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Orthogonality exponent and the friction coefFicient of an electron gas
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The Anderson orthogonality exponent K for the overlap of two ground states of a free-electron
gas with a local potential at different positions is discussed. In the small-distance limit, it is shown
that for arbitrary local potentials IC can be expressed in terms of the friction tensor. In the one-
dimensional case, K depends on the potential only via the friction coefficient for arbitrary distance,
and the exponent is bounded for arbitrary shape of the potential in contrast to the two- or higher-
dimensional case. The exact result for E is presented for a short-range potential on a lattice.

I. INTRODUCTION

In his paper' on the infrared catastrophe in Fermi
gases with local scattering potentials, Anderson showed
that the overlap of the many-body ground states with and
without a local potential vanishes in the infinite-volume
limit. In the language of quantum field theory, this is a
manifestation of the problem of unitary inequivalent rep-
resentations of the anticommutation relations for the field
operators in an infinite system. For a large but finite
system, Anderson showed that the overlap goes to zero as
a power law in the number of electrons in the system, and
the exponent can be expressed in terms of the squared
scattering phase shifts for a spherical potential. ' From
Anderson's expression of the exponent for a spherical po-
tential, it was very suggestive to assume that the ex-
ponent for arbitrary local potentials can be expressed in
terms of the trace of the square of the phase shift opera-
tor. The proof of this fact was by no means straightfor-
ward. This general result has been used to present a for-
mal expression also for the overlap of two many-body
ground states with the same local potential at different
positIons in the electron gas. This overlap plays an im-
portant role, e.g. , in the theoretical description of muon
diffusion in metals.

A general calculation of the exponent as a function of
the distance is rather complicated, ' and not even for
spherical potentials has an explicit expression in terms of
the scattering phase shifts been derived. In the following,
exact results are presented in various special cases. In
the small-distance limit, it is shown that the overlap ex-
ponent can be exactly expressed in terms of the friction
coef6cient of a h'eavy particle giving rise to the local po-
tential. Such a relation is known to hold for a bosonic
heat bath and was conjectured for the short-distance
limit of an electronic bath by Sols and Exuinea. ' For
spherical potentials, the friction coefficient is determined
by the transport cross section, " ' for which a well-
known expression in terms of the scattering phase shifts
exists. For arbitrary nonspherical symmetric local poten-
tials, the overlap exponent is expressed in terms of the
friction tensor. For the one-dimensional case, it is shown

that the overlap exponent depends on the potential only
via the friction coefficient for arbitrary distances. This is
in contrast to the two- and three-dimensional case. The
exact result for the exponent K for electrons on a lattice
is presented for a short-range potential.

In Sec. II two definitions of a "phase-shift operator"
and their relation to the general result of Yamada and
Yosida are discussed. The general relation between the
exponent and the friction coefficient is proven in Sec. III.
After presenting the general result for one-dimensional
potentials in Sec. IV, the model of electrons on a lattice is
discussed in Sec. V. In the final section, Sec. VI, a com-
parison of the various exact results is given. A simple
derivation of the relation between the exponent K and the
friction coefficient without using the formal expression
for K is presented in the Appendix, and its extension to
interacting electrons is discussed.

II. THE PHASE-SHIFT OPERATOR

As there are two different definitions for the phase-shift
operator in the literature, it is useful to clarify their rela-
tion in connection with the Yamada-Yosida (YY) formu-
la for the overlap exponent.

The scattering by a spherical potential is best described
in terms of angular-momentum states

~ s, l, m ), where E is
the (kinetic) energy of the particle and (l, m) are the
angular-momentum quantum numbers. More generally,
states ~E, a) can be introduced, where a labels the "addi-
tional quantum numbers. " The normalization of these
states is chosen to be

(E,a~8', a') =5(E—E')6(a, a'),
where 5(a, a') is a Kronecker (Dirac) 6 for discrete (con-
tinuous) quantum numbers a. The scattering matrix S
defined in terms of the Mufller operators can be expressed
by the T matrix in the standard way

(E,a~S~E', a') =5(E.—E')[ 6(a, a')
—2~i(E, a~ T(E+i0)~e, a') ],
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T(z) = V[1—Go(z) V] (3)

where Go(z)=(z H—o) ' is the unperturbed resolvent,
and V is the scattering potential. The expression multi-
plying the energy 5 function on the right-hand side of Eq.
(2) for fixed energy E is a unitary matrix in the additional
quantum numbers a, u',

It is a matter of convenience as to which of the two ex-
pressions for K+ to use.

When a local potential V, is included in the unper-
turbed Hamiltonian, which is shifted by a to present the
potential Vf, straightforward algebraic manipulations us-
ing (7) yield

[S(E)] .—=5(a, a') —2~i(E, alT(E+iO)le, a') . (4) Tr [In[Sf(cF)S, '(E~)]]
8m.

(14)

The phase-shift matrix 5(E) is then defined as

5(s) =——InS(E) .
1

21
(5)

(s'a'ls(E)lc. , a) =5(e—E')[S(e)] (8)

For a spherical potential, the phase-shift matrix is diago-
nal in the angular-momentum quantum numbers,

[5(s)]i i =5iI 5 5i(E),

where the 5&(c.) are the usual scattering phase shifts.
Alternatively, one can define an operator S(E) in the

full Hilbert space,

S(E)—= [1—GO(E —iO) V][1—Go(a+ iO) V]

= 1 —2iri5(E Ho) T(e—+i 0) . (7)

This is not a unitary operator, but its partial on-shell ma-
trix elements are related to the unitary scattering matrix
S [see Eq. (2)] and the unitary matrix S(e) defined in Eq.
(4):

It is a simple exercise to show that K can alternatively be
expressed in terms of the scattering matrices S(E):

2
tr {ln[S f ( eF )S, '( eF ) ] ]8~

(15)

In Sec. III, Eq. (14) is the starting point for the discussion
of the small-distance behavior of K, while Eq. (15) is used
for the one-dimensional case in Sec. IV, as this is closer to
the scattering description on the elementary textbook lev-
el.

III. RELATION WITH THE FRICTION COEFFICIENT

Sf(e, ) = U(a)S, (s„)U'(a),
U(a) =exp(i p a/A) . (17)

The scattering operator in the final state can be related
to the scattering operator in the initial state with the help
of the translation operator U(a):

The phase-shift operator is defined as

5(E)—:—lnS(E) .
2l

(9)
Us U's-'=U[s U']s-'+UU'ss-' (18)

In the following the arguments (as well as the carets) in U
and S,- will be suppressed. To study the small-distance
behavior, it is useful to commute S; with U,

The YY formula for the overlap of the many-body
ground state

I
i ) without the potential V and

If ) with
the potential V reads

I(fli) I
—(I/x) (1O)

This yields

TrIln(1+ U[S, , U ]S; ')]
8m

(19)

E+ =
—,'Tr[S(EF )/~]

where Tr denotes the trace in the (full) Hilbert space. If
one defines a trace operation for matrices 3 in the addi-
tional quantum numbers (lower-case tr), IS; p a]S; '= —S IS, '

p al (20)

which is a convenient starting point for the further dis-
cussion. To obtain the result for E quadratic in the dis-
tance, one can approximate U =1—ip. a/A', and U=1.
The relation

trA =—g(A) and the expansion of the logarithmic leads to12

K+ =
—,'tr[5(cF )/vr] (13)

a straightforward power expansion of the logarithm in
the formula for the exponent K+ shows that it can also
be expressed in terms of the phase-shift matrix 5(E) and
the lower-case tr,

Tr([S, , p a][S; ', p a])+O((kFa) ) .
8m

(21)

The trace is now performed using momentum eigenstates
lp), with the usual normalization (pip') =5(p —p').
The matrix elements of the commutators in (21) can be
expressed in terms of the T matrix using (7):

(pl [S;,p a] p') =27ri5(EI; —
p /2m)(p —p') a(pl T, (Ep+io)lp'),

(p'I [S, ', p.a] lp ) =2~i5(EF —p' /2m)(p —p') a(p'I T, (Ei; —iO) lp') .

Therefore, one obtains

, f dp f dp'[(p —p'). a]'I & pl T(E,+ iO) lp') I'5(EF —p'/2m)5(EF —p'/2m) .1

(22)

(23)

(24)
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o. (n'+—n)=(4vr mA) (( PFn'~T( EF+i 0)~p Fn) [ (25)

Performing the momentum integrations in (24) in spheri-
cal coordinates yields

Because of the energy 5 functions, only on-shell T-matrix
elements occur which can be related to the differential
scattering cross section cr (n~n'), where p=pFn, and

p'=p+n'. In three dimensions, one has

It is tempting to use Eq. (30) or (32) to discuss whether
there is an upper bound to K. As the transport cross sec-
tion of a "hard potential" of radius R0 is ~Rz~, it is
easily seen that g itself is not bounded. But as the rela-
tion (30) between K and g resulted from an expansion in
the distance a, one is not allowed to draw conclusions on
the boundedness of K using Eq. (30). This can be seen ex-
plicitly for the case of a one-dimensional potential dis-
cussed in Sec IV.

4

K = f dn f dn'[(n —n') a] o. (n+—n') .
2(2vrfi) PF (26) IV. EXACT RESULT FOR ONE DIMENSION

For a spherical potential, the differential cross section
o (n~n') depends on n n' only, and the angular in-

tegrations can be expressed in terms of the "transport
cross section" o „(pF):

4
4~K= , o„(pF)a

(2n'A)

o„(pF)=—f (1 —cos8)cr (cos8)dQ .

(27)

(28)

This should be compared with the result for the friction
coefficient g for a heavy particle in a free-electron
gas, " ' ' valid for velocities small compared with

13, 14

4m PF

(2 A)3
o1r PF

Comparison with Eq. (27) leads to the relation

(29)

'QQK = +O((kFa)'),
2m%

(30)

(31)

The short-distance behavior of the single-phase-shift
model of Yamada and co-workers ' is consistent with the
exact relation Eq. (30).

For the case of a nonspherical potential, one has to go
back to Eq. (26), and one obtains (using the repeated-
index summation convention)

which was conjectured by Sols and Guinea' from their
linear-response calculation. The proof presented here is
valid for any arbitrary strength of the potential. For the
case of a spherical potential discussed in Eqs. (27)—(30),
the transport cross section can be expressed in terms of
the scattering phase shifts, "

cr(p )F= g (I+ l)sin [5&+1(EF) 51(EF)] .4~
(PF /&)' 1=O

As shown in Sec. III, the exponent K depends on the
dissipative behavior of the electron gas in the small-
distance regime. The behavior of K in the opposite limit
kFa ~ ~ is known for the three- (and two-) dimensional
case. Using jo(kFa), where jo(x)=sinx/x is the sPheri-
cal Bessel function of order zero, as an expansion param-
eter Yamada, Sakurai, and Takeshige have shown that K
approaches twice the value corresponding to inserting the
local potential into the unperturbed Fermi sea. The cor-
responding expansion parameter in the 1D case would be
sin(kFa), which does not go to zero in the limit a —+ ao.

Therefore, the 1D long-distance behavior is very different
from the 3D (and 2D) case, and it is worth studying in
more detail. It turns out that it is very simple to produce
an explicit result for K for arbitrary distances a.

First, a potential V~(x) is considered, which is dift'erent

from zero in the interval [x,x+]. For wave vector
k )0, the scattering wave function has the form

e lkx+ pe Ikx fOr

1, + (x ) = —';1, (34)"+ Qpg Be'", for x )x+ .

The reAection and transmission amplitudes 2 and 8
directly determine the scattering matrix S;(E) (where
k =&2m e/A').

B —3 '(B/B*)S;E=
B (35)

5 S—f—i

I+iAi (e '"'—1) BA*(1—e ' ')
—AB*(1—e '"') 1+ A~ (e '"' —1)

This follows by comparison with the Lippman-Schwinger
equation' and the explicit form of (x ~Go(e&+iO)~x').
The values of the additional quantum number a are +1
corresponding to right- or left-moving plane waves. If
the potential is moved by a distance a, the scattering
wave function has the same form as in Eq. (34) in a coor-
dinate system centered at x =a. This corresponds to the
replacements 3 ~He ' ', B~B,i.e.,

a;aK=
2~@

where q, is the friction tensor
4

3 J dn f dn'(n, . —n, ')(n —n')o (n+—n')

(32)

(33)

The eigenvalues of this matrix are given by

k1 z= 1 —2R sin (ka)+i t 1 —[1—2R sin (ka)] ]
'

2 R(1 —R) '
=exp +i tan

1 —2R

(36)

(37)

for velocities U &&U+. where R =—
~
A

~
is the reAection coe%cient, and



11 326 K. SCHONHAMMER 43

R —=R sin (ka). Using a well-known identity for
tan '(x), the final result for K reads

T 2

This leads to

tr[5(cF)/m]=ps(cF )/~=AN (42)

K = —tan '[R /(1 —R )]' (38) and

For arbitrary potentials, this exponent is a universal func-
tion of the single variable R =R sin (kFa). Of the three
independent real variables determining S(cF), only one
( I

A
I ) enters. The friction coefficient in one dimension for

U ((vF is given by' '

K+ =
—,'tr[5(c~)/7r]2

[ys ( cF ) /~] + —arctan
2

(43)

2fik~R (kF )
(39)

Therefore, K can be expressed in terms of the friction
coefficient for arbitrary distances a. In the limit
kFa ((1,one recovers

YfOK = +O((kFa) ) .
2m%

(40)

5, ,,= [q, +a«tan(l ~ I/IBI ) ]/2 . (41)

The general result that Eq. (38) shows for the case of
spinless fermions discussed in this paper is that K ~

—,
' for

arbitrary distances a (K —, if spin is included). K is a
periodic function of kFa and, in the limit a~~, one
does not obtain the "incoherent" result of two or more
dimensions.

It is instructive to compare the result for K with the
overlap of the unperturbed Fermi sea with the ground
state with the potential present. The corresponding ex-
ponent K+ is given by tr[5(cz)/~] /2. With
B = IB e, the eigenvalues of the phase-shift matrix cor-
responding to S(c) given in Eq. (35) are

where AN is the number of electrons moved to "infinity"
in the case of a repulsive potential. The different depen-
dence on the scattering potential in K and K+ is most
clearly seen when the potential V(x) is smooth and has a
maximu~ value V,„smaller than EF. Then the
refiection amplitude

I A(cF)l is negligible and leads to
K+ =(AN) /4. When the range of the smooth potential
is increased, AN also increases. The value of the ex-
ponent K+ is not bounded in contrast to K. This shows
the very different nature of K and K+ in one dimension.
This can easily be overlooked if one only works with very
short-range potentials. Potentials of this type are con-
sidered in Sec. V for electrons on a lattice.

V. TIGHT-BINDING MODEL

In this section the electrons are assumed to move on a
d-dimensional lattice. With each lattice site a localized
state Im & is associated. The range of the hopping matrix
elements is irrelevant for the following discussion. The
overlap exponent of the many-body ground states Ii &

with an impurity potential V; = Vlm; & & m; I
and

If & with
an impurity potential Vf = Vlmf &&mf I

can quite easily
be calculated. Using Eq. (7), one obtains

Sf(c)S, '(c)= 1 —2~i5(c —Ho)[lmf & &mf It(c+iO) —Im; & &m, Ir(c —iO)]

+4~'I «c+ iO) I'5« —Ho) lmf & & mf 15«—Ho) lm; & & m, I

where t (c+iO) is the c number which determines the single-impurity T matrix,

Vt( ci+)0=

(44)

(4&)

and Goo(z) = &m, (z Ho) 'Im; &
=

&
—mf I(z Ho) 'Imf & is —the site-independent diagonal element of the unperturbed

resolvent. In terms of the projection operator,

P=lm, &&m, +Imf &&mfl,

the right-hand side of Eq. (44) has the form 1+ A P. As the expression (14) for K involves the trace Tr[ln (1+A P)],
the exponent K is determined by the 2 X 2 matrix & m&ISf S, 'Im& & (A, = i,f). Its eigenvalues can easily be calculated,

~g, 2
= 1 —2~iI r I'(poo —

I pf, I')+2i [~'I r I'(poo —
I pf; I') —~'I r I'(poo —

I pf; I')'] '", (47)

where

p„(.) = &

=&mfl5(c —Ho)lmf &,

pf;(c) =
& mf I5(c H) Im; &, —

and the optical theorem

Imt(c+iO)= vr It(c+iO)l p—oo(c)

has been used. This leads to a result for K which has the
same form as in the one-dimensional case (38):
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K = —tan &C/(I —C)
1

2

(48)

with

C =~'I & (Ep. + i0) I'[p('N(Ep. )
—

Ipf, (E~) I'] (49)

i.e.,

sin 5( E ) = vr p()0( E)
~
t ( s+i 0)

~

2 .

With the definition x =
~pf, (s~)~ /p()0(s~), the constant C

can therefore be written as

The scattering properties of the single impurity
V~m ) ( m

~
are determined by the phase shift

exp[2i5(E)] = 1 2'—ip00(E)t (a+i 0),

approaches 2E+ in the limit a —+00, where E+ is the
orthogonality exponent for introducing a single local po-
tential into the unperturbed Fermi sea. As the exponent
E+ is not bounded, the exponent E is also not bounded in
two or more dimensions. ' An exact calculation of E for
arbitrary distances a in two or more dimensions appears
to be very difticult. The exact result for E presented
for a short-range potential on a lattice for arbitrary dis-
tances unfortunately does not a show a transition to
E )—,', as E+ ~

—,
' for arbitrary strength of the short-range

potential. Therefore, additional work is needed to cover
the generic case.
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C =(1—x)sin 5(E~) . (50)

This shows that the result (48) for K has exactly the same
form as in the single-phase-shift model of Yamada,
Sakurai, and Takeshige, when j0(kza) is replaced by

pf (F+ )
~ /p00( E'~ ). On the lattice, the distance depen-

dence of E is determined by

K~[ (5~E)/m. ] =2K+ as ~m,
—m ~~ca, (52)

where E+ is the exponent for inserting a single impurity
into the unperturbed Fermi sea, in agreement with the
general result of Yamada, Sakurai, and Takeshige.

ik.(mf —m,. )

pf (sF) 'e 5(&p &k),
(2~)

where ck is the energy dispersion of the unperturbed
band. Even for models with nearest-neighbor hopping
matrix elements, only a few analytical results for pf;(E)
are available. For nearest-neighbor sites m; and mf on a
simple (hyper)cubic lattice, the equation of motion for the
resolvent (z HQ )

' le—ads, e.g. , to the result

p, 0( E ) = ( E —
ED)p00( 8 ) /(2dt) 0 ), where E0 is the unper-

turbed site energy, and t,0 is the hopping matrix element.
For large distances, pf, (E) goes to zero in two and more
dimensions, i.e.,

APPENDIX

( )(k +ik„+)( )
=5 (Al)

where a=i,f The ov.erlap of the many-body ground
states is given by

(f~~ &=Detd,

with

(A2)

(2 ) (f)(k + lk. + &(;) (A3)

where the matrix indices run over the occupied one-
electron states. In the following the occupied states are
labeled by m, n, . . . , while unoccupied states are labeled
by r, s, . . . . If one is only interested in

~ (f~i ) ~, it is con-
venient to calculate

~ (f~i )
~

=Det( A A t), where

In this Appendix the relation K =pa /(2+6) between
the exponent E and the friction coe%cient g is derived
without the use of the YY relation Eq. (14).

A large but finite system with periodic boundary condi-
tions is considered, i.e., the exact one-electron states
~k +)(;) and ~k„+)(f) are normalized by a Kronecker
5,

VI. COMPARISON OF THE RESULTS

Various exact results for the overlap exponent K have
been presented, and its dependence on the distance a and
the number of spatial dimensions has been discussed.
The nature of the small- distance behavior is independent
of the spatial dimension. It is determined by the dissipa-
tive properties of the electron gas. The relation (30) with
the friction coefticient shows via its dependence on the
transport cross section cr„(E~) that the proportionality
factor between E and a is small for smooth potentials for
which forward scattering dominates. The large-distance
behavior drastically depends on the number of spatial di-
mensions. In one dimension, E is an oscillatory function
of the distance, and E is smaller than —,

' for all distances
for the model of spinless fermions discussed in this paper
(K —, if spin is included). For dimension 2 or greater, K

=5.„—y (f, (k + ~k + ),,„„(k+
~
k„+ ),f, .

(A4)

Using the time-independent Schrodinger equation for
H, =HD+ V(x —x, ), and Hf =H0+ V(x —xf ), and the
fact that energy eigenvalues are independent of the posi-
tion of the potential, one obtains

(f)(k + ~( Vf —V, )~k + &(, )

(f)(k + ~k + )(;)=

(A5)

The determinant can now be evaluated using
ln[Det( 3 2 )]=tr ln( 2 2 ), where the trace runs over
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the occupied one-electron states. For small distances,
a lxf x'

I y the overlaps (f)(k + lk + )~,.) are linear in

a, and therefore up to quadratic terms in a, one can ap-
proximate intr(A 2") by tr(AtA —1). This leads to

It =G(EF, E~)/2 . (A9)

This can be compared to the general expression for the
energy-transfer rate in the adiabatic limit, ' '

lnl& f i &I'= —g
m, r

av,
()k + a. k+ ()

X[1+0(k~a}]. (A6)

e, =~RTr[5( EF H—, ) Vt 5( EF H—, ) V, ], (A10)

where H, =H0+ V, is an arbitrary slowly time-dependent
Hamiltonian for the electron gas. The use of
V, = V(x vt), a—nd the definition e, =i); v;v, leads with
(A8} and (A9) to the relation (32):

The expression on the right-hand side can be brought
into a representation-independent form:

ai. a~
pig

0 (Al 1)

lnl(fli)l'= —f dE J de'
F (E E)

(A7)

av, av,
G (e, E') =Tr 5(E—H, )a 5(E' H)a. —

ax ax
(A8)

where Tr denotes the trace in the full Hilbert space of
one-electron states. In the infinite-volume limit, the func-
tion G(E, E') becomes a smooth function of the energy
variables. The integral on the right-hand side of (A7) is
logarithmically divergent with a strength determined by
G(EF, EF). The energy separation (inversely proportional
to the volume) 5E —1/V-1/N presents a cutoff, and one
obtains the Anderson power-law behavior with the ex-
ponent (to order a )

The exp/icit expression (29) for the friction coefficient can
be obtained from (A10), e.g. , by using Eq. (51) of Ref. 11.

The advantage of the simple derivation of the relation
between the orthogonality exponent and the friction
coefficient presented in this Appendix lies in the fact that
no use is made of relation (11). The proof of this relation
by Yamada and Yosida is very complicated for arbitrary
nonspherical potentials.

The relation between the exponent K and the friction
coefficient q can be shown to hold also for interacting
electrons, if one assumes the same qualitative behavior
for the overlap as for noninteracting electrons. This can
be done without performing an explicit calculation of ei-
ther K or g. A formal expression for the friction
coefficient of interacting electrons can be obtained by the
bootstrap derivation of d'Agliano et al. " or by using an
expansion around the adiabatic limit. ' This yields, at
T=O,

ri &=vrfi lim —lim Po' 5(E—(H; Eo))—
g~0 E +—woo ax a axp

(A12)

where IPO") = li ) is the many-body ground state with the impurity potential VI. Here H; and V; are operators in Fock
space. With use of the completeness relation (for finite volume) and the Schrodinger equation, the overlap between the
initial and final ground state I/of') can be expressed as

I&No 'l0" &I'=1 — & I&&'. 'IP"'& I'=1—j" ' «
n (%0) 0 F

(A13)

with

F(e)=—&yo" I( Vf —V;)5(e —(Hf —Eo))( Vf V;) po") .=1
(A 14)

If one now assumes that the overlap has the same functional form as for noninteracting electrons, i.e., in the small-
distance limit,

I ( Po I
fo' ) I

=exp [
—a (co +c, lnN ) [ 1+0 ( k~a ) ]],

the result for c& can be read off in the limit c&a lnN « 1. Up to quadratic terms in a, F(E) is given by

F( )=; —y," 5( —(H, —E, ))
1 , av aV

' 'E ' ax, ax~

(A15)

(A16)

and the term proportional to lnN in Eq. (A15) is given by lim, olim& F(E). Comparison with (A12) leads again to
the relation (32) or (Al 1):
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a, a-
@/J (A17)

In a more elaborate proof, one would start from the generalization of the YY relation (11) to interacting electrons,
which involves the self-energy at the chemical potential, and use a Ward identity for the friction coef5cient. '
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