
system has at least one periodicity in A which is incom-
mensurate to the lattices A*, of all other subsystems v'.
It follows that there can be at most one subsystem which
has A' equal to [a,*,az, a3 ]. For this subsystem the sub-
system superspace group is a subgroup of G, . The basic
periodicities, A, of all other subsystems contain at least
one of the a*EM*, with j =4, . . . , 3+d. The corre-
sponding operator W is one that mixes the extra coordi-
nates with the first three. Thus it is an operator not al-
lowed for superspace groups. It follows that all other
subsystem superspace groups are a subgroup of a higher-
dimensional space group which is equivalent to G, as a
higher-dimensional space group, but not necessarily as a
superspace group. This opens the possibility that two
subsystem superspace groups are equivalent as higher-
dimensional space groups, but not as superspace groups.

R, = W'R, (W' )'"", (24a)

(24b)
VII. APPLICATION TO Hg3 &AsF6

The elements (R, ~r, ) in G,
' which are in a 3 —d re-

duced form image A onto itself. Only these belong to
the subsystem superspace group G, . As discussed before,
there may be elements in G, which do not fulfill this re-
quirement for all or for part of the subsystems. It follows
that the subsystem superspace group is a subgroup of the
complete system higher-dimensional space group, when
the latter is defined on the basis X . Its elements are ob-
tained from the elements of G, defined with respect to X
by Eq. (24), with the additional requirement that they are
in a 3 —d reduced form.

For the operators which map subsystem v onto subsys-
tem v' matrices of the following form can be defined:

R vv —IVv R ( IVv)mv (25a)

(25b)

Application of such an operator to the coordinates of an
atom with respect to X, gives the coordinates with
respect to X ., of a symmetry related atom of the other
subsystem, v'. Of course, the matrices R, do not consti-
tute a symmetry operator of the intergrowth compound,
or of any of its subsystems.

At higher temperature ( T )T, = 120 K) Hg3 sAsF6
(5=0.18) crystallizes in the tetragonal space group
GHT =I41/amd. ' ' The structure is built of a lattice of
AsF6 octahedra, in which channels parallel to [1 0 0] and
[0 1 0] are occupied by mercury atoms (Fig. 3). Long-
range order within the individual chains exists, expressed

0

by the interatomic Hg-Hg distance of 2.64 A. Correla-
tion between the positions along the chain of the mercury
atoms in different chains is absent. The interatomic Hg-
Hg distance is incommensurate with the periodicity of
the host lattice (a=7.534 A). Slightly less than three Hg
fit along the unit cell axis. This incommensurability be-
tween the mercury subsystems and the AsF6 subsystem is
expressed by the parameter 5 in Hg3 &AsF6.

Below T„ the structure becomes completely ordered.
New reAections in the diffraction pattern appear at posi-
tions {h (3+5),k+h5, l) and (h+k5, k(3+5), l), with
5=0.21. In each case only those with h+k+l=even
are observed. On basis of the experimental observation
of an additional extinction: (3—5, 3 —5,0) is absent,
Pouget et al. were able to devise a model for the order-
ing of the Hg chains with respect to each other. The su-
perspace group symmetry for the structure was given by
Janner and Janssen, and reviewed by Buiting et al. '
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I

I

I

I

I

d=1. The set M*=e set M =[a, , . . . , a3+d I can be defined by
a,*=a*„,for i=1,2,3, and a~ = —25a", . Then the (3X4)
matrices Z' are [Eq. (1)]

1 0 0 0
Z'= 0 1 0 0

0 0 1 0

3
Z2= 1

0
3

Z = 1

0

3 0 1

1 0 0
0 1 0
3 0 1

1 0 0

0 1 0

(27)

FIG. 3. Perspective view of one unit cell of the structure of
H Ag3 z sF6. Large and small circles denote As and F atoms, re-
spectively. The positions of the Hg atoms in the AsF6 sublattice
are given schematically by the small solid circles. The two dis-
tinct channels ulled by Hg are clearly shown.

Here, the superspace group syrnrnetry will be derived,
starting from the observed extinction conditions rather
than from the structure model proposed by Pouget
et al. For this analysis the extinctions in the neutron
diffraction spectrum as reported by Pouget et al. will be
used.

A. Superspace and subsystem symmetry

The ordering transition at T, is observed in the
diffraction pattern by the occurrence of additional
reAection positions, accompanied by a lowering of the
diffraction symmetry to orth orhombic. The mirror
planes retained at low temperature are parallel to the
high temperature diagonal d-glides and the a-glide.
Pouget et al. show that the diffraction pattern can be di-
vided in two sets, arising from two different domains.
For a single domain the additional diffraction positions
are (h (3—5), k —h 5, 1)I and (h —k5, k (3—5), 1)I,
where the indexing with respect to the reciprocal of the
I-centered tetragonal unit cell is indicated by a subscript
I. All refIections with h +k + I=odd were reported to be
extinct.

Integer indices for all rejections can be obtained when
three reciprocal unit cells are used, indicated be y

~
= [a», a z, a ~I (see Sec. II). The a*~ axes correspond

to the c* axis of the high-temperature phase, with
a*,z

=
a&~

= —
a33 c*. The relation between the other

axes is given in Fig. 4. It was shown that A& corresponds
to the ordering of the AsF6 octahedra, which then consti-
tute subsystem 1. The second subsystem comprises the
mercury atoms in the channels parallel to [1 0 0 ]. They
are the origin of the rejections at Az. The mercury
atoms in the channels parallel to [0 1 0] give rise to the
reAections at A&, and thus form the third subsystem.

Th e subsystem reciprocal lattices can be written as in-
tegral linear combinations of only four vectors irnplyin

1
Q2)

1

I

I

) 0
I

1

1

32- — I ~
I

I

l

1

/
/

/

Q)p(a)

0

1
I

l
I

I

I

0

22
/

/
/

/

/

FIG. 4. Subsystem unit cells compared with the high-
temperature tetragonal unit cell. The plane perpendicular a*& is
given. (a) gives the reciprocal lattice vectors. a;, i= 1,2, denote
the basis vectors of A*; a*=aq& and b*=a22 correspond to
high-temperature I-centered unit cell. Solid and open circles
represent the extinct and present Bragg rejections of the I-
centered cell. (b) gives the lattice vectors for the corresponding
direct unit cells.

The o matrix is 1 X3, and immediately follows as [E .
(2)]

q.

o =( —25, 0,0) .
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with h&
—hz —6h4=0,

v —3: (3h3$+h3$&3h3f h3$& h33&h3] )

(29)

with h]+h2 6h4=0 .

There are two kinds of extinction condition conditions
reported by Pouget et al. for the low temperature phase.
One pertains to the centering of the sublattices, and is al-
ready referred to above. The second was stated as
(3(3—5), 3(3—5),0)I is absent, while (6(3—5),6(3
—5),0)I is present. The only structural effect reported
for the phase transition was an ordering of the Hg atoms.
Therefore, it is expected that the high-temperature sym-
metry is retained as much as possible in the low tempera-
ture structure. To be able to make the superspace group
determination, we assume the extinctions of the high-
temperature space group, I4&/amd, which point toward
Fddd symmetry for A, to be retained at low temperature.
Performing the two steps of transformation of the indices
then gives extinction conditions valid for either one of the
subsets defined in Eq. (29).

The conditions for the three subsets can be combined,
in order to obtain extinction conditions for the complete
4D diffraction pattern. It should be noted that such a
generalization still has to be checked against satellite
reAections, whose measurement might be possible in the
future. For the centering of the 4D lattice we obtain

(h „h2,h3, h4):

h ] +h2 =2n ' h ] +h3 =2n; h2+h3 =2n

Translational components for the three mirror planes fol-
low from

Note that here we use centered unit cells, instead of refer-
ring all vectors to a primitive lattice, as was done by
Janner and Janssen.

The indices with respect to the subsystem reciprocal
unit cells can be obtained from the Pouget-indexing by
(h», h, z, h»)=(h +k, k —h, i), for the (h, k, l)I reflec-
tions; (h2&, h22, h33) =(h, k, l)3 for the (h (3—5),k
—h5, l)I refiections; and (h3, , h32, h33)=(k, h, —l)3 for
the (h k5,—k (3 —5), l )I refiections. Indexing with
respect to the subsystem reciprocal lattices A* is indicat-
ed by an additional subscript v= 1,2,3. Transforming the
extinction condition h +k +i=odd is absent according-
ly, shows that A, is described by an F-centered lattice
basis, whereas A2 and A3 have I-centered settings.

The indexing on the superspace reciprocal lattice X* is
identical to the indexing on M*, and thus can be obtained
from Eq. (5). The main reflections of each subsystem
constitute a 3D sublattice of X', which is expressed by an
additional condition on the indices. The result for the
(h „h3, h 3, h4 ) refiection is

v=1: (h», h, 2, h, 3, h4) with h4=0,
v=2: (3h2)+h23, h22 —3h )2, h33, h3) )

(h„O, h3, h~): h, =2n; h3=2n; h, +h3=4n,

(O, h2, h3, 0): h3=2n; h3=2n; h2+h3=4n .

(32)

(33)

10OO
0100
0010
0001
33011100
0010
0200

(34)

3 3 0 1

1 1 0 0

0 0 1 0
0 2 0 0

In each case n is an arbitrary integer. To derive Eq. (32),
it was necessary to extend the condition for the
(3(3—5), 3(3—5),0) refiection to similar refiections with
nonzero l. The validity still has to be checked against
part of the diffraction pattern not reported by Pouget
et al. '

The superspace group in accordance with the extinc-
tions Eqs. (30)—(33) and with the orthogonal mmm sym-
metry is G3 =P:FDDD:11s( —25, 0,0), the same as found
by Janner and Janssen. To be compatible with the
high-temperature space group GHT, a nonstandard set-
ting is used, given by the symmetry operators in Table I.

It is easy to check that all elements of G, leave subsys-
tem 1 invariant, while the subgroup generated by the
translations and by (m„1~0,—', —', —,') and (m~ 1

~ ~, 0, —,', 0)
maps subsystem 2 onto 3, and vice versa. The subsys-
tem space groups can then be obtained by application of
Eq. (14) to the appropriate symmetry operators (Table I);
the result is given in Table II. With an appropriate unit
cell transformation, it can be shown that G2 and G3 are
equivalent to the A2/m and 82/m, as given by Janner
and Janssen. It is interesting to note that G2 and G3 are
equivalent, but that they are obtained in a different set-
ting: the position of the mirror planes is at z =—,

' and
z=o, respectively. This expresses the fact that these two
subsystems have atoms only at z =

—,
' and z=O, respective-

ly.
To derive the subsystem superspace groups, the modu-

lation wave vectors in each subsystem need to be defined,
i.e., the matrix V has to be chosen [Eqs. (21) and (22)j.
Appropriate choices for the modulation wave vector q
are a primitive vector taken from the common reciprocal
lattice points of the other two subsystems, but not be-
longing to A . Any primitive reciprocal lattice vector of
A* may be added. The following choice for the matrices
V and W is a possibility:

(h, , h2, 0,h~): h, =2n; h2=2n; h, +hz+2hz=4n,

(31)

Now, Eq. (24) gives the elements of the subsystem
super space groups. For subsystem 1, G,'

=P:FDDD:11s( —25, 0,0) is identical to G„as W' is the
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TABLE I. Symmetry operators of the superspace group of

Hg, &AsF6.

TABLE III. Subsystem superspace groups for Hg, &AsF6.

Note that G,' is identical to G, (see Table I). +=1/(3 —6).

(E 1
~

—,', —,', o,o)
(E 1 iO, —,', —,',0)
{El ln1 n2 n3 n4)

(El@,O, —,',0)

(i 1~0,0,0,0)
(E 1 ln, , n„n, , n4)

(i 1 ~~0, 0,0,0)
(2'T~O, O, O. 5, O. 5)
(m, 1~0,0,0.5,0.5)

(El ln&, n2 n3 n4)
(E 1 I -,', —,', —,',0)
(i 1~0,0, 0,0)
(2 1~0,0,0,0.5 )

(m, 1~0,0,0,0.5)

G =P:I2&/m:1s(n, 2—3o.,0) G,'=P:I2/m:1s(u, 3a —2,0)

unit matrix. For the other two subsystems, G,
=P:I 2& /m: I s(a, 2 —3a, O) and G, =P:I2/m:ls(a, 3a
—2, 0) are obtained (Table III). The subsystem modula-
tion wave vectors are defined by the subsystem o. matrix
o. . The latter are obtained as

o' = ( —25, 0,0),

o =(a, 2 —3a, O), (35)

o =(a, 3a —2,0),

with o.= 1/(3 —$).

B. The structure in superspace

The one-dimensional point sets representing the super-

space atoms for the basic structure [Eq. (12)] follow from

Z r, =0, for each subsystem, respectively. For the first

subsystem, it immediately follows that the superspace
atoms are lines parallel &o e,'4=a, 4. The discrete direc-

tions e,'; can be chosen as a„, for i=1,2,3, respectively.
For the second subsystem we find lines parallel to
e,~=(1,1,0, 6) (the coordinates refer to the standard basis

of X [Eq. (7)]). The same set of vectors as for subsystem
1 can be used for the discrete directions. However, for

(Eln„n„n, ) (i~o, o,o)

TABLE II. The subsystem space groups for the three subsys-

tems of Hg3 &AsF6.

G) =I'ddd

(E~ —,', O, —,
'

)

a,4, e,2=a,2+ 3a,4, and e,3=a,3, a lattice translation2= 2= 2 =
, n; e„corresponds to a lattice translation

(n &, nz, n3)z with respect to Az. The atoms of the third
subsystem are formed by lines parallel to e,4=(1, 1,0, 6).
Now, e„=a,4, e,z= —a,2+3a,4, and e,3= —a, 3 is a pos-3= 3=— 3 =
sible choice. Again, the lattice translation g3, n, e„cor-
responds to a lattice translation (n, , n2, n3 )3 with respect
to A3.

The coordinates for Hg were given with respect to the
high-temperature unit cell as (x', —,', —,

'
) for chains parallel

to [1, 0, 0] (subsystem 2), and as (O,y', 0) for subsystem 3.
In the ordered phase, the values of x' and y' differ from
one unit cell to the other. It is not dificult to deduce
from Fig. 4 and Eq. (27), that the coordinates with

respect to A2 then are (x, —,', —,')2. The size of the subsys-

tem unit cell is such that it should contain one mercury
atom in each of the two chains per cell. Application of
the elements of Gz (Table II) shows that (x, —', —') is invari-

ant under m„but that other operators map this position
onto ( —,

' —x, —,', —,') and ( —,'+x, —,', —,'). The latter two posi-

tions belong to the other chain. The first position gives a
second atom in the unit cell for the first chain. This
would be possible if we assume a disordered, partial occu-
pation of both positions. However, it is more likely that
a single position is fully occupied, which is only possible
forx =4.

Thus, it is found that the chains parallel to [1 0 0] are
described by a single Hg atom at the two-fold special po-
sition ( —,', —,', —,

'
)z of G2, where the coordinates refer to the

subsystem lattice A2.
Now, it is interesting to consider the operators in 6,

which map one subsystem onto another. For example,
(2 1~0, 4, —,', —,') maps subsystem 2 onto subsystem 3. The

coordinates of an atom of v= 3 with respect to A3 are ob-

tained from the coordinates of an atom of v=2 with

respect to A2, by application of the following matrix [Eq.
(25)]:

G, =12,/m G3 =I2/m
023—

s 0

0 0 0
1 0 0

+3 —(1 3 1 I

() ~ ~ '~~4~a~z) '

(Elni, n2 n3)

(i~o, o,o)
(2'lo, o,o. 5)
(m, j0,0,0.5)

(E~n„nz, n3)

(i ~0, 0,0)
(2'io, o,o)
(m, )0,0,0)

0 0 0 1

For the position ( —,', —'„—,') of Hg(v=2), the coordinates of
Hg(v= 3) are obtained as ( —,', —,', —,

' ), which is indeed in one
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of the chains parallel to [0 1 0]~.
In summary, combination of the knowledge of the high

temperature structure with the symmetry of the low tem-
perature phase, leads to the conclusion that the Hg atoms
in the second subsystem occupy the twofold position
( —', —', —,')z, (~, 4, —')2. The Hg atoms of the third subsystem
have coordinates (0,0,0)3 and ( —,', —,', —,')3. This model for
the positions of the mercury atoms is the same as the one
proposed by Pouget et a/. However, the ad hoc deriva-
tion by Pouget et al. is replaced by a general symmetry
analysis of the diffraction pattern. The symmetry
analysis given here shows that there must be an addition-
al extinction condition for the rejections as compared to
the conditions reported by Pouget et al.

C. Modulations

In this paper it is proposed that, in principle, each sub-
system is modulated with modulation wave vectors equal
to the periodicities in M*, which are missing in A*. For
Hg3 &AsF6 this means that each subsystem should have
a one-dimensionally modulated structure. The corre-
sponding modulation wave vectors are defined in Eqs.
(34) and (35). Satellite reAections, which would arise be-
cause of these modulations, have never been reported.

Still, there are some experimental indications that the
mercury atoms should have values different from the
fixed basic structure positions. More precisely, different
Hg along one chain should have different deviations from
their fixed basic structure z position. ' ' Such a varia-
tion in the mercury position can be explained by assum-
ing a displacive modulation for the Hg atoms.

For the special position as occupied by Hg, the symme-
try restrictions are as follows: u =u =0 for the first
(odd) harmonics, and u, =0 for the second (even) har-
monics. Assuming the first harmonics to be the most im-
portant ones, the modulation is obtained as mainly a z
displacement, in accordance with the structure deter-
mination by Schultz et al. '

The occurrence of another type of additional
rejections, the so-called 26 satellites, was reported by
Pouget et al. These were observed at the positions
(h+25, 0, 1)~. They cannot be indexed on the basis of the
four reciprocal vectors defined previously [Eq. (27)]. An
additional modulation wave vector is needed, which
would then result in a five-dimensional superspace
group. An alternative interpretation of these reAections
is obtained when the other domain is taken into account.
The second domain gives rejections of the third subsys-
tem at (h +k5, k(3 —5), l }~, as compared with the first
domain with rellections at (h —k5, k(3 —6), l)~. Sub-
tracting these rejections precisely gives the 26 satellite.
The presence of an ordered array of domains, with the
two different domains alternating, would give the 25 sa-
tellites as a result of diffraction against the ordered array
of domain walls. Then, the structure of a single domain
can still be described by the four-dimensional superspace
group. The complete structure is too complicated for
simply assigning a 5D superspace group.

VIII. DISCUSSION
The basic structure of an intergrowth compound can

be described as a collection of subsystems, each one with
a translational symmetric structure. In this approxima-
tion, the symmetry of each subsystem is given by a three-
dimensional space group, 6 . This description has been
successfully applied to the determination of the structure
of inorganic misfit layer structures by Wiegers and co-
workers. '"

Problem in such an analysis is that the subsystems are
considered independently, and that there are apparently
no rules for the combinations of subsystem space groups
which are possible. In this paper we have shown that the
higher-dimensional space group uniquely defines the sub-
system space groups. It immediately follows which com-
binations of 6 are allowed. Furthermore, the higher-
dimensional space group may contain elements which re-
late one subsystem to another, thus giving symmetry of
the intergrowth compound which is not described by the
collection of subsystem space groups (Secs. III and IV).
Application of this higher-dimensional space group
analysis to particular inorganic misfit layer structures
made it possible to rule out certain subsystem symmetries
which could not be discarded on basis of an independent
analysis of the diffraction of the different subsystems. '"

The real structure can be described as a family of inter-
penetrating incommensurately modulated structures.
The basic periods of one subsystem occur as modulation
periods of others. For a complete mutual interaction, the
modulation in each subsystem is of dimension d, when
there are (3+8) elements in the basis of M*. Again, the
subsystems can be considered independently, each one
with its own symmetry according to the (3+d)-
dimensional subsystem superspace group 6, . As for the
subsystem space groups, the complete system (3+d)-
dimensional space group is needed to obtain the relation
between the 6, , as well as that the higher-dimensional
space group may contain elements which relate one sub-
system to another.

Apart from the relation between subsystem sym-
metries, the higher-dimensional space group of the corn-
plete system also defines relations of more direct impor-
tance for the structure. As we know from the superspace
group analysis of incommensurately modulated crystals,
the structure is independent of the choice of the phase of
the modulation function. When the X subsystems are
considered independently, we are free in the choice of Nd
phases. However, when the subsystems occur together in
one intergrowth compound, the choice of the d phases in
one subsystem will fix the phases in all others. There are
only d phases free to choose. It is easy to show that the
structure is independent of the relative orientation of the
sublattices along a mutual incommensurate direction.
However, the specific form of the relation between the
phases does depend on this relative orientation. It is the
complete system higher-dimensional space group which
gives the relations between the initial phases of the modu-
lation in the difFerent subsystems, and their dependence
on the relative orientation of the sublattices. In this way,
the higher-dimensional space group of the complete sys-
tem leads to a reduction of the number of parameters
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needed to describe the structure, as compared to the
description as independent subsystems.

Finally, we like to point out that it is only G, which
gives the symmetry of the intergrowth compound. The
correctness of each analysis making use of the subsytem
symmetries, has to be shown by making use of the rela-
tion between G„G, , and G, as defined in this paper.
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APPENDlX: GLOSSARY OF SYMBOLS

avi ~ avi

k

ask & ask

k ak
b, b'

V
esk

h,
h,
qvJ

G,
Gv

S

GI*
R,

R S

S
S
p V

pv
3

pv

Z
Zv

3

Zd

0

S

is
7.

X

A

. , 3+d).

x representation

symmetry

operator for

n superspace.

Basis vector (and reciprocal) of the lattice A, (A*) of subsystem v (i=1,2,3).
Element of the set M* (k =1, . . . , 3+d).
Basis vector (and reciprocal) of the superspace lattice X (X*) (k =1, . . . , 3+d).
Basis vector (and reciprocal) of the subsystem superspace lattice X, (X*) (k =1,
Vector (and reciprocal) perpendicular to physical space (j =1, . . . , d).
Lattice vectors of X (k =1, . . . , 3+d).
ReAection indices with respect to A*.
ReAection indices with respect to M* and X*.
Modulation wave vector of subsystem v (j =1, . . . , d).
Superspace group for the intergrowth compound.
Subsystem superspace group.
Subsystem space group.
Set of (3+2) reciprocal vectors in physical space.
Rotational part of a symmetry operator in superspace, and its (3+2)X(3+d)-matri
with respect to X*.
(3+d) X(3+d)-matrix representation with respect to X* of the rotational part of a
operator in superspace.
3X3-matrix representation with respect to A* of the rotational part of a symmetry
subsystem v.
Diftraction wave vector in physical space.
Diftraction wave vector for subsystem v.
d X(3+2)-matrix defining q ~ in terms of the elements of M
Leftmost d X3 part of V .
Rightmost d Xd part of V .
(3+d)X(3+d) matrix relating the subsystem periodicities with M".
(3+d)X3 matrix, the pseudoinverse of Z .
3X(3+d) matrix, defining A* in terms of M*.
Leftmost 3 X 3 part of Z .
Rightmost 3Xd part of Z .
d X3 matrix relating the last d elements of M* to the first three.
d X3 matrix giving the elements of q ~ in terms of A .
Subscript or superscript enumerating the subsystems.
(3+4)-dimensional vector defining the translational part of the symmetry operator i

(3+d)-dimensional vector defined by W v;.
Three-dimensional vector defined by Z v;.
Lattice in (3+ d)-dimensional space, with basis vectors a,k.
Lattice in (3+d)-dimensional space, with subsystem basis.
Reciprocal lattice in (3+d)-dimensional space, with basis vectors a,j, .
Reciprocal lattice in (3+d)-dimensional space, defined as W"X*.
Lattice, defining the average periodicity of subsystem v.
Reciprocal lattice for subsystem v.
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