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The electronic structure of several ordered phases of the Pt-Fe system is studied using the self-

consistent linear mu5n-tin-orbital method. The phases studied include nonmagnetic and ferromag-

netic PtFe3, ferromagnetic Pt~Fe2, antiferromagnetic and ferromagnetic Pt3Fe, and ferromagnetic

Pt&Fe3. The electronic structure, the densities of states, and the ground-state properties, such as

equilibrium lattice constants, bulk moduli, local and average magnetic moments, and the state equa-

tions are calculated. The calculated parameters compare favorably with existing experimental data.
The cohesive properties, chemical bonding, and the moment-stabilizing mechanism are discussed.

A variation of all these aspects with alloy composition illustrates a continuous transition from

itinerant to local-moment magnetism. An interplay of the covalent bonding, scalar relativistic

eAects, electronegativity, and the charge transfer is shown to be responsible for this transition.

Homogeneity of the magnetic state of PtFe3 Invar is explained. On the basis of the calculated elas-

tic properties and recently reported critical pressures at which the magnetic moment of PtFe3 col-

lapses, the total energy difterence between the ferromagnetic and nonmagnetic phase is estimated.

I. INTR(3DUCTIQN

The Pt-Fe system possesses many interesting physical
properties. It has a continuous range of solid solutions,
and both stoichiometric and nonstoichiometric alloys
with various degrees of order can be prepared. At Fe con-
centrations larger than approximately 25 at. %, the or-
dered and disordered samples have a fcc lattice and, for
lower Fe concentrations, a martensitic transformation to
the bcc phase occurs. The ordered phases of PtFe3 and
Pt3Fe of AuCu3 type and of Pt2Fe2 of AuCu I type can be
grown, although because of the martensitic transforma-
tion, the material customarily referrred to as ordered
PtFe3 usually has one slightly different composition of
Pt28Fe72. Of these phases, the most celebrated is PtFe3
(Refs. 1 —6): it is an Invar material showing very strong
anomalies in the thermal-expansion coeKcient and spon-
taneous volume magnetostriction, yet no deviation from
the Slater-Pauling curve, no anomalies of lattice constant,
and no mixed magnetic or reentrant spin-glass behavior
at low temperatures. PtFe3 is considered to be a hard
homogeneous ferromagnetic material. A discovery of its
Invar anomalies' played an important role for the present
understanding of Invar problems. Many of the Invar
theories put forward in the past proposed mechanisms
such as chemical disorder, ' latent antiferromagnetism, "
weak ferromagnetism, ' magnetic inhomogeneity, ' or
short-range-order inhuence. ' All of these theories can
now be discarded. It seems that, recently, some con-
sensus has been reached as to the basic physics of Invar
materials ' it is believed that, at T=O, there are two
energetically nearly degenerate states of such a system, a
high-spin (HS) state, with a large magnetic volume, and a
low-spin (LS) state (which may, but need not, be nonmag-
netic) with a smaller volume. A small total-energy

difference is essential, ' but no direct calculation of its
value seems to have been published up to now for any ex-
isting Invar material. In any case, it seems that this ener-

gy must be in the thermal range to allow for appreciable
longitudinal spin Auctuations.

Although PtFe3 is considered a hard ferromagnet, the
itinerant character of the magnetism in this material is
self-evident. The Pt3Fe phase is a substance close to the
local-moment limit. ' It seems to us that a study of the
electronic structure of the Pt-Fe system as a function of
composition is an exciting venture. A possible micro-
scopic origin of such a transformation upon composition
change will be investigated in this paper. In spite of the
very interesting properties of the Pt-Fe alloys briefly out-
lined above, there are only very few theoretical calcula-
tions of their electronic structure. Pettifor and Roy'
considered the magnetovolume instability in PtFe3 using
the canonical band theory, and Inoue and Shimizu' cal-
culated the electronic structure of Pt, Fe for
0.25 (x (0.32 using an empirical tight-binding ap-
proach and coherent-potential approximation. The self-
consistent studies known to us include the spin-polarized
calculations of PtFe3 electronic structure carried out by
Hasegawa' "and the paramagnetic band-structure cal-
culations of Pt3Fe reported by Kulikov et al. ' ' ' Both
studies were limited to the experimental lattice constants.
The total energy of PtFe3 as a function of both atomic
volume and magnetic moment was calculated by Moruzzi
et al. in an unpublished work. The very recent calcula-
tion of Entel and Schroter ' used the binding surface cal-
culated by Moruzzi et al. , modified in an arbitrary way
in order to shift the nonmagnetic saddle point above the
ferromagnetic minimum, to describe the spin Auctuations
in PtFe3. Other compositions were not considered, and
such problems as chemical bonding, cohesive properties,
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state equations, and magnetic-moment stabilization and
enhancement mechanisms were never addressed.

In this paper, we report on an extensive study of the
electronic structure and related properties of the Pt-Fe
system in the fcc phase. The paper is organized as fol-
lows: in Sec. II, we briefly summarize the computational
details; in Sec. III, we present the equilibrium band struc-
tures and densities of states (DOS's) for PtFe3, Pt2Fe2,
and Pt3Fe. Further, local and average magnetic moments
and their volume dependencies are discussed there.
Cohesive properties and chemical bonding are discussed
in Sec. IV. Section V discusses hyperfine-field composi-
tions dependence, magnetic homogeneity of PtFe3, and
the total-energy difference between the ferromagnetic and
nonmagnetic phases of this material. Section VI contains
a summary.

II. METHOD OF CALCULATION

We have used the well-known linear muon-tin-orbital
(LMTO) method of band-structure calculation. The
method is described in detail elsewhere, so we will limit
ourselves here to a description of specific details of the
present calculations. We have used the Vosko-Wilk-
Nusair exchange-correlation potential and the frozen-
core approximation. The combined correction terms
have been used in all calculations, whereas the f orbitals
have not. The scalar relativistic terms have been includ-
ed in the radial Schrodinger equation solved within atom-

ic spheres. The ratio of the atomic-spheres radii Sp, /S„,
has been set to 1.084079 and kept constant throughout
the series of calculations. The value follows from the ra-
tio of atomic volumes of elemental Pt and Fe in their
ground states. At this ratio, there is always a small
charge transfer between the spheres (properly taken into
account via the Madelung matrix). The charge transfer is
composition and volume dependent, and there is no way
to find a universal Sp, /S„, ratio at which the charge
transfer vanishes for all alloy compositions. It will be
shown that composition dependence of the charge
transfer is an important physical factor.

For nonmagnetic (NM) and ferromagnetic (FM) phases
of PtFe3 and Pt3Fe, the calculations have been carried
out for the AuCu3 symmetry (simple cubic lattice, space
group Oz); for PtzFe2, the symmetry taken was AuCu I
(primitive tetragonal, c/a =1, space group D41, ). The
calculations for the antiferromagnetic (AF) Pt3Fe have
been carried out for AFIII ordering, and the symmetry
was primitive tetragonal, c/a =2, space group D4h, the1

same as for the hypothetical ordered Pt~Fe3. This last su-
percell will be discussed further in Sec. III C. For all of
the FM phases, the calculations have been carried out for
atomic volumes of (0.7 —l. 1)V, . The number of k
points used for Brillouin-zone integration varied from
one structure to another, but it was never smaller than
286 points per irreducible wedge.

III. ELECTRONIC STRUCTURES AT EQUILIBRIUM

A. Nonmagnetic PtFe3
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FICz. 1. Density of states for nonmagnetic PtFe3 at
S~s=2.72 a.u. The upper panel is the total DOS, and the
lower panel is the partial d DOS for Pt and Fe. Additionally, d
DOS for fcc Fe at the same lattice constant is plotted. Note the
different DOS units in upper and lower panel.

For PtFe3, the calculations have been carried out for
both NM and FM phases as a function of atomic volume.
The calculated equilibrium Wigner-Seitz radii (see Sec.
IV) Sws for these phases are 2.67 and 2.726 a.u. , respec-
tively [the lattice constant a (A)=0.529(16m/3)'~ Sws
(a.u. )=1.3536Sws (a.u. )j. In Fig. 1, the most important
DOS features for NM PtFe3 at S~s =2.72 a.u are shown.
In this, and in all subsequent figures displaying DOS's,
the energy scale has been shifted so that the Fermi energy
falls at 0. The upper panel shows the total DOS, and the
lower panel shows the Pt d and Fe d components. They
are normalized to the (states per eV and atom) units. We
will discuss this picture in more detail, for it is essential
for understanding the main features of the electronic
structure of the Pt-Fe system. An important problem in
this context is why the PtFe3 is ferromagnetic, i.e., what
is the moment-stabilizing mechanism for this alloy com-
position and how does it change with a growing Pt con-
tent. An often expressed view (see, for instance, Ref. 9) is
that the Fe magnetic moment in PtFe3 is stabilized sim-
ply by a larger lattice spacing of the compound as com-
pared with elemental Fe. On the other hand, it was tacit-
ly assumed in a few recent discussions ' that a moment-
instability pattern for PtFe3 should be similar to that of
fcc Fe. Thjs, however, jmpljes thinking jn terms of
the rigid-band model. If the magnetic moment in PtFe3
is stabilized by a large lattice constant of this compound,
what, then, is a moment-stabilizing mechanism in the
isoelectronic Ni-Fe system, for which the lattice constant
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is always smaller than that corresponding to Sos =2.68
a.u. , at which the magnetic moment of fcc Fe becomes
unstable? Are these mechanisms similar, and are they
relevant to the Invar anomalies? We will try to clarify
these problems here for the Pt-Fe system and, in another
paper, for Ni-Fe. A preliminary discussion of the sub-
ject has been given in Ref. 30.

As clearly seen in the lower panel of Fig. 1, the upper
part of the valence band is dominated by Fe-derived
states, whereas Pt states build up the lower part. This
reflects a higher binding energy of the atomic Pt 5d shell
as compared with the Fe3d shell. Although there is a
significant hybridization, one is still able to recognize two
subbands of mainly Pt ( —8 ——3 eV) and Fe ( —3 —+1
eV) character. The third curve plotted in Fig. 1 is the fcc
Fe DOS calculated at the same lattice constant. One
notes the following.

(a) The overall shape of the Fe DOS in the elemental
fcc phase and in PtFe3 is quite different due to Pt-Fe hy-
bridization. A most significant difference is a sharp max-
imum in the compound DOS just at the Fermi energy.
This maximum is absent in the fcc Fe DOs. Its presence
in the compound DOS enhances the density of states at
the Fermi level by -20% for PtFe3 in comparison with
fcc Fe. For a substance on the verge of the magnetic in-
stability, it is a significant change.

(b) The covalency effect plays no significant role for
PtFe3. This effect has been shown to be responsible for
enhancement of magnetism in bcc Fe-Co alloys. ' It has
also been suggested that it is important for moment
enhancement in the fcc Fe-Ni system. ' By the "covalen-
cy effect, " in the context of intermetallic alloys, one un-
derstands a redistribution of weights of partial state den-
sities in a common band formed in an alloy by atomic
states having different binding energies. Arguing in the
language of bonding and antibonding molecular orbitals,
or using charge neutrality arguments, Schwarz et al. '

demonstrated that the weight of the lower- (higher-) lying
atomic states will be enhanced in the lower (upper) part
of the alloy band. An enhancement of the DOS ampli-
tude in the upper part of the band, close to the Fermi lev-
el may trigger a magnetic instability or simply enhance
the magnetic moment. However, this mechanism is only
efFective if the distance between the parental atomic levels
is small as compared with the bandwidth. This can be
seen if one considers the opposite limit, namely, well-
separated bands: in such a case, the weak hybridization
reduces the weight of the parental atomic state in its
band. The case of PtFe3 is just in the intermediate re-
girne, and the covalency and hybridization effects largely
cancel. As demonstrated by a direct comparison with the
fcc Fe DOS, the amplitude of the Fe states in the com-
pound is not enhanced as compared with the elemental
metal. An eventual covalency effect is canceled by a
transfer of electronic states from the upper part of the
band to the low-energy region dominated by Pt d states,
i.e, to the region that would remain inaccessible to Fe d
states in absence of Pt atoms.

A simple analysis of bandwidths (Table I) shows that
an increase of the lattice constant per se is not necessarily
responsible for magnetic instability in PtFe3.

TABLE I. The bandwidths (in mRy) of Pt and Fe d bands for
the ordered nonmagnetic PtFe3 and fcc Fe at Sw&=2. 68 a.u.
and for fcc Fe and Pt at calculated equilibrium lattice constants.

p is the effective mass in units of mo, 8'is the estimate based on
the canonical band theory [Eqs. (7)—(9)j, A-B is the self-
consistently calculated bandwidth, q is the ( 3-B)/8; and g is
the "ideal ratio" (see text).

Atom A-B

pt
Fe

Fe

Fe

PtFe„NM, Sw& =2.68 a.u.

5.02 96 563 5.86
9 27 267 377 1.41

fcc Fe, NM, Sws=2. 68 a.u
10.10 318 332 1.04

fcc Fe, NM, Sws=2. 55 a.u.

8.86 399 416 1.04

23/2. 9=7.93
23/19 = 1.21

pt 5.77

fcc Pt, Sws=2 975 a.u.

450 462 1.03

and

—
1 y[p g2(gyp )2l+1) (2)

where n«=(2l + 1)n, ; n, is the number of r-type atoms in
the unit cell; S, is the radius of the t-type atomic sphere,

(Throughout the paper we use, unless otherwise indicat-
ed, the difference 3 —B as a measure of a self-
consistently calculated bandwidth, where A and 8 are
band top and band bottom and may be readily calculated
from other potential parameters. Physically, the A and
B energies correspond to the points where the logarith-
mic derivative of the radial wave function equals —~
and 0, respectively. ) The bandwidth of the Fe d states in
PtFe3 at S~s=2.68 a.u. equals 377 mRy, as compared
with 332 mRy for fcc Fe at the same lattice constant.
Also, as discussed in Ref. 30, the bandwidths of spin-
polarized bands of PtFe3 at equilibrium (Sws =2.726 a.u. )

correspond almost exactly to the bandwidths of the HS
phase of fcc Fe at Sws =2.68 a.u. A large atomic radius
of Pt 5d shell increases both the lattice constant and the
Pt 5d —Fe 3d wave-function overlap and, hence, the Fe d
bandwidth. Since these effects compensate each other to
a certain extent (not a priori known), it is not possible to
establish a clear picture of the subtle balance among the
lattice constant, d bandwidth, and magnetic moment
without explicit self-consistent calculations. We realize
from Table I that the Fe d bandwidth in PtFe3 at equilib-
rium is larger in fcc Fe at the same lattice constant but
smaller than in fcc Fe at equilibrium, and that the oppo-
site is true for the Pt d bandwidth.

There is a simple method based on the canonical band
theory that enables one to analyze the influence of hy-
bridization on the bandwidth. The bandwidth 8;& of the
unhybridized band of atom t and orbital moment l is
given by

' 1/2
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a =0.3908a . (3)

Let us first consider the PtFe& case. The combinatorial
factor in the expression for iS,'z i

equals 7000, and the
single Pt atom in the unit cell has six nearest neighbors
(NN's) of the same kind in the distance a. Hence,

iS '
i

=—7000(6)(0 3908) —= 3 5 (4)

Similarly, for iSi";,'z i, we get

iSi";,"~
i

—=7000(3)(8)(0.3908&2)' =447 (5)

for three atoms per unit cell with eight NN's each. The
iSi,",'&i is the same as the second moment of the I =2
band in the fcc lattice:

iS '
i

—=7000(12)(0.3908&2)' =—223 .

The unhybridized bandwidth is now given by

Pi, Z

and
1 1/2

(6)

(7)

8'F, 2= 12
447 5„,~=19hp, p .

In order to obtain an expression for the unhybridized
bandwidth in the elemental fcc metal, one could either
use Eqs. (6) and (7), getting

WM, z=( —", 223)'"~M, z=23~M, ~ (9)

or, alternatively, calculate iS„&i for simple cubic lattice,

iS„q i

—=7000(4)( 12 )(0.3908V2) 'o —=892,
and recover Eq. (9) by

T

(10)

1/2
12

(4)(5)
The above formulas can be applied to the case of Pt&Fe
by, a trivial exchange of Pt and Fe. For a PtzFez structure
(AuCu I), the expression for iSP,'P = iS"„P reads

iS,'~~
i

z =—7000(2)(4)(0.3908&2)' —= 149

~M, 2=23~M, z .

(12)

and
1/2

12 149 b, , ~=13,45, ~ . (13)

To illustrate the accuracy of the above expressions, let us
consider the example of fcc Fe at Sws =2.68 a.u. (Table
I). With the effective mass pd =10.12, the estimated
unhybridized bandwidth is 318 mRy as compared with
the self-consistently calculated A —B=332 mRy. The
error is of the order of S%%uo.

For PtFez, the values of 8' are 96 mRy and 227 mRy
for Pt and Fe, respectively. They give an estimate of the

8;2=

p« is the effective-mass parameter, and iS,",
i is the

second moment of the canonical tl band, an expression
for which can be found in Ref. 33, Eq. (22). S is a certain
length, characteristic for the lattice and proportional to
the lattice constant. In the present case the lattice under-
lying all of the considered structures is the fcc lattice, and
S is set equa1 to the average Wigner-Seitz radius:

1/3

unhybridized bandwidth. For elements Fe, only sp-d hy-
bridization was neglected. For a compound, 8' gives an
estimate of the bandwidth in a lattice with all atoms of
different kinds substituted by a vacancy. In a symmetri-
cal case, i.e., in the case when the inAuence of Pt atoms
on Fe bandwidth and vice versa are similar, we would ex-
pect the ratio i)=( 2 B)—/W to be equal to the ratio of
coefficients of the 6 parameter as given by Eqs. (7)—(9)
and (13) (shown as g in Table I). We see that g and g are
of the same order of magnitude indeed, but there is a dis-
tinct asymmetry: presence of a Pt atom widens the Fe
band more than presence of an Fe atom would do, and
the opposite is true for the Pt bands. With the ratio of g
instead of g, the Fe band in PtFe& would have precisely
the bandwidth reported in Table I for fcc Fe. Thus, the
data in Table I are consistent and quantify the notion
concerning the inhuence of the large Pt 5d shell on the Fe
bandwidth explained earlier. It will be shown below that
the trend found here for PtFe& holds for all other alloy
compositions.

Taking the Stoner parameter I from the exchange split-
ting of the band centers of Fed bands in the spin-
polarized calculations for PtFei (I =67 mRy=0. 91 eV),
we find that the Stoner criterion [Ig(Ef )) 1] becomes
satisfied for PtFez at S~s —-—2.62 a.u. We conclude, there-
fore, that the increased lattice constant, per se, is not re-
sponsible for magnetic instability of this compound. At
this lattice constant, the fcc Fe is nonmagnetic, as it is
for S~s =2.66 a.u. , the equilibrium lattice constant of the
NM phase of PtFe&. In the absence of strong covalency
effects, the ferromagnetic instability in PtFe& is due to the
presence of the hybridization-induced maximum in the
DOS just at the Fermi energy. Nevertheless, while this
interpretation holds for PtFe~, for higher Pt concentra-
tions, the Fe d band narrowing at Sps relative to the
equilibrium fcc Fe d band bandwidth is more significant,
and the large lattice constant alone might be responsible
for the magnetic instability. A microscopic mechanism
leading to such a situation will be discussed in Sec. III C.
Further, we will argue that even for PtFe&, the large lat-
tice constant is responsible for its magnetic homogenei-
ty 5

From the position of the Fermi level just as at a DOS
maximum, one can predict a particular type of the
magnetism onset in PtFe&. Following the analysis
presented by Moruzzi and Marcus, we expect a second-
order transition, i.e., a singular but continuous appear-
ance of magnetic moment at S~s approximately equal to
2.62 a.u. It implies that, if a LS phase exists for this
material, it will have a nonzero magnetic moment, in
agreement with the recent high-pressure Mossbauer ex-
periment and with our fixed-spin-moment (FSM) cal-
culations.

The analysis of the bandwidth based on the canonical
band theory could, in principle, be extended to an
analysis of hybridization strength. Andersen et al. gave
the expressions that allow for such an estimate by calcu-
lating either the hybridization-induced band mass-center
shift or the number of the tl electrons in the t'l' band.
The validity of these expressions is, however, limited to
the case of weak hybridization, and they fail utterly when
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applied to PtFe3. This indicates that in spite of the ex-
istence of almost separated Pt and Fe subbands, hybridi-
zation cannot be considered weak for the Pt-Fe system.

Pt Fe3

0.9-'-.'::.:.:::
, 1 ~

I

~
'

I ~ i

B. Ferromagnetic PtFe3

The electronic structure of the ferromagnetic phase of
PtFe3 along the symmetry lines of the simple cubic lattice
is shown in Figs. 2 and 3 for the majority and minority
spins, respectively. In Table II the self-consistent poten-
tial parameters are listed, from which the band structure
and the density of states can be recovered by means of the
standard LMTO precedure. The spin-polarized DOS is
shown in Fig. 4(a). In agreement with experiment, there
is a stable ferromagnetic phase with the equilibrium S~s
equal to 2.726 a.u. An interesting feature of the band
structure of PtFe3 is two Aat bands along the 6(I -X)
direction, for the majority spins bracketing the Fermi lev-
el (Fig. 2). Carbone et al. ' ' found these two bands just
below E~ split by -0.7 eV. The calculated splitting is
-0.5 eV, and the bands are some 0.25 eV too high with
respect to EI;. This is because they are calculated for the
theoretical equilibrium lattice constant, which is —1.5%
smaller than the experimental one. Moreover, the mea-
surements have been performed for a nonstoichiometric
sample Pt28Fe72. The calculations carried out for
Sws =2.77 a.u. (a =3.75 A) place both Hat bands at posi-
tions found in experiment. ' ' However, the band struc-
ture of Fig. 2 has been quoted in Ref. 7 [Fig. 14(d)] as an
example of the LS phase. This is not entirely correct,
since the loss of magnetic moment caused by the shift of
the upper bound above EI; is only -0.15p~.

The only other calculation of the electronic structure
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FIG. 3. Band structure for minority spins in ordered fer-
romagnetic PtFe3 along symmetry lines of the sc Brillouin zone.

of PtFe3 has been reported by Hasegawa. ' He used the
self-consistent augmented plane-wave (APW) method
with muftin-tin potential and carried out the calculation
for Sos=2.77 a.u. There is an overall fair agreement
with our results at the same lattice constant. The mag-
netic moments of Fe differ a little (2.5ps in Ref. 19 and
2.66ps in the present work), but Hasegawa's Pt moment
(0.5@~) is much larger than ours (0.3ps). This difference
can probably be attributed to diA'erent potential shapes:

0.9- .

0,8-

TABLE II. LMTO potential parameters for the ferromagnet-
ic PtFe3 at equilibrium lattice constant: S~s=2.7247 a.u. ,
Sp, =2.8893 a.u. , and S&, =2.6652 a.u.
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0.280
0.484
0.469

0.007
0.932
0.023
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0.315
0.046
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0.564
0.452

—0.034
0.844
0.054

0.303
0.313
0.047

Fe

0.302
0.446
0.570

0.194
1.069
0.020
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0.345
0.027

0.347
0.502
0.614
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1.064
0.150
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0.350
0.035

X M R S X M X I h R

FIG. 2. Band structure for majority spins in ordered fer-
romagnetic PtFe3, along symmetry lines of the sc Brillouin zone.

(j 2 ) I/2(R —
1)

S

S

d

0.850
0.707
0.106

0.252
0.160
0.897

0.848
0.701
0.120

0.254
0.163
0.850

0.860
0.692

—0.020

0.199
0.152
1.299

0.861
0.695
0.045

0.194
0.151
1.101
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majority spins
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FIG. 4. Spin-resolved total and d-projected densities of states for ferromagnetic phases of PtFe3, Pt&Fe~, and Pt3Fe, calculated at
equilibrium lattice constants.

the pure d moment on Pt in our calculations is 0.44pz,
and we observe a relatively large negative contribution
from p (

—0.09ttt~) and s ( —0.04ttt~) electrons, which, in

Hasegawa s calculation, might be ascribed to the intersti-
tial region. Further, the Fe d exchange band splitting is
0.2 Ry in Ref 19 and 0.18 in our calculation estimated
from the band-center splitting, see Table III. Finally, the
DOS at Fermi level is 59 and 62 states/Ry cell in Ref. 19

and in our calculation, respectively. Our value corre-
sponds to the linear coefficient in the specific heat
@=10.8 mJ/molK, in a reasonable agreement with the
experimental value of 9.6 mJ/molK . We should also
mention a general agreement of the total state densities
(Fig. 5) except for the energy scale in Fig. 9 of Ref. 19,
which is not in eV as indicated but probably in the units
of 2 ev.

TABLE III. d bands parameters for the Pt-Fe system equilibrium lattice constants. Data for fcc Fe
correspond to Sws =2.68 a.u. All values are given in Ry. 6 is the bandwidth [12.5SN {—)], E is the
center of the occupied part of the band, C is the mass center of the band, co=-C—E, and EF is the Fer-
mi energy (Ry). f and $ refer to majority and minority bands, respectively.

Fe

Feh )

TC )

Pth )

TE

TC )

E

LS

0.332
0.381

—0.205
—0.181
—0.167
—0.076

0.038
0.106

—0.059

HS

0.327

0.424
—0.200
—0.157
—0.182
—0.012

0.017
0.150

—0.046

PtFe3

0.337
0.426

—0.200
—0.154
—0.181
—0.010

0.019
0.147

0.574

0.576
—0.303
—0.325
—0.280
—0.276

0.023
0.048

—0.038

Pt2Fe2

0.318
0.415

—0.228
—0.177
—0.216
—0.030

0.012
0.151

0.551

0.556
—0.295
—0.315
—0.274
—0.268

0.021

0.046

—0.047

Pt3Fe

0.294

0.399
—0.305
—0.234
—0.302
—0.083

0.003
0.156

0.524

0.534
—0.321
—0.329
—0.304
—0.289

0.019
0.040

—0.073

Pt

0.504

—0.325

—0.304

0.021

—0.105
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C. Ferromagnetic Pt2Fe2 and Pt3pe

The spin-resolved and total DOS for all calculated FM
phases at equilibrium lattice constants are plotted in Figs.
4 and 5, respectively. In Tables III and IV the relevant
band parameters and occupation numbers are listed.
Also, in both tables, the data for HS and LS phases of fcc
Fe (Ref. 37) at Sws =2.68 a.u. and for fcc Pt are included
for comparison. Before discussing the general trends in
the Pt-Fe system, we want to return brieAy to the PtFe3
phase. A comparison of the data in Tables III and IV for
Fe and PtFe3 at equilibrium lattice constant and for the
HS phase of fcc Fe at S~s=2.68 a.u. shows that the

up + down
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I I I
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(
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FIG. 5. Total densities of states for ferromagnetic phases of
PtFe3, Pt2Fe2, and Pt3Fe, calculated at equilibrium lattice con-
stants. The bold line shows the convolution of the occupied
part of the spectrum with the Gauss function (a =0.3 eV).

band parameters and the partial charges are almost iden-
tical for these cases. Also, the magnetic moments are very
close. Now, the Sws=2. 68 a.u. is a "magic" value for
fcc Fe at which the multiple magnetic phases coexist.
It is, therefore, justified to expect that also PtFe3 will
display a kind of metamagnetic behavior and a magneto-
volume instability. This has been confirmed by model
calculations and, recently, by a full-scale FSM study.
It is noteworthy, that the Fe band parameters and partial
charges calculated for ordered Nio 375Feo 625 are also very
close to the values discussed above. ' In all three cases
(fcc Fe at Sws=2. 68 a.u. , PtFe3, and Nip 375Fep 6pg); the
Fermi level is situated at the edge of the first maximum of
the majority-spin DOS. The observed correlation sup-
ports the hypotheses formulated by Williams et al."that
the Invar materials are metamagnetic, although an expli-
cit correlation between a particular type of metamagne-
tism and the Invar behavior remains yet to be established.
On the other hand, the firm statement of Williams et al. '

that there is no connection between weak ferromagnetism
and the Invar problem appears to be doubtful, since the
metamagnetic behavior of Invar materials seems to be
directly correlated with the transition from strong to
weak ferromagnetism.

Let us now focus on some general trends in the elec-
tronic structure of the Pt-Fe system. First, we note that
the Fermi level is swept across the spin-up —spin-down
valley of the DOS with growing Pt concentration. The
calculations predict that the value of the DOS at the Fer-
mi level will strongly depend on composition for the Pt-
Fe system. The calculated values of the DOS (EF) and
the corresponding linear coefficients in the specific heat y
are 68.0, 34.8, and 82.0 states/Ry unit cell) for FM PtFe3,
Pt2Fez, and Pt3Fe, respectively, with the corresponding y
coefficients (in m J/mol K ) of 11.8, 6.04, and 14.2.
Secondly, Fig. 4 expressively demonstrates that the
rigid-band model is not applicable —the shape of the par-
tial state densities varies strongly with composition.
However, the sweep of the Fermi level across the spin-
up —spin-down valley in the total DOS upon composition
change deceptively awakens memories of this somewhat
discredited model. Indeed, it is tempting to argue that
the growing electron count pushes the Fermi level up-
ward. This is as false as the conviction that the rigid-
band model is a necessary prerequisite for an explanation
of the Slater-Pauling curve. From the data in Table IV,
we note that the total number of the majority electrons
per atom N& remains almost constant, in spite of compo-
sition change (with a slight tendency to decrease for
PtFe3), and equals =5.30. For the HS phase of the fcc
Fe N& =5.25. As pointed out by Malozemoff, Williams,
and Moruzzi, and Kiibler, ' a constancy of either %& or
N~ is, essentially, the reason that the net magnetic mo-
ment follows the Slater-Pauling curve. As long as a ma-
terial is magnetically strong, the Fermi level remains
above the leading maximum of the majority DOS, and
Nt remains equal to =5.3. This number consists of five
d electrons and =0.3 sp electrons hybridized with the d
band, the constant number of the sp electrons being war-
ranted by the presence of the gap in the sp DOS above
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M=2Ng —Z =10.6—Z, (14)

the d DOS maximum. ' As long as N& is equal to this
constant, the net moment follows the branch of the
Slater-Pauling curve described by 3—

l

Pt„Fe,

where Z denotes the average valency. As shown in Fig.
6, the M for Pt-Fe system follows this line quite accurate-
ly. The missing 0.07 electrons for PtFe3 indicate a begin-
ning of magnetic weakness in the system. Equation (14)
is a correct one, in contrast to the rigid-band expression
M=xM„+(1 x)M—~, where M„and M~ are constant,
composition-independent magnetic moments of alloy
constituents. This expression, while reproducing the ex-
perimental data quite well, has little physical content.
Applying it to PtFe3, one would be forced to take
M„,=2.6p~ and an ad hoc value Mp, =0.6pz. In reali-
ty, the local magnetic moments in the Pt-Fe system
strongly depend on alloy composition: the Fe moment
increases rapidly from 2.54pz in PtFe3 through 2.84p~ in

Pt2Fe2 to 3.28pz in FM Pt3Fe. The behavior of the Pt-
Fe system is a very good example of the theory of
Malozemoff, Williams, and Moruzzi.

As we have mentioned before, the ratio of the atomic
radii was kept constant throughout the calculations.
Therefore, the calculated changes in the charge transfer
from Fe to Pt are physically meaningful. We observe that

0
Fe

FIG. 6. Composition dependence of the calculated average-
and local-magnetic moments for the ferromagnetic ordered
phases of the Pt& Fe alloy.

TABLE IV. LMTO occupation numbers for the Pt-Fe system at equilibrium lattice constants. Data
for fcc Fe correspond to S~s=2.68 a.u. N denotes the total number of electrons of either spin per
atom and Aq the charge transfer. $ and $ refer to the majority and minority electrons, respectively.

Fe
LS HS PtFe3 Pt2Fe2 Pt3Fe pt

Fe s

p

d

Total $

0.32

0.33

0.38

0.42

3.96
2.57

4.70
3.30

0.32

0.34
0.38

0.44

4.55

1.97
5.25

2.75

0.30
0.31

0.38

0.39
4.56

2.00
5.24

2.70

0.29
0.29
0.37

0.37

4.69
1.85

5.35

2.51

0.29

0.27

0.36

0.34

4.83

1.59

5.48

2.20

pt s

p T

Total

0.43

0.47

0.44

0.52
4.32
3.99
5.19
4.98

0.41
0.44

0.43

0.50
4.35

4.00
5.19
4.94

0.40
0.40
0.42

0.45
4.40
4.03
5.22

4.88

0.76

0.83

8.41

10.00

4.70
3.30

5.25

2.75

5.23

3.27

5.27

3.73

5.29
4.21

hq Fe
Aq Pt

—0.057
0.172

—0.130
0.130

—0.320
0.107
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FIG. 7. Schematic picture of the evolution of band widths
and band centers shifts with composition for ordered ferromag-
netic phases of the Pt-Fe alloy.

the charge transfer from Fe to Pt increases with growing
Pt concentration, being equal to —0.06 electrons per Fe
atom for PtFe~ and —0.32 electrons per Fe atom for
Pt&Fe. As can be seen from Table III, this charge
transfer, together with increasing lattice constant, causes
a lowering and narrowing of the Fe3d bands for both
spin directions. The distance between the Fermi level
and the majority-spin-band upper edge increases slightly,
and so does the number of Fe X& electrons, which goes
up from PtFe~ to Pt~Fe by 0.24. Hence, the electrons lost
by Fe must be drawn from the minority band, and there
must be 0.24+0.26=0.5 electrons less there. Since there
are 0.24 extra electrons in the Fe majority band, the Fe
magnetic moment increases by 0.74p&, from 2.54 to
3.28pz. This evolution of the Pt-Fe bands with composi-
tion is schematically illustrated in Fig. 7, and it explains
the sweep of the Fermi level across the spin-up —spin-
down valley of DOS. An alternative interpretation can
be associated with this figure: due to lowering of the Fe d
states with growing Pt concentration, the band centers
for Fe3d& and Pt5d' band coincide for Pt&Fe. This is
analogous to the situation reported for FeCo by Schwarz
et al. ' The picture is not as obvious as in the case of
FeCo (Ref. 31) due to large differences in the bandwidths
of constituent atoms in the Pt-Fe system, a complication
not present for FeCo compound. However, a careful
analysis of Fig. 4 shows that for the FM phase of PtFe&
one can still distinguish, as for the NM phase, the Fe and
Pt subbands, and a comparison with the FM fcc Fe bands
reveals no amplitude enhancement of the Fed

&
DOS in

the upper part of the spectrum. For Pt&Fe, the Pt and Fe
DOS is evenly distributed over the energy range of the
majority states, forming a truly common band. (It is re-
markable that a truly common band for the majority elec-
trons is found not for the itinerant PtFe& but for being
close to the local limit Pt&Fe. ) For minority states, a

redistribution of spectral weights typical for covalency
effect can be observed and, thereby, a moment enhance-
ment. This demonstrates consistency of our analysis.

A reason for the observed charge transfer is the elec-
tronegativity difference of Pt and Fe. This difference can
be easily calculated. According to Mulliken, the elec-
tronegativity g can be written as

y= —,'(I+ A ), (15)

where I denotes the ionization potential and 3 denotes
the electron affinity. The electron removal energies can
be expressed in the local-density approximation by eigen-
values calculated at one-half occupancy (the transition
state concept of Slater ). Hence, for Pt with its ground
state [Xe]4f ' 5d' 6s, the ionization potential I is given
by the eigenvalue c„—9 5 and the electron affinity 3 is58

given by c,' o 5. For Fe, the atomic ground state is

[Ne]3d 4s, and I and A are given by e„' o ~ and e„~ o &,

respectively. We have calculated these values using the
45atomic program used to generate the core charge densi-

ties, with the same exchange-correlation potential as in
the crystal calculations. The results are, for Pt,
I = —8. 38 eV, 3 = —1.66 eV, and g= —5.02 eV, and,
for Fe, I = —7.56 eV, 3 -=0, and y= —3.78 eV. We see,
therefore, that the higher Pt electronegativity results not
as much from the higher binding energy of the d elec-
trons but, rather, from the higher electron affinity that, in
turn, is mainly caused by the scalar relativistic correc-
tions acting strongly on 6s electrons. We conclude, there-
fore, that the moment-enhancing mechanism in the Pt-Fe
system with growing Pt concentration is primarily caused
by scalar relativistic effects that lower the 6s states of Pt.

Kulikov, Kalatov, and Yakchimovich' ' ' calculated
the nonmagnetic band structure of Pt&Fe using a muta-
tion of the Korringa-Kohn-Rostoker (KKR) method
with the muffin-tin potential and Sp, /Sz, ratio—= 1.1.
They report a charge transfer of Aq =0.22 from Pt to Fe.
This is in obvious disagreement with our results and with
the electronegativity argument. We suspect that this
discrepancy is due to neglect of the scalar relativistic
terms in the calculations of Kulikov, Kalatov, and
Yakchimovich. ' ' '

In Table V, we present the bandwidth analysis for all
ferromagnetic phases. The quantities listed were dis-
cussed in Sec. III A. In agreement with the previous dis-
cussion, we observe a systematic growth of the band
masses with growing Pt content. The characteristic
asymmetry is quite distinct for all phases, as mentioned
in Sec. III A. According to the discussion therein, we
recognize as a general feature of the electronic structure
of the Pt-Fe system the following.

(a) The Fe bandwidth is always larger than it would be
in fcc Fe at a corresponding lattice constant, and the op-
posite is true for the Pt bandwidth as compared with fcc
Pt. Evidently, a reason for this is connected with the mu-
tual relationship of the Pt and Fe atomic radii and the al-
loy lattice constant. In particular, we expect a reverse be-
havior for the Ni-Fe system, since the atomic radius of
Ni is smaller than that of Fe.

(b) The influence of Pt atoms on the Fe bandwidth and
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TABLE V. The bandwidths (in mRy) of Pt and Fe spin-
polarized d bands in the ordered ferromagnetic phases of the
Pt-Fe system at the equilibrium lattice constants. p is the
effective mass in units of mo, 8' is the estimate based on the
canonical band theory [Eqs. (7), (8) and (13)], A Bis-the self-
consistently calculated bandwidth, q is the {3-B)/8; and g is
the ideal ratio (see text).

Band

pt

Fe

PtFe„FM, Sws=2. 725 a.u.

5.18 90 528
5.09 93 539

10.32 228 328
8.77 266 388

5.81
5.79
1.44
1.46

7.93

1.21

Pt2Fe2, FM, Sws=2. 8115 a.u.

pt

Fe

5.33
5.24

10.84
8.89

362
362
134
161

500
511
305
370

1.38
1.41
2.28
2.30

1.72

Pt, Fe, FM, Sws=2. 888 a.u.

pt

Fe

5.45
5.37

11.35
9.24

437
456

25
31

486
492
288
354

1.11
1.08

11.52
11.42

1.21

7.93

1.2
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FIG. 8. Band widths of the Pt and Fe d bands (as given by
12.5-S@ ) vs {S,q/S) for ordered ferromagnetic phases of the
Pt-Fe alloy.

the inAuence of Fe atoms on the Pt bandwidth are com-
parable, although of different signs, the former being a
little stronger.

The data in Table V illustrate yet another aspect of
magnetic interactions in the Pt-Fe system. For PtFe3, the
Fe bandwidth is mostly ( —70%) due to the direct Fe-Fe

interaction. For Pt2Fe2, this interaction accounts for
only 40% and, for Pt3Fe, for less than 10% of the total
bandwidth. This suggests that, while for PtFe3 the direct
exchange dominates, for Pt3Fe the Fe-Fe magnetic in-

teractions are mediated by Pt5d shell. In this sense,
Pt3Fe is similar to Heusler alloys where there is no
significant direct interaction among the d states of
different Mn atoms. '

We close this part of our presentation with Fig. 8,
where the d bandwidth for both atoms is plotted as a
function of (Sws /S, ) . According to Heine's r rule
one expects the d bandwidth to follow a straight line in
such a coordinate system. We see that this holds very
well for Pt d bandwidth, but a breakdown of magnetism
caused by lattice contraction introduces a disturbance for
the Fe d bands. We also note a characteristic feature
that, according to our experience, is typical for 3d transi-
tion metals and their compounds: at the onset of magne-
tism, the minority d band widens, whereas the bandwidth
of the majority band decreases only a little, so that the
values of the up and down bandwidths do not symmetri-
cally bracket the nonmagnetic bandwidth.

D. Magnetic moments

Since the paper of Nakamura, Sumiyama, and Shiga,
it is commonly believed that PtFe3 is a strong ferromag-
net. This conviction is based mainly on the linear depen-
dence of the average magnetic moment on composition,
without a trace of any anomaly, and on the composition
dependence of the hyperfine field. On the other hand, the
large value of the high-field susceptibility of Pt-Fe Invar,
comparable with that of Fe-Ni alloys, ' contradicts this
simple picture. Further doubts have been raised by Oomi
and Mori, who pointed out that the anomalously large
difference between the paramagnetic and ferromagnetic
bulk modulus at high temperatures makes it doubtful to
regard PtFe3 as strong ferromagnet, at least at high tem-
peratures. In Fig. 9, we show the calculated volume
dependence of the Fe and average magnetic moment for
all FM phases. The normalized plot (right-hand panel)
clearly demonstrates how imprecise is the common
definition of strong magnetism. Indeed, there are almost
no holes either in the majority band of PtFe3 or in the
majority bands of other FM phases. On the other hand,
the volume dependence of the local and average magnetic
moments is very different, ranging from an indestructible
moment of Pt3Fe to a very soft one for PtFe3. This is ob-
viously correlated with a position of the Fermi level with
respect to the leading peak of the majority DOS, as dis-
cussed in Sec. IIIC. The pressure derivatives of the
net and local-magnetic moments at equilibrium,
8lnM/Bp ~~ are listed in Table VI. For PtFe3, the cal-

culated value equals —7.6X 10 kbar ' and compares
well with the experimental value of —7X10 kbar
estimated from magnetization measurements at 4.2 K.
This gratifying agreement supports the conclusion about
a homogeneous magnetic ground state of PtFe3. Further,
our observations reconcile an apparent disagreement be-
tween the susceptibility measurements and other experi-
mental indications. Although we did not explicitly calcu-
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FIG. 9. Volume dependence (as represented by the average
Wigner-Seitz radius) of the average and Fe local magnetic mo-
ments for the ferromagnetic ordered phases of the Pt-Fe alloy
(left hand, panel, heavy dots indicate the equilibrium values).
Right-hand panel displays the normalized plot of M/M, q

vs
S/S, q. Note the different behavior of PtFe3 as compared with
Pt2Fe2 and Pt3Fe.

late the high-field susceptibility, it is obvious that it will
be much larger for PtFe3 than for the phases with almost
saturated moment. Given the similarity of the PtFe3 and
Nip 375Fep 626 electronic structure, there is no reason to
expect very different high-field susceptiblities for these
substances. Concluding this paragraph, we are inclined
to describe PtFe3 as an "almost strong ferromagnet, " in
order to underline a different volume and pressure depen-
dence of its local and average magnetic moment in com-
parison with very strong ferromagnetic phases with a
higher Pt content.

From the foregoing discussion of the moment-
enhancing mechanisms and from the data in Tables III,

V, and VI, where the bandwidths and the magnetic mo-
ments are listed, one might gain a feeling of a very simple
relation between the two: a larger moment corresponds
to a smaller bandwidth and vice versa. Actually, this sim-
ple correspondence holds only for the electronic struc-
tures at equilibrium. Figure 9 and the preceding discus-
sion of Pt inhuence on the Fe d bandwidth show that this
simple relation generally cannot be valid. From Fig. 9,
we realize that for a given lattice constant, the local Fe
moments increase with the Pt concentration. Taking
Sos=2. 80 a.u. as an example, we get the Fe magnetic
moments of 2.74, 2.83, and 3.00p~ for PtFe3, Pt2Fez, and
Pt3Fe, respectively. On the other hand, if our discussion
of the bandwidths in the Pt-Fe system was correct, we ex-
pect an increase of the Fe d bandwidth for these se-
quences. Indeed, the Fe d

&
band mass decreases and

takes the values of 11.3, 10.7, and 10.0, corresponding to
-20%%uo bandwidth increase of the Fe d& states from
PtFe3 to Pt3Fe. However, an analogous situation has al-
ready been recognized for a much simpler system. We
have shown that for fcc Fe the HS phase is more
itinerant that the LS one. Similarly, as for fcc Fe, this
apparent paradox can be explained by the notion of Willi-
ams et al. ' that a localized magnetic moment in
itinerant systems does not result from the localization of
any occupied states but, rather, from the exclusion of the
minority-spin electrons from some localized volume in
the interior of a magnetic atom.

The M(Sws) curves (Fig. 9) should not be taken too
seriously for large lattice compressions. In this region,
spin-polarized calculations do not converge well, and the
resulting magnetic moment depends on the initial condi-
tions. The results of Bagayako and Callaway for fcc Fe
evidently suffer from the same difficulties: instead, to in-
dicate the HS and LS phases, their M(Sws) curve
just interpolates between them. These difficulties are
caused by a very small total energy difference between
different magnetic phases at small atomic volumes. PtFe3
possess a LS phase with a rather small magnetic mo-
ment. The energy difference between this and the non-
magnetic phase is negligible, i.e., the electrons can Aow

TABLE VI. Ground-state properties of the Pt-Fe system: equilibrium Wigner-Seitz radii S, (a.u. ),
bulk moduli B (Mbar), linear coefficients of the Murnaghan equation of state b =dB/dp, local and aver-
age magnetic moments M (p&) and their pressure derivatives d lnM/dp (GPa ').

Seq

M,„
MF,
Mp,

d lnM/dp
M„
MF,
Mp,

PtFe3 NM

2.654

3.19

5.07

PtFe3 FM

2.726

1.96

2.91

1.95
2.51
0.26

—7.62 X 10
—7.66 X 10
—1.26 X 10

PtqFe2 FM

2.811

2.47

5.33

1.57
2.85
0.30

—2.42 X 10
—2.53 X 10
—1.85 x 10-'

Pt3Fe FM

2.888

2.62

5.66

1.06
3.22
0.34

—3.43 x 10-'
—1.23 x 10-'
—1.06 X 10

Pt3Fe AF

2.904

2.56

3.71

0.0
3.43
0.17/0. 0

—1.26 X 10
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FIG. 10. Supercells used in the calculations for FM Pt5Fe3
and AF Pt3Fe.

from one to the other spin subsystem at no energy cost.
Such phases are only detectable by the FMS method
of spin-polarized band-structure calculations. It seems
that no conventional (Iloating moment) spin-polarized
calculations can be trusted in a region of a magnetic in-
stability.

In order to investigate the inAuence of local environ-
rnent on the magnetic moment, we have calculated self-
consistently the electronic structure of the ordered Pt5Fe3
compound. The supercell has been chosen so that the Fe
NN environments in Pt2Fe2 and in PtFe3 were represent-
ed and a highest possible symmetry retained. Figure 10
shows the assumed structure. There are two une-
quivalent Fe atom positions: j (0,0,0; —,', —,', 0) and g (0,0, 1),

d (—,', —,', 1), according to the International Crystallographic
Tables. The space group of this lattice is D4&, and the
Bravais lattice is simple tetragonal with c/a =2. The
NN environment of the Fe atoms in positions j is the
same as in Pt2Fe2 (four Fe and eight Pt NNs). Fe atoms
in positions, g have 12 Pt NN's as in PtFe3 ~ Pt atoms in
position d have a NN environment as in PtFe3,' for posi-
tion i, there is no analogy. The local moments reported
below were calculated for S~s=2.87 a.u. For Pt posi-
tions, i and g support almost equal moments of 0.33p~.
The Fe moments are 3.08@~ and 3.31p~ in positions j
and g, respectively. The corresponding moments calcu-
lated for Pt2Fe2 and PtFe3 are 2.98pz and 3.20p~, re-
spectively. Having explained (Sec. III C) the relationship
between the charge transfer and magnetic moment, we
can check how it works for Pt5Fe3. It is gratifying to
note that the Fe charge transfer in the four cases
enumerated above is —0. 15, —0.29, —0. 16, and —0.25,
respectively. We also see that, for Pt~Fe3, a larger charge
transfer corresponds to a larger moment, and that there
is a good correlation between the moment and the local
environment. A very similar trend has been found for the
Ni-Fe system.

Steinbach, Brand, and Keune carried out a
Mossbauer study for Pt3 „Fe& „alloy. They reported
on a satellite structure in the Mossbauer spectra of

Pt7QFe3Q indicating a magnetic inhomogeneity of the
sample. Apart from the main line, there is an additional
maximum in the hyperfine field distribution at a some-
what higher field. The authors interpreted it as arising
from the magnetic moment of the Fe atoms in the center
of the basal plane in Fig. 10. Our results do not support
this interpretation. In our view, an increased number of
Fe NN's in the Pt-Fe system always decreases the mag-
netic moment. It remains, however, a question of wheth-
er our result for a coherent structure are directly applic-
able here. We note that, whereas Steinbach, Brand, and
Keune consider the corner and the central atoms of the
basal plane as having different environments, this is not
the case for our superlattice: all atoms in the basal plane
are crystallographically equivalent and different from the
atoms in the corners of the intermediate plane. It is also
not clear how the authors of Ref. 49 arrived at their
theoretical relative intensities of the main line and the sa-
tellites. The problem seems to be intriguing and calls for
a reexamination.

E. Antiferromagnetic Pt3Fe

Below T, =100 K Pt3Fe is an antiferromagnet of the
type I. Since this spin alignment implies a symmetry
that is computationally difficult to treat, we have calcu-
lated the electronic structure of the compound (Fig. 11)
for the supercell shown in Fig. 10. This spin arrangement
corresponds rather to the AF III structure. The lattice is
simple tetragonal with c/a =2, and its space group is
D4h. A closer look at the lattice reveals that there are
two inequivalent positions of Pt atoms in the unit cell:
since the Fe spins in the z= const planes are ordered fer-
romagnetically, the Pt atoms centering these planes see
all four Fe NNs of the same spin directions. So, we a
priori expect a nonzero magnetic moment for one-third of
the Pt atoms. The calculations were carried out for a few
lattice constants. The equilibrium lattice constant for the
AF Pt3Fe phase has been found 0.5% larger as compared
with the FM phase. The Fe magnetic moment of 3.46p~
was found. The Pt moment in z=const planes equals
0. 17p~ and couples ferromagnetically to Fe moments.
The experimental values for the Fe and Pt moments are
3.3 and Op&. The agreement for Fe is rather good. What
concerns the Pt moment, is that it is an artifact resulting
from the assumed Fe spin alignment. For the AF II
structure every Pt atom is surrounded by an equal num-
ber of the Fe atoms with magnetic moments of either
sign, and one does not expect any Pt moment.

An inspection of the band parameters and their com-
parison with band parameters of the FM phase reveals a
very close resemblance. In particular, the Fe bandwidth
does not change. This is a further evidence that there is
little direct interaction of Fe d shells in Pt3Fe. (Such in-
teraction, when present, would lead to band narrowing in
the AF phase as compared with the FM phase. ) An im-
portant question that should be answered now is why the
Pt3Fe is antiferromagnetic. Unfortunately, we do not
find a clear-cut answer here, and we must content our-
selves with speculations. In a somewhat similar case of
the Heusler alloys, Williams et aI. ' present an elegant
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FIG. 11. Density of states for the antiferrornagnetic phase of
Pt3Fe at equilibrium lattice constant.

expect that covalence mechanism as a whole will strongly
prefer the antiferromagnetic spin alignment. Now, how-
ever, one might reverse the problem and ask why the
preference for ferromagnetism appears for lower Pt con-
centrations. Since the direct Fe-Fe interactions are
amplified with decreasing Pt content, one would expect
more significant band narrowing, stronger moment
enhancement for the AF alignment, and, therefore, a
higher exchange energy gain benefiting the AF ordering.
On the other hand, the decreasing Fe-Pt charge transer
will cause more antibonding Fe states to be occupied (see
Fig. 7) attenuating, therefore, the energy benefit of co-
valency in the AF state. All of these changes are expect-
ed to be minute, and their net effect is difIicult to predict.
Since we did not carry out AF calculations for any other
phase except Pt3Fe, we are not able to explain definitely a
microsopic origin of the FM-AF transition in the Pt-Fe
system.

discussion of the competing exchange and covalence
effects. They argue that, in the Heusler alloys, the co-
valent interactions in the antiferromagnetic state cause a
loss of the local magnetic moment and of exchange ener-
gy, causing the strong preference for the ferromagnetic
alignment. This happens despite the fact that covalency
effects per se favor the antiferromagnetic alignment for
the half-filled bands. Now, from the comparison of the
FM and AF local Fe moments in Pt3Fe, we see that, for
this compound, the local moment is enhanced for the AF
ordering rather than for the FM one. Thus, one could

I

IV. COHESIVE PROPERTIES

In order to gain insight into the cohesive properties of
the alloy and to find the equilibrium lattice constants, we

have calculated the electronic pressure as a function of
atomic volume. The partial pressures have been calculat-
ed according to the well-known formulas of Nieminen
and Hodges "' and Pettifor. " ' The equation of state
has been calculated from the sum of partial pressures
calculated for all atoms in the unit cell t, angular momen-

ta l, and spins o".

EF
p(u)= ggg j gi (E)S,C» (E,S, )[DI' (E)+l+1)[Dti (E) l]dE—

3V

+g g g I g,'. (E)s,e,'.(E,S, )[E—u(S, ) —s",:+u,".']S,'dE
t 1 o.

(17)

where g (E) is the density of states, S is atomic sphere ra-
dius, V is unit cell volume of the compound, @(E,S) is
the radial wave function, D is the log derivative of N,
u (S) is the Coulomb potential at S, and u"', E" are LDA
exchange-correlation potential and energy, respectively.
The bulk moduli and the equilibrium lattice constants
have been obtained by fitting the equation of state p( V)
by the Murnaghan expression:

'b
B Vop(V)=— —1
b V

As a result, one obtains the atomic volume Vo, the bulk
modulus B, and the b parameter, which describes the
linear dependence of the bulk modulus on pressure:
B (p) =B (p =0)+bp ( V). In this approximation, b is,
therefore, equivalent to the pressure derivative of the
bulk modulus dB /dp.

The numerical results are listed in Table VI and the
calculated and experimental lattice constants are shown
in Fig. 12. The data in Table VI differ slightly from those
reported earlier in Ref. 30 because of a difFerent interpo-

lation procedure used. The calculated lattice constants
follow quite accurately the Vegard's law. For PtFe3, the
usual LDA overbinding effect is observed, i.e., the calcu-
lated lattice constant is some 1.5% too small. Incidental-
ly, inclusion of the zero-point motion pressure would
bring the theoretical and experimental values into very
close agreement. For higher Pt concentrations and for
elemental Pt, we observe the opposite effect —the calcu-
lated lattice constants are larger than the experimental
ones and, for fcc Pt, the error grows to +2.7%%uo

[Swis =2.978 a.u. , Sw(' =2.90 a.u. [Ref. 54(a)]]. Ander-
sen et al. have calculated the equilibrium lattice con-
stants for fcc Rh, Pd, Ir, and Pt. Their calculated Sgs
for Pt is even larger than ours, and for all four elements,
the calculated Sws exceeds the experimental values, the
error growing with the atomic number. It immediately
suggests that the neglect of the spin-orbit coupling is re-
sponsible. This is supported by the recent calculations of
Cade and Lee for Hg Te. They show that for com-
pounds containing such heavy elements (Z =80 for Pt),
the inclusion of the spin-orbit couplings considerably
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FIG. 12. Calculated and experimental equilibrium Wigner-
Seitz radii for the Pt-Fe system. Experimental points refer to
Refs. 62, 19(b), and 54(a).

reduces the calculated lattice constant. The calculated
bulk modulus and its pressure derivative for fcc Pt
(B =2.55 Mbar, b =5.68) compare fairly well with the
experimental values t B =2.78 Mbar, ' 'I b =5.2 [Ref.
57(b)] J.

Although the partial pressures depend somewhat on
the Sp, /S„, ratio, its constancy warrants that the ob-
served trends are physically meaningful. We will show
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FIG. 13. Partial pressures as functions of lattice spacing for
the ordered ferromagnetic phases of the Pt-Fe alloy. The sp

components comprise s and p partial pressures for both spin
directions. The vertical bars mark the calculated equilibrium
Wigner-Seitz radii.

that the partial pressure analysis provide a sound and
consistent picture of cohesion in the Pt-Fe system. Fig-
ure 13 displays the volume dependence of the partial
pressures for all FM phases. The sp contributions for
both spin directions have been summed up, but the d con-
tributions are shown separately for both spin directions.
This picture contains the most essential information on
the chemical bonding in the Pt-Fe system. Before we
start to analyze it, it is prudent to understand a difference
in chemical bonding of Pt and Fe. The basic trends in
cohesion of the 3d, 4d, and 5d series are well known and
have been the subject of many studies. It is commonly
acknowledged that the gradual filling of the d bands is re-
sponsible for the observed parabolic behavior of the equi-
librium lattice constants as a function of the atomic num-
ber, with a minimum at the middle of the series and with
the corresponding maximum of the bulk modulus.
These analyses have recently been extended in the paper
by Christensen and Heine, who used the decomposition
of the partial pressures according to the so-called
"first-order pressure relations" (FOPR) in order to ana-
lyze the electronic pressure for noble metals. The FOPR
were discussed in detail in Ref. 59, so we will not repeat
these rather lengthy formulas here. For our purpose, it is
enough to remember that two different sets of equations
are used, one for the narrow (i.e., l =2) and the other for
the free-electron-like bands (i.e., l =0, 1), the first named
"central" and the second "tail" pressures. In both sets,
there are two kinds of terms: p, ~,~&, proportional to
nl [CI —V(S)—E„,(S) ) /pl and P, ~,n+p, (g)3 proportional
to n&(E& —C&)(21+ 1+2/pl), where C& is the canonical
band center, EI is center of the occupied part of the band,
nI is occupation number, and V(S) and c.„,(S) are atomic
sphere approximation (ASA) potential and exchange-
correlation energy, respectively. For tail pressures, the
band center CI is replaced by the square-well pseudopo-
tential VI and p& by r& (band-bottom mass parameter). It
is clear that the first term depends on the band position
as a whole I with respect to [ V(S)+s„,(S)]] for both cen-
tral and tail pressures. The second term of the central
pressures depends primarily on the band filling, attaining
its maximum for a half-filled band. For the tail pressures,
the second term can be identified as the kinetic Fermi
pressure for the free-electron gas and, to a good approxi-
mation, can be treated as such for real solids.

In Table VII, the decomposed partial pressures togeth-
er with relevant parameters are listed for NM fcc Fe and
fcc Pt at equilibrium. We realize that the mechanisms of
the chemical bonding are different in Fe and Pt. For Fe,
the main attractive force comes from the p,2+@,3 term of
the d partial pressure, since with 6.52 d electrons mostly
the bonding states of the d band are occupied. The p, &

term is strongly repulsive, because the canonical band
center C2 is much higher than E„,(S), but the net d par-
tial pressure is very large and negative. For the sp pres-
sures, the p„ terms are negative and relatively small,
since the V, z pseudopotentials lay slightly lower than
s„,(S). The p, z+p, 3 terms corresponding to the Fermi ki-
netic pressure are positive and large, which is not surpris-
ing, since the lattice constant of NM fcc Fe is small, and
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TABLE VII. Partial pressures and their decomposition ac-
cording to the erst-order pressure relations for NM fcc Fe and
fcc Pt. The tail pressures and the central pressures are reported
for the sp and d states, respectively. The parameters listed in-

clude e„, {the exchange-correlation energy at S~s), Ei [the mass
center of the occupied part of the l band (Ry)j, r or p [the
eFective mass parameters (mp)] V~ or C& [the square-well pseu-
dopotential or canonical band center (Ry)], n& (the band occupa-
tion), and p [the partial pressures (kbar) j.

N1Vl fcc Fe Sws=2 55 a.u c = 0.6187 Ry, ptot=64 kbar

~)(p))
v, (c, )

n&

p2+p3
ptot

p exact

—0.365
0.817

—0.648
0.645

—48
351
302
323

—0.190
0.981

—0.705
0.832

—258
683
425
464

—0.122
8.864

—0.039
6.52

603
—1426
—823
—781

fcc Pt, Sw&=2.975 a.u. , E„,= —0.5840 Ry, p„,=0.4 kbar

&I(P~ ~

~((c~ ~

n(

pi
p2+p3
ptot

p exact

—0.571
0.904

—0.834
0.763

—315
285

—30
—29

—0.395
0.968

—0.698
0.828

—274
280

7
10

—0.325
5.619

—0.304
8.409

333
—359
—25
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the number of electron density n is large. In the case of
the free-electron gas the kinetic Fermi pressure is propor-
tional to n, and, taking into account the efFective
masses of the sp electrons being close to unity, this func-
tional dependence should quite adequately describe the
volume dependence of the p»+p, 3 terms. In efFect, the
equation of state for NM fcc Fe is characterized by com-
petition of a very large inward pressure of the d electrons
and equally large repulsion of the sp electrons. For fcc
Pt, the number of d electrons is 8.41, which implies that
the antibonding states of the d band are also partly occu-
pied, so that the p,2+p, 3 term is much less attractive. Its
inward pressure is almost canceled by the p, &

term and is
also much smaller than in NM fcc Fe due to a higher
binding energy of the Pt 5d states as compared with the
Fe 3d level. The net efFect is a small positive d pressure.
A similar cancellation of terms may be observed for the
sp partial pressures. As expected, the positive kinetic
Fermi pressure p»+p, 3 is smaller than for Fe, in agree-
ment with a much larger lattice constant of Pt. It is can-
celed by the negative p, &

terms, which, particularly for
the s partial pressure, are numerically much larger than
for Fe because of the large downward shift of the V&

pseudopotential due to the scalar relativistic corrections.
We see, therefore, that in the case of fcc Pt, the partial
pressures at equilibrium are all close to zero, and the
crystal is kept together by sp electrons rather than by the
d ones, in sharp contrast to Fe. It is a situation typical

for noble metals, as discussed by Christensen and Heine
for Cu, Ag, and Au. We would like to point out, howev-
er, that their discussion is somewhat misleading in one
aspect. In Sec. II 8 of their paper, they argue that the sp
pressure in noble metals should be negative. They use the
arguments based on the orderings of the characteristic
energies for the sp band and the observation that in the
half-filled band the sp electrons occupy predominantly
the bonding states. Now, these arguments may all be ap-
plied to the transition metals as well, yet a real physical
situation is very difFerent there —we observe an enor-
mous positive sp partial pressure at equilibrium, as shown
for Fe. In our view, to set a proper picture of cohesion in
transition and noble metals one must acknowledge a de-
cisive role of d-band filling. The importance of this term
is simply caused by a large value of nI for the d shell. A
large negative pressure caused by this term squeezes the
lattice in the middle of the series, and since at equilibrium
the total pressure must be zero by definition, a very large
positive sp pressure must be present in these substances.
For noble metals (and as we have also shown for Pt),
there is no negative d pressure so that the sp pressure
must also be close to zero at the equilibrium lattice con-
stant which, of course, must assume correspondingly
large values. The arguments raised by Christensen and
Heine explain the nature of the competition between
the diff'erent terms of FOPR but cannot be used in order
to predict a value of the net sp pressure.

The picture set above for the nonmagnetic metals gets
a little more complicated for magnetic phases. The
bonding properties of the Fm fcc Fe have been discussed
in detail in Ref. 37. The exchange interaction splits the d
into minority and majority states. For strong ferromag-
nets the majority band becomes full and loses its bonding
properties, increasing considerably the total pressure, the
lattice constant, and compressibility. ' Hence, a mag-
netic solid is kept together by the minority-spin electrons,
their inward pressure counterbalanced by the sp elec-
trons, with majority-spin d electrons being either weakly
bonding, antibonding, or nonbonding. Figure 13 shows
the evolution of the binding properties of the Pt-Fe sys-
tem with composition. We recognize on the figure
several of the features discussed above. The most striking
one is the evolution of the d partial pressure with volume.
Appearance of the magnetic moment on Fe is reflected in
a giant positive magnetic pressure, seen for both Fed

&

and Pt d& pressure components. For all alloy cornposi-
tions, the bonding force comes from the minority d elec-
trons, with the Fe contribution per atom roughly twice as
large as the Pt contribution. All other partial pressures
are positive for all alloy compositions at equilibrium.
The repulsive force is dominated by the Pt sp partial pres-
sure, although for Pt3Fe the positive d

&
contributions for

Pt and Fe are comparable with the sp contribution. An
overall pattern is that of interpolation between the two
limiting cases described earlier for Fe and Pt: for PtFe3,
a balance of strongly repulsive sp and strongly attractive
d& partial pressures is observed, whereas for Pt3Fe, all
partial pressures are numerically smaller, except for the
positive d& pressures, with sp pressures close to zero.
Analyzing the FOPR for the sp pressures at equilibrium,
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we found that a decrease in their value throughout the
series is caused by a decrease of the Fermi kinetic pres-
sure p, 2+p„, the p„ term being practically constant both
for Pt and Fe. Also, at a given lattice constant, the sp

p,2+p, 3 terms do not vary appreciably with alloy compo-
sition. This demonstrates a close relationship between
the sp partial pressure, in general, and its p,2+pt3 com-
ponent, in particular, and the lattice constant of the al-
loy. Further observations that call for a microscopic ex-
planation are a negative bulk modulus of the Fe d

&
par-

tial pressure at equilibrium and an upward shift of the d
partial pressures with growing Pt content. The behavior
of the Fe d

&
partial pressure at equilibrium is dominated

by the p, 2 term. Since E2 &Cz, this term is negative.
Under compression, the effective mass pz decreases,
E2 —C2 slightly decreases, and the n2 (the number of the
minority electrons) increases under compression, since
the magnetic moment decreases. Hence, the p, 2 term nu-
merically increases, giving a negative partial bulk
modulus. At higher compressions, the minority band fills

up and a decreasing E2 —C2 outweighs the changes in

n2& and p2, making the partial bulk modulus positive.
An upward shift of both Fe and Pt d partial pressures

with growing Pt content is a consequence of the evolution
of electronic structure of the Pt-Fe system depicted in
Fig. 7 and discussed in detail in Sec. III C. A main
reason for the observed changes is an increase of the in-
trinsic effective mass of d

&
and d

&
bands of both atoms

(Table V) and lowering of the band centers (Table III).
These effects inAuence both the repulsive p„and the at-
tractive p,2+p, 3 terms. The p, &

terms decrease for two
reasons: first, the value of [C —V(S)—s„,(S)] decreases
because of the band lowering and, second, because it is
inversely proportional to the growing effective mass p.
The evolution of this term is opposite to the observed net
changes of the d partial pressure. Although the p, 2+p, 3

term is called a band-filling term, the changes of its value
upon alloy composition change are not related to the
band filling. The p,2+p, i pressures increase (become less
attractive) partly because the effective masses increase
(effective mass variation also influences the p„ term,
which is, however, repulsive, so that these two contribu-
tions partially cancel) and partly due to the decreasing
vlaue of (Ez —C2), which, in turn, results from decreas-
ing bandwidth. The changes in p,2=p, 3 outweigh the
changes in p, & by a factor of 1.5 —2.5 for the four different
d bands, leading to the situation shown in Fig. 13.

The calculated bulk moduli and their pressure depen-
dence are reprted in Table VI. One observes a softening
of the alloy with decreasing Pt content. We have men-
tioned a quite good agreement of the calculated and ex-
perimental bulk modulus of fcc Pt. We note also an ex-
cellent agreement for PtFe3. The value of B reported by
Mori and Oomi" for T =0 equals to 1.95+0.05 Mbar, as
compared with the calculated 1.96 Mbar. The value cal-
culated for the NM phase of PtFe3 is larger by 1.2 Mbar.
We note also that the value of dB/dp for FM PtFe3
differs significantly from the B pressure coefficients for
other phases.

In order to complete the picture of cohesion of the Pt-

Fe alloy, we have examined the partial contributions to
the bulk modulus. To carry out this analysis we have
generalized the Murnaghan equation of state to the case
of partial pressures. Since a partial pressure at equilibri-
um p p is nonzero, the generalized equation reads

~ Bo+b'po
p'(V)=

bi
Vo

+po (18)

with the partial bulk modulus at Vp

g r( V ) =g ' +.b '+ ' (19)

Equation (18) can be fitted to the partial pressures in or-
der to find Bo, b', and po, Vp having been found earlier
from the fit of the standard expression [Eq. (17)] to the
total pressure. Of course, g; 8'( Vo ) =8 and g,.po =0.
The results of such an analysis can be summarized as fol-
lows.

(a) The partial bulk modulus for Fe is constant
throughout the series and equals 0.35 Mbar. This enables
one to estimate the modulus of the HS phase of fcc Fe to
be (4) 0.35 = 1.4 Mbar.

(b) As expected, the sp bulk modulus of Fe decreases
throughout the series, this decrease being compensated
for by increasing the d bulk modulus. These trends are
easily understandable on the basis of the detailed discus-
sion of partial pressures presented above. Since the be-
havior of the sp partial pressure is dominated by Fermi
kinetic pressure, its bulk modulus is expected to vary as
n and should decrease with increasing lattice constant.
The d pressure becomes less attractive (di electrons) or
more repulsive (d t electrons) and its partial bulk modulus
increases from PtFe3 to Pt3Fe.

(c) The partial bulk modulus for Pt is large and ranges
from 0.87 Mbar for PtFe3 to 0.7 Mbar for Pt3Fe. The
trends in the partial sp and d bulk moduli are identical as
for Fe and can be explained in the same way. The partial
bulk moduli for Pt are, however, larger than their Fe
counterparts. This is of no surprise, since the Pt partial
pressures themselves are larger than the Fe partial pres-
sures. Accordingly, Pt sp partial bulk modulus is —50%
larger than that of Fe. Moreover, there is no negative Pt
d& bulk modulus, in contrast to the Fe d& contribution.
This is so because the small magnetic moment of Pt is not
so sensitive to the pressure. Increased occupation of the
minority band has been shown to be responsible for the
negative bulk modulus of the Fe d

~
partial Dressurt. .

This increase is not large enough for the Pt d& band and
its partial bulk modulus remains positive. All of these
differences make the partial bulk modulus of Pt much
larger than that of Fe. This is in agreement with the dis-
cussion of the partial pressures and chemical binding:
the equilibrium lattice constant results from a competi-
tion between the Fe, d& attraction and the Pt sp repul-
sion.

(d) It is noteworthy that the bulk modulus of PtFe~ is
dominated by the sp contribution, which is responsible
for -64% of the total value. For Pt3Fe, the sp contribu-
tion accounts for —31% of the bulk modulus.

(e) Since the partial bulk moduli of Fe and Pt are very
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different, and their variation with alloy composition is
weak, the total bulk modulus of the Pt& Fe system
could be grosso modo described by the weighted mean of
the Pt and Fe values: B„„=4[xBF,+( 1 —x)BI,,]. This is
the most important reason for alloy softening with de-
creasing Pt content.

The discussion in the present section gives a complete
and consistent description of the basic cohesive proper-
ties of the Pt-Fe system. The total-energy calculations
carried out using the FSM method is planned to be
presented elsewhere.

V. DISCUSSION

We wish to address a few more points on which our
calculations shed a light. The first problem we wish to
discuss is the magnetic homogeneity of PtFe&. As point-
ed out by Nakamura, Sumiyama, and Shiga and support-
ed recently by measurements of the hyperfine field distri-
bution by Abd-Elmeguid and Michlitz, PtFe& is mag-
netically homogeneous even in the disordered phase.
This can be readily understood from our calculations:
the local Fe moment is largely determined by the local
environment, i.e., by a number of Fe NN's. In the disor-
dered phase of PtFe&, there can be a variable number of
Fe NN's, both smaller and larger than 8. As argued be-
fore, the increased Pt content (which translates in the
present context into a smaller number of Fe NN's, which
is 4 for PtzFe2 and 0 for Pt&Fe) causes an increase of the
Fe moment. However, the configurations with a smaller
number of Fe NN's find themselves in an environment
that allows for an average atomic volume smaller than
their equilibrium volume. This will cancel to some extent
the increase of the Fe magnetic moment caused by a
lower number of the Fe NN's. A magnitude of both
effects can be estimated quantitatively from Fig. 9. For a
number of the Fe NN's higher than 8, a limiting case is
fcc Fe which at S~s=2.725 a.u. has a stable ferromag-
netic HS phase with the moment of 2.57p~. Hence, the
moment of these configurations is stabilized by a relative-
ly large lattice constant of PtFe&. This explains the mag-
netic homogeneity of the compound. We note that there
is not such a mechanism for the Ni-Fe system and
suspect that the other maxima observed ' in the hyperfine
field distribution for this alloy are correlated with few
configurations having number of Fe NN's larger than 8.

Nakamura et al. have found that the average value of
the hyperfine field is composition independent. Hesse,
Nolle, and Korner have shown in a more recent paper
that the mean hyperfine field actually decreases with a
growing Pt content. This is an unexpected result, since
we know that local Fe magnetic moment increases.
Hesse, Nolle, and Korner offer an explanation based on
the assumption that the change of atomic volume with
composition is responsible for the observed dependence.
We do not think that their conclusion is correct. In our
view, the observed dependence is caused by a change of
the Fe4s magnetic moment with alloy composition. Us-
ing, as we do, the frozen-core approximation, we are not
able to calculate the hyperfine field explicitly. Ebert
et al. calculated the composition-dependent hyperfine

field on Fe and Ni for Ni-Fe alloy. They found that the
Fe4s moment is negative for high Fe concentrations and
changes sign when Fe concentration decreases. The cal-
culated 4s hyperfine fields are proportional to 4s moment
in Ni-Fe alloy. For the Pt-Fe system, the Fe4s mo-
ments are —0.0083, 0.0024, and 0.0138p~ for PtFe3,
Pt2Fe2, and Pt&Fe, respectively. Using the (positive) pro-
portionality constant calculated by Ebert et al. , we ob-
tain 4s contributions to B,~ equal to —40, + 12, and +66
kG for the three phases. Taking the extrapolated
hyperfine field at 25% of Fe (Ref. 62) as —373 kG and
subtracting the 4s contribution, one obtains for the core
contribution a proportionality constant equal to —131
kG/p~, a very crude estimate indeed, but not so far away
from the calculated value of —98 kG/p~ for Fe in Ni-
Fe. Interpolating linearly the values for PtFez and
Pt2Fe2, we obtain, for the composition change between
75% and 65 jo of Fe, a change of +17 kG, as compared
with the measured value of —+8 kG. This would im-
ply that the field caused by the core polarization changes
by ——9 kG in this composition range. Since for core
polarization, the proportionality constant is negative,
such a change is consistent with a growing Fe local mo-
ment. We conclude, therefore, that the observed compo-
sition dependence of the average hyperfine field results
from a strongly composition-dependent polarization of
the Fe4s electrons. In competition with growing core
polarization, the former effect outweighs the latter and
the hyperfine field decreases.

As mentioned in the Introduction, it is widely accepted
today that the basic Invar mechanism is connected with
the existence of two energetically nearly degenerate but
magnetically different states, commonly referred to as the
high-spin and low-spin phases. Recently, attempts have
been made to combine the results of the band-structure
calculations and of the spin-fluctuation theory in order to
describe Invar behavior 64, 65, 2& Wagner ~ has shown that
although for a full description of the thermodynamics a
complete binding-energy surface is necessary, in the sim-
plest approximation, the mechanism of the coupled
volume and spin Auctuations is specified by the energy
difference between the HS and LS phases and the
difference of the respective atomic volumes. The energy
difference between the HS and LS phases is the most im-
portant parameter of the binding surfaces calculated by
means of the FSM method. Although the theoretical
values are known by now for many elemental metals
and for Fe&Ni, there is no experimental verification of
them. However, the recent pressure experiment by Abd-
Elmeguid and Micklitz brings the crucial information
that makes it possible to estimate the HS-LS energy
difference for PtFe&. This experiment proved unambigu-
ously the existence of the HS and LS phases for this sub-
stance. The critical pressure of 6 GPA at which the tran-
sition from the HS to LS phase occurs has been found.
We have shown in a model calculation that both phases
can be identified using the FSM method. The total ener-
gies calculated for the LS and NM phases are very simi-
lar so, for simplicity, we will take here the properties of
the NM phase as being representative for the LS phase.
Taking the pressure as an independent variable in the
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FIG. 14. Total energy calculated [Eq. (20)j as a function of
pressure for nonmagnetic and ferromagnetic phases of PtFe3.
The two curves are shifted so that they cross at the experimen-
tal critical pressure. The diff'erence EFM(0) —ENM(0) is equal to
the value of AE(p, ) calculated under the assumption that
E„M(0)=ENM(0) and gives the total energy diA'erence between
the high-spin and low-spin phase of PtFe3.

Murnaghan state equation, one arrives at the following
expression for the total energy as a function of pressure:

~o p+BE(p) = +const . (20)(pbbs+I)'" b —I

If we take the values of the bulk moduli B and the b pa-
rameters for the FM and NM phases of PtFe3, calculate
E„M(p) and ENM(p), and form the difference
AE =EFM —ENM neglecting the unknown constant
terms, we obtain the curves plotted in Fig. 14. We realize
now that the value of EE(p, ) is equal to
E„M(0)—ENM(0), i.e., to the sought energy difference of
the HS and LS phases. For critical pressure p, =6 GPa,
this difference is only 0.2 mRyjatom for PtFe3. Quite
similar results have been obtained for the Ni-Fe sys-
tem. ' Since the quoted estimate is based solely on the
well-defined experimental value of p, and on the calculat-
ed elastic properties that agree fairly well with experi-
ment, we believe that the estimated value is rather accu-
rate. It seems to be smaller than previously suspect-
ed. ' ' We claim that, if the AE were larger than
——0.7 mRy/atom, one would not be able to detect any
phase transition in pressure experiments at all, simply
due to the technical limitations.

The last aspect of our results we want to discuss is yet
another qualitative difference between the Pt-Fe system
and other isoelectronic Invar systems Pd-Fe and Ni-Fe.
It is known that for the Pd Fe, system the y-o. transi-
tion occurs at x =—30 at. %, i.e., for lower Fe concentra-
tion than in the Pt-Fe alloy. The Invar syndromes are
observed at concentrations close to the transition line but
in a concentration range slightly larger than for Pt-Fe.
This trend is amplified for Ni-Fe, where some Invar syn-
dromes (e.g. , specific-heat anomalies) are observed for Fe
concentrations as low as 50 at. %. We believe that one

can understand this trend even without carrying out any
calculations for Pd-Fe and Ni-Fe systems. As discussed
in Sec. III C, there are three moment-enhancing mecha-
nisms for the Pt-Fe system: covalency effects, increased
lattice constant, and scalar relativistic effects. Of these,
the two latter will be attenuated for Pd-Fe and will be-
come ineffective for Ni-Fe, while the first one will be
amplified. In our view, the y-a transition occurs for Fe
intermetallic alloys always when the fcc structure is not
more able to support the high-spin phase. Since the
moment-enhancing mechanisms are strongest for the Pt-
Fe system, the fcc phase can be sustained for the highest
Fe concentrations for this alloy. The discussed connec-
tion between the Invar and the strong-to-weak magne-
tism transition explains why the Invar concentrations are
so close to the y-o.'transition line. Further, the
effectiveness of the moment-enhancing mechanisms in
Pt-Fe confines the Invar anomalies to a very narrow con-
centration range. For the Pd-Fe system, the evolution to-
wards strong ferromagnetism will be slower and even
more so for the Ni-Fe system, so that the Invar anomalies
for this last alloy are present in a relatively broad concen-
tration range.

Vr. SUmMARV

An extensive study of the electronic structure of the
Pt-Fe alloy has been carried out by means of the self-
consistent LMTO method. The densities of states and
the ground-state properties have been calculated for
several alloy compositions and magnetic orderings. In all
cases, the ordered (super)cells have been used. The
volume dependence of magnetic properties, the elastic
and cohesive properties, and the chemical bonding have
been thoroughly discussed for several alloy compositions.
In general, the calculated properties agree well with the
existing experimental data. We have discussed the nature
of the magnetic state of PtFe3 and explained why this
compound is magnetically homogeneous. The evolution
of the Pt-Fe alloy from the itinerant to the local-moment
system has been described from the point of view of band
theory. In this contest, the issues of covalency, charge
transfer, and electronegativity have been addressed. The
importance of scalar relativistic effects for magnetic-
moment enhancement has been pointed out. It has been
shown also how one can estimate the energy difference
between the HS and LS phases of PtFe3 by combining the
calculated equations of state and the results of Mossbauer
pressure experiments. We believe that the results
presented form a complete and consistent picture of the
electronic structure of the Pt-Fe system, which, we hope,
will be useful for forthcoming experimental and theoreti-
cal applications.
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