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To better understand the phase diagram for XY spins on the fully frustrated triangular lattice, we

generalize that model, giving one class of bonds a "tunable" strength —qJ, where g = 1 gives the
conventional model. As a consequence, the sites are no longer all equivalent. Using mean-field

theory, the phase diagram has been determined as a function of g, the applied field H, and the tem-

perature T. For H=O, the phase diagram is very similar to that for the generalization of Berge
et al. of the fully frustrated XY square lattice model. For HWO and —0.5 & g & 1., a nonuniform
collinear phase intervenes between two noncollinear phases (one chiral and the other nonchiral).
This nonuniform collinear phase is an extension of the paramagnetic phase (which, in a field, also is
nonuniform and collinear), rather than being the (spontaneous symmetry-breaking) nonuniform col-
linear Potts phase of the g=1 Monte Carlo phase diagram. For g & —0.5 this extension of the
paramagnetic phase completely displaces the (low-field) chiral phase. For g) 1 the extension of the
paramagnetic phase is absent. For g=1 we conclude that the simplest explanation for the Potts
phase can be obtained by comparison to the Monte Carlo phase diagram for Ising spins on this lat-
tice.

I. INTRODUCTION

Spin glasses' are characterized by both randomness
and frustration. To separate their effects, it has proven
useful to study systems that are periodic but fully frus-
trated, meaning that no plaquette of Ising spins is
"satisfied" in the ground state. With XY spins the test of
frustration is the same as for Ising spins (ii,J," (0, taken
around a plaquette), but the frustrated ground state is
characterized by canting or spin tipping. Examples of
fully frustrated models are the Villain model on square
and cubic lattices and the antiferromagnetic (AF) fully
frustrated triangular lattice (FFTR).

In the present paper we introduce a generalization of
the FFTR, in which one of the antiferromagnetic bonds
—J is replaced by a bond of strength —gJ, using mean-
field theory to look at the phase diagram in the magnetic
field (H) and temperature (T) plane. In this model, un-
like the FFTR, the sites are not all equivalent.

Our motivation for this study was threefold. (I) The
g=1 Monte Carlo results of Refs. 5 and 6 yield at finite
H a "Potts-like" phase that does not appear in mean field
theory, and so it was felt that study of a generalized ver-
sion of the FFTR model would shed light on the origin of
the Potts like phase. Note that in zero field the tempera-
ture at which ordering begins is about a factor of 3 lower
in the Monte Carlo than in the mean-field calculations
because of the effect of Iluctuations. (2) A non-fully-
frustrated generalization of the fully frustrated Villain
model has been studied in Monte Carlo, yielding results
that can be interpreted using the energy scales associated

with mean-field theory. This generalization has clarified
the behavior of the system for H =0, where, on crossing
from the paramagnetic phase to the ordered phase, con-
tinuous (XY) and discrete (helicity or Ising) types of or-
der develop simultaneously. ' (3) It is possible to map
from the problem of coupled XY spins to the problem of
coupled Josephson junctions, by taking a suitable choice
of electromagnetic gauge, " and by suitable lithography,
one can in principle actually produce arrays of supercon-
ducting islands coupled by such Josephson junctions.

Work on fully frustrated systems indicates that when
such a system orders, it simultaneously develops both XY
and Ising types of order. By breaking some of the degen-
eracy in the problem, it is possible to separate the transi-
tions and to gain insight about the physical mechanisms
associated with each type of order. Much effort in this
direction has been expended in trying to determine a
correct physical picture for the transitions. ' As was the
case for the Berge et al. generalization of the Villain
model on the square lattice, a consistent picture of the
transitions can be provided by considering the mean-field
energy scales associated with competing collinear order-
ing, and the requirement that order be defined locally be-
fore it can be destroyed by the topological excitations as-
sociated with a Kosterlitz-Thouless transition.

An outline of the paper is as follows. In Sec. II we
define our generalized version of the FFTR model and
summarize the results of mean-field theory for g= l. In
Sec. III we discuss the (new) method of iteration contrast
plots (IC plots), which we found useful in our initial ex-
ploration of the solutions to the mean-field equations for
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g&l, where we did not initially know the nature of the
phase diagram. In Sec. IV we study the mean-field phase
diagram for g& 1. This is done in two stages. First, in
H-T space, we study the convergence properties of the
mean-field equations using IC plots. This leads to an
identification of the interesting parts of the H-T plane.
With this knowledge the mean-field equations are then
solved to obtain the phase boundaries. In Sec. V we
study the phase diagram for g & 1, a case that is simpler
than for g (1, although the IC plots shows that for a
large region of the H-T plane the mean-field equations
converge relatively slowly. In Sec. VI we describe the
phase diagram in the g-T plane for H=O. The H =0
phase diagrams for the present model and for the general-
ization Villain model of Berge et al. are then compared.
Section VII contains our concluding remarks, including
the mean-field energy scale arguments that give a con-
sistent picture of the order of the phase transitions, and
presents a discussion of various works that shed light on
the Potts phase that appears for g = 1 and HWO.

II. GENERALIZED FULLY FRUSTRATED
TRIANGULAR (FFTR) MODEL

In analogy to the generalization by Berge et al. of
Villain's fully frustrated model of XY spins on a square
lattice, ' we want to generalize the fully frustrated model
of XYspins on a triangular lattice (FFTR). Our general-
ization is shown in Fig. 1. Every third horizontal bond is
given a bond strength of —gJ instead of —J, as in the
pure AF case. In Fig. 1 the —rlJ bonds (—,

' of the total
number) are represented as double lines and the —J
bonds as single lines (—,

' of total). One-third of the sites
have six —J bonds, and two-thirds of the sites have one—J and five —gJ bonds. This leads to a translational
unit cell with three spins. (The translational unit cell for
the FFTR contains a single spin, although only the
paramagnetic state actually has a unit cell with only one
spin. ) If the sites within the unit cell are labeled counter-
clockwise from the top as 2, B, and C, then the model
can be described by saying that the horizontal B—C
bonds are modified by multiplying them by the factor g.

~g ~ ii it V X~ ~l

Another generalization of the FFTR would be one in
which every other row of horizontal bonds becomes—gJ, all other bonds remaining —J. This would involve
a more complex algebraic analysis, because the unit cell
would contain six spins rather than the three of the
present case. Moreover, the translational symmetry of
the ground state would differ from that of the ground
state for the FFTR.

A. Mean-field equations

Including an external field H along y, the XY Hamil-
tonian is given by

&=—g J; (S;"S +Sf') HQ—Sf,
I

(2.1)

(2.3)

and Tis the temperature (kz=1). For XYspins the dis-
tribution function R is

R (x )—:I
&
(x) /Io(x), (2.4)

a ratio of modified Bessel functions. ' In what follows we
will consider only converged solutions, and for that
reason we will drop the brackets that define the thermal
averages.

Thus the mean-field equations for one cell are, in units
where J=1,

] =H 3S2 3S3

4~=H —3S,—(2+g)S, ,

@3=H—3S,—(2+g)S2 .

(2.5)

(2.6)

(2.7)

In Fig. I the spins are labeled counterclockwise, with S&

at the top of each unit cell. For g= 1, Eqs. (2.5)—(2.7)
reduce to the FFTR model. Equation (2.6) and (2.7) are
symmetrical in the indices 2 and 3, implying that spins Sz
and S3 will have similar, or correlated, behavior, typically
different from S,.

with J; = —J for single bonds, and J; = —gJ for double
bonds. The brackets in the subscript indicate a sum over
nearest neighbors only, with no double counting.

In mean-field theory the effect of finite temperature is
to multiply the length of the XY spin by a distribution
function R 1. In an iterative solution, given a set of
spins (S; )'"' after the nth iteration, the (n +1)st set of
spins is given by

(S, )I"+"=e',"'R( e';"'liT), (2.2)

where the mean field NI"' i-s given by

B. Summary for g= 1

FICx. 1. Bond configuration for the generalized fully frustrat-
ed triangular lattice, showing the unit cells. If the lattice sites
are labeled counterclockwise from the top as A, B, or C, then
the horizontal B—C bonds would be multiplied by the factor g.

Reference 7 shows that, in addition to the paramagnet-
ic phase (P), there is a continuously degenerate family of
noncollinear, chiral spin states at small H, and a continu-
ously degenerate family of noncollinear, nonchiral spin
states at larger H. In the chiral phase an internal rear-
rangement within a degenerate family of states preserves
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the helicity, ' causing an Ising degeneracy between the
positive and negative helicity states. In the nonchiral
phase an internal rearrangement will cycle the system
through both helicity states. The ground states in a field
preserve the v'3Xi/3 periodicity, but the spins are not
fixed, satisfying instead the condition g3=, S; =H/3,
where ~S,. ~

=1 at T=0. ' We now present a brief sum-

mary, for comparison with our later results.
The chiral-nonchiral transition line can be obtained by

requiring Si to point along y and the other spins to point
opposite to one another along +x. This leads to the con-
ditions @&„=Hand @2 =H —3Si =0, from which

H=3R(H/T) . (2.8)

H =9R (H/3T), (2.9)

so that H p c( T)= 3HC Nc( T). Equation (2.9) is
equivalent to Eq. (20) of Ref. 7. The intersections
Hz- o=9 and TH 0=1.5 immediately follow from Eq.
(2.9). Since TH o=1.5 for both lines, this is a tricritical
point. The mean-field phase diagram is given in Fig. 2 of
Ref. 7. Both Ising and XY order set in at the same tem-
perature for H =0, a result that also seems to hold in the
Monte Carlo case. ' '

It is important to observe that for q = 1 the sublattices
are equivalent, and any permutations of the spins from
one sublattice to the other yields a new, degenerate solu-
tion. This has relevance for the collinear Potts phase ob-
served in Monte Carlo calculations, where two sublattices
order in the same way (along the field), and one sublattice
orders differently. A priori, there is no way of telling
which of the sublattices will order differently from the
others, just as there is no way to tell whether an Ising fer-
romagnet in H =0 will order up or down.

III. ITERATION CONTRAST PLOT METHOD

As indicated above, the use of iteration contrast plots
permitted us to obtain an overview of the structure of the
mean-field phase diagram, before any phases or transition
lines had been identified, and prior to solving the rnean-
field equations analytically. In this method one produces
a visual display that indicates the average number of
iterations required to reach a specific level of convergence
to the solution of the mean-field equations. (Typically,
the rrns change in the solution, per iteration, was set to be
no larger than one part in 10, and ten randomly chosen

The T=0 intercept is found by setting R =1, giving
Hy —o

=3. The H =0 irltercept, or melting temperature,
where H/T « 1, is obtained by setting R (x)-—,'x, giving

TH O=1.5. As remarked above, in zero field the energy
scale for the single phase transition that occurs is about a
factor of 3 lower in Monte Carlo than in mean-field calcu-
lations. We would expect the same kind of suppres-
sion to occur for rI%1.

The para-nonchiral transition line can be obtained by
requiring that the spins in the chiral phase point ap-
proach verticality, with S2=S3. This leads to the condi-
tions N) =H —6S2, @2=H —3S, —3S2, and
H =3S]+6S2 from which

initial sets of spin coordinates were chosen. ) For each
sampled point in the phase space, a dot is printed whose
size is proportional to the average number of iterations
multiplied by a nonlinear contrast function (chosen to
bring out the most interesting details. Since the number
of iterations increases near phase transition lines (because
of processes analogous to critical slowing down), these
phase transitions usually show up as dark curves against
a much lighter background, hence iteration contrast. A
two-dimensional (2D) slice of the phase diagram is
scanned in two of the variables (T,H, rl), while the third
is kept fixed; in the present problem, IC plots for constant
g were the most useful.

We performed an IC plot analysis for the known case
where g = 1, obtaining regions of dark dots in the vicinity
of each phase transition. The P region for H =0 is al-
ways evident in IC plots, probably because there is no
mean field to drive the system to a solution. On no oc-
casion did we iterate to solutions that differed from those
found analytically by Ref. 7. Given that the mean-field
equations are nonlinear, it was by no means guaranteed
that the solutions given in Ref. 7 exhausted the possibili-
ties. In particular, the (continuous) internal rearrange-
ment degeneracy, whereby nonsymmetric and very
different looking solutions have the same energy, was
confirmed by the numerical solutions, even at finite T.

IV. PHASE DIAGRAM FOR —0.5 & g & 1

A. General approach

IC plots in (T,H) for constant il, or in (T, rj) for con-
stant H, gave a good account of the phase transitions for
a given 2D slice through the 3D phase space in T, g, and
H. We now turn to the symmetry of each of the phases
that appear. For most of this section, we consider the
phase diagram in the (T,H) plane for i'd=0. 6. One can
pick any g in the range —0.5&g&1, since the phase-
diagram topology does not change in that range. The
chiral phase disappears for g & —0.5.

B. Phases

We have found four phases, which are given in Fig. 2.
The P and Potts-like ferrimagnetic (FI) phases have the
same symmetry for HAO, where they are related by a
continuous transformation. There is an apparent phase
transition line for HAO, which corresponds to Si =0, for
which the mean field driving the system to equilibrium is
zero, resulting in a slow rate of convergence. Despite this
equivalence of P and FI for HWO, it will be convenient to
consider the paramagnetic phase to have two subphases.

C. Phases FI and C1

In the lower left corner of Fig. 3 is a canted phase,
denoted by C1, which is essentially the same as the chiral
phase for g=1. The internal rearrangement degeneracy
is no longer present, however, and the spin lengths and
angles are different from the analogous q = 1 spin state.
In the region labeled "Potts-like, " the solution is de-
scribed by
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S, = —/S, /y, S =S =/S /y, (4.1)

and is pictured in Fig. 2(b). The Cl state is described by

S3

S2y S3y SzcosO o

(4.2)

2
As can be seen in Fig. 2(a), this phase is similar to FI ex-
cept that S2 and S3 are tipped outward (or inward) by an
angle 0.

i' C2

D. C1-FI line

The Cl-FI line is obtained by combining (4.2) with
(2.5)—(2.7) in the limit as 6—+0. This leads to
42 = (2+q)S2. The Cl-FI line is then determined by nu-
merical solution of the equations

%Is
3

S2 =R [(2+g)S2/T],
H +3R ( ~H —6S~ /T) —2(2+ g)S2 =0 .

(4.3)

(4.4)
(c)

FIG. 2. (a) Particular state in the chiral phase C1 used to get
the transition line C1-FI. (b) The spin state in the nonuniform,
collinear phase FI. (c) The general form of the state in non-
chiral phase C2. See text for detailed explanation. (d) The
paramagnetic state P in a field. Note that, for g&1, S,WS„so
that P is nonuniform and collinear, as is FI. Indeed, P and FI
are the same state, distinguished for our purposes only by the
fact that S& is along the field in P and against the field in FI.

The T =0 intercept of Cl-FI is found from (4.4) by set-
ting R = 1 and S2 = 1, giving

HT —p= 1 +2g (4.5)

For g —+ 1, HT p 3, as expected. Since HT —p 0 as

g~—0.5, the phase C1 exists only in the range—0.5&g&1. Note that for H=O the FI phase truly
differs from the P phase. We denote the H =0 P-FI tran-
sition temperature by Tl, because the transverse degrees
of freedom are expected to produce an Ising transition as-
sociated with the twofold degeneracy from interchanging
S2 and S3. This transition temperature, unlike others for
H =0, must be determined numerically.

)0.0
9.0
8.0 '

7.0
6.0

H 5.o
4.0 '

3.0
2.0
1.Q
0.0

0.0 0.4 0.8 1.2 ).6

K. Phase C2

C2 is a canted (noncollinear) phase described by

S2=S3 . (4.6)

There is no continuous degeneracy. As pictured in Fig.
2(c), in C2 spins 2 and 3 tip together at the same small
angle 02, while spin 1 moves over its entire range
0~ 9& (n. Near C2-FI we have 8& =7r [i.e., spin 1 points
down (against the external field) to match with phase FI],
whereas near C2-P we have Hi =0 (i.e., spin 1 points up to
match the P phase). As H increases, spin 1 tips outward
one way and spins 2 and 3 tip the other way by a smaller
angle, until spin 1 points in the x direction; as H increases
further, spin 1 continues tipping toward the +y direc-
tion, while spins 2 and 3 decrease their tipping.

F. C2-FI and C2-P line

FIG. 3. Phase diagram for the generalized fully frustrated
triangular lattice for q =0.6. Both axes are given in units of the
exchange constant J. Solid lines are phase transition lines. The
heavy broken line is the S, =0 line separating the P and FI re-
gions of the nonuniform, collinear phase, and the light broken
line is the q=1 line, added for comparison. Phase names and
representative spin states are shown in the four regions separat-
ed by the transition lines.

1, spin 1 up, near C2 —P,
—1, spin 1 down, near C2 —FI . (4.7)

For HWO the phases FI [Fig. 2(b)] and P [Fig. 2(d)] are
related by flipping the direction of Si. We can exploit
this to obtain both the C2-FI and C2-P lines by introduc-
ing the parameter o., defined by
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@,= (
—8„o.)@,= ( —6S2 9~, H —6S2 ),

@2=(92, 1)42

(4.8)

=(3S,H,
—(2+q)S202, H 3—oS, (2+r))S~) .

(4.9)

The ratios of the x and y components of Eqs. (4.8) and
(4.9) yield, on elimination of Oi and 02,

H —3~S, —6S,=0 . (4.10)

Combined with the Y component of (4.9), (4.10) yields
4&~=(4—i))S2, and so

Near the C2-P and C2-FI lines, where the tipping angles
8, and 02 are small, the mean-field equations (2.5)—(2.7)
become, with (4.6),
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S2=R[(4—g)S~/T] . (4.1 1)

Equation (4.10) and they component of (4.8) then yield

H —3o.R( H —6S2i/T) —6S2=0 . (4.12)

Equation (4.11) and (4.12) are evaluated together to find
H(o T) for the C2-FI and C2-P lines. ' ' It is important
to note that, in a field, both the FI and P phases are
nonuniform and collinear. Indeed, in a field they have
the same symmetry and are the same phase thermo-
dynamically. We distinguish between them because they
are distinct in zero field. The phase diagram is given in
Fig. 3.

FIG. 4. g=0.6 transition lines from Fig. 3 overlaid on the

q = 1 IC plot. Both axes are given in units of the exchange con-
stant J. The two match well except for the S& =0 line in the
lower right: Here the IC plot is blurred, but for H =0, the in-
tersection point of the analytic line agrees with the start of the
zero-field P phase (dark line of dots).

( S2) = ( S3)%0. This occurs when @i=H —6(S2 ) =0
and @&=H —(2+g)(S2 ), which combine to yield

G. Zero-field paramagnetic phase
H —6R [H(4 r))/6T]=0—. (4.14)

For H =0 and sufficiently high temperatures, the sys-
tem is in a true paramagnetic phase, with S=O on all
three sublattices. Below a certain temperature, which we
denote by TKT, the system goes into a true FI phase.
This phase is collinear and has a spontaneous magnetiza-
tion on each of the sublattices. By analogy with what
happens for XF ferromagnets in H =0, we expect that
this phase is destroyed, not by the local mean-field going
to zero, but by a process wherein there is a nonzero local
mean field, where vortex-antivortex pairs are thermally
generated. '

As T approaches TKT from below, the spin lengths
[S;] and the mean-field magnitudes [4, ] approach zero,
and so we can employ R (x)=—,'x. Thus @i-2TS, and—
42 -—2TSz, where 4, = —6S2, C&, =3S,—(2+iI)Sz, from
which we find

The H =0 intercept is found by applying R (x)~x/2 as
x ~0 to (4.14), which gives

TH =0 (4.15)

For g = 1 this is in agreement with earlier results, and for
g =0.6 we get TH o= 1.7, in agreement with Fig. 3.

The FI-P line has two end points, one given by (4.15)
and the other by its intersection with the C2 phase, which
occurs where the C2-FI and C2-P lines meet. This
specifies a point (H~, T~ ) whose coordinates, in princi-
ple, depend on g. From (4.10), as Si —+0, we obtain
H —6S2 —+0. Then the evaluation of (4.12) in this limit
yields

( il ) = -,'- [ [(2+ r) ) +72 ]
' —

( 2+ r) ) ] . (4.13) (4.16)

T~T (rl = 1)= 1.5, as expected, TKr (il = —0.5 ) = 1.7792
when the C2 phase disappears, and TKT
(r)=0.6)=1.5687. The latter value is in good agreement
with Fig. 4, where the true P phase can be seen as a dark
line of "big dots" along H =0 starting very near T =1.59
and continuing out to larger T. '

H. FI-P transition line

This line only occurs for g & 1, where it is possible to
have collinear phase for which ( Si ) =0 and

independent of g. Using this value of temperature in
(4.11), (4.10) becomes, for Si ~0,

H~ —6R [H~ (4—g) /9] =0 . (4.17)

This gives H~ (g= 1)=0, as expected, and for g=0. 6,
Hz is in good agreement with the value found in Fig. 3.
Note that H~ increases very quickly as g decreases from
1. Also, as g~ —oo, H~ —+6.
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V. PHASE D1AGRAM FQR g & 1

A. Phases

The IC plot indicated that there are four phases, the
state P given in Fig. 2, and three others, given in Fig. 5.
However, C3 and C4 are clearly equivalent to one anoth-
er and are used to distinguish between the cases S2 )0
and S2y & 0. The phase diagram is given in Fig. 6.

The spin state in the lower region of Fig. 6, denoted by
C3, is pictured in Fig. 5(a) and is described by

S& =S&y, S2 = —S3 (5.1) 4.0

where S2 =S3y &0. The upper region, denoted by C4, is
pictured in Fig. 5(b) and is the same as C3 except that
S2~, S3~ )0. The C3-C4 line is characterized by (5.1) and

2.0 ~

S2y S3y (5.2) Q.Q
Q.o 0$ 1.0

AF
1.5 20

Actually, spins 2 and 3 are free to rotate around the posi-
tions shown in Fig. 5(c), since they make a null contribu-
tion to the Hamiltonian (2.1). Thus this line is character-
ized by a degeneracy in the solution. To the right of the
large dot mentioned above is a true antiferromagnetic
(AF) phase, located between the dot and the P transition,
on the H =0 line. As can be seen in Fig. 5(d), spin 1 here
is "melted, " i.e., S,~O. The P phase is shown in Fig.
2(d).

Note that in the IC plot (not shown) there was a light
band corresponding to the C3-C4 line, which is probably
due to the degeneracy described above (the attractor is a
circle instead of a point). The adjacent regions were
dark, probably because of a shallow minimum associated

FIG. 6. Mean-field phase diagram for g=2. Both axes are
given in units of the exchange constant J.

with a solution that is unique (except for interchange of
Sz and S3), with S2 and S3 pointing almost normal to the
field.

B. C3-C4 (inner) line

Conditions (5.1) and (5.2) lead to Eq. (2.8), so that the
C3-C4 line for g) 1 is the same as the C1-C2 line for
g=O. In particular, the T=O and H =0 intersections
are, as before, at H =3 and T = l.5.

C. C4-P (outer) line

The equations yielding this line are (4.3), as in the g ( 1

case, and

H —3R ( ~H —6S~ /T) —2(2+g)S2 =0, (5.3)

S S

(a) (b)

which is similar to Eq. (4.4). The T=0 intercept of the
C4-P line is HT o=7+2g. The H =0 intercept is deter-
mined from S, =0, S2 —+0, which from (4.3) yields

C3-C4
TKT(g) 1)=1+—,'rI, (5.4)

where we use the notation TzT for the reason discussed
in the previous section. As q increases, the entire C4-P
line moves outward, in contrast to the C2-P line of g & 1,
which is fixed at the top near T=0 and undergoes quali-
tative changes for higher T.

(c) D. AF phase

FIG. 5. (a) g& 1 spin state in phase C3. (b) The spin state
phase C4. (c) A particular spin state of the C3-C4 line, the de-
generate "dividing" phase between the C3 and C4 regions. Spin
1 is fixed as shown, but spins 2 and 3 can rotate, obeying the
condition S2= —S3. (d) The H=0, pure AF phase. The X at
position 1 means that spin 1 is melted, i.e., S, =0.

This state occurs along the H =0 line and is pictured
in Fig. 5(d): Spin 1 is "melted, " while spins 2 and 3 op-
pose each other. The IC plot of Fig. 4 indicates that it
occurs for H =0, TAP & T& Tp. The H =0 mean-field
equations for the temperature at which S& first differs
from zero, so that S2 and S3 tip together, lead to
4', y

= —6S2 8~ =2TS„C'~x = O~C'2 = —3S, —( 2+g )S2 O~,
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FIGo 7. IC plot for the H =0 plane. Both axes are given in
units of the exchange constant J.

FIG. 9. Mean-field phase diagram for H =0 in the general-
ized Villain model, from Gabay et ai. (Ref. 9). Both axes are
given in units of the exchange constant J.

and @&=(2+g)Sz,which lead to

Tt g)l = 9
2(2+g)

Figure 6 gives the mean-field phase diagram for g =2.

VI. ZERO-FIELD PHASE DIAGRAM

In addition to the planes of constant g, we can consider
phase diagrams in planes other than (T,H). For exam-
ple, a section (0~ T&2, —0.5 ~ g~2) of the H =0 IC
plot is shown in Fig. 7. There are four regions, separated
by either a dark band or an edge. On the far right, at

2.0

1.5

1.0

0.5

0.0

large T and small g, is the P phase. ' The triangular re-
gion at the bottom, for g & 1, is the true FI phase, whose
boundary with the P phase is described by Eq. (4.13).
The triangular region at the top, for g ) 1, is the true AF
phase, whose boundary with the P phase is given by
TKT =1+—,'q. The left upper triangular region consists of
the Cl (g (1) and C3 (rl ) 1) phases, both of which are
noncollinear. The g=1 line does not appear in the IC
plot because the g=1 internal rearrangement degenera-
cy, by increasing the available phase space of conver-
gence points, decreases the number of iterations required,
effectively canceling any phase-transition-induced dark
band. Moreover, the C1 and C3 phases should not be
considered to be distinct, since they have the same sym-
metry, going continuously into one another for g = 1 be-
cause of the g=1 internal rearrangement degeneracy.
There is a single multicritical point, given by T= 1.5 and
g=1. Figure 8 gives the full H =0 phase diagram, with
representative spin states in each phase.

We now compare the H =0 mean-field phase diagrams
of the generalized FFTR model and the generalized Vil-
lain model. (Berge et al. introduced tunable frustration
and investigated the Monte Carlo phase diagram for
H =0 in order to determine whether the g=1 transition
was of an Ising or Kosterlitz-Thouless character. ) The
latter is shown in Fig. 9. Figures 8 and 9 show a general
topological similarity, although the actual phase boun-
daries are described by different equations. In Fig. 9 the
phases P, FI, AF, and C correspond to, respectively,
phases P, FI, AF, and C1 —C3 in Fig. 8.

VII. SUMMARY AND CONCLUSIONS

-0.50.0 0.5 1.0 1.5 2.0

FIG. 8. Mean-field phase diagram for the H =0. Both axes
are given in units of the exchange constant J. The Cl and C3
phases should not be considered to be distinct.

We have generalized the fully frustrated triangular lat-
tice of XYspins, so that the system need not be fully frus-
trated. In zero field, the mean-field phase diagram is very
similar to that of the generalized fully frustrated square
lattice of XY spins, where the Ising and Kosterlitz-
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Thouless transitions occur at the same temperature when
the system is fully frustrated, and T~ & TKT otherwise. In
a field, and for the parameter g & 1, the mean-field phase
diagram for the present model bears a superficial similari-
ty to that of the Monte Carlo phase diagram for g = 1,
but no true Potts phase appears, since the sites are not
equivalent; unlike what happens for the g = 1 Monte Car-
lo phase diagram, where a discrete symmetry of the Ham-
iltonian is spontaneously broken, the "different" sublat-
tice is built into the Hamiltonian when g&1.

In retrospect, ending the Potts phase in Monte Carlo
calculations for XY spins in the FFTR should not be
surprising; the Potts phase had already been found in
Monte Carlo calculations by Metcalf for Ising spins in the
FFTR. ' The difference between the Ising and XY cases is
that on going from the Ising case (where only the Potts
and the paramagnetic phases were present) to the XY
case, one finds that the chiral C1 phase makes an incur-
sion into the Potts phase at low fields and low tempera-
tures, and the nonchiral C2 phase makes an incursion
into the Potts phase at higher fields and low tempera-
tures.

From the point of view of energy scales, when there is
an applied field the longitudinal spin components may be
thought of as having a higher-energy scale than the trans-
verse spin components. Once the Potts phase interposes
itself at low T for H/J near 3, the transverse fields be-
come less effective, and the system has a greater tendency
to become collinear. This is similar to what happens in a
model we have proposed to explain reentrance in spin
glasses, where the "frustrated" spins "melt" at a lower
temperature than the "host" spins, thereby enabling the
system to become collinear at an elevated temperature.
Note that a real-space renormalization-group analysis for
the Ising spin case has been performed ' and is in good
agreement with Metcalf's Monte Carlo studies. '

Another insight into the origin of the Potts phase in

the FFTR comes from the work of Kawamura, who con-
sidered the problem of the phase diagram for this system
by including in the free energy the entropy of the thermal
fluctuations about the equilibrium state. In this
analysis (which is restricted to low temperatures), the
spins themselves are visualized and in different field re-
gimes are found to be the same as the C1, C2, Potts, and

p phases, in agreement with a symmetry analysis of the
Monte Carlo calculations. Moreover, for H =3, al-
though in mean-field theory the Cl, C2, and Potts solu-
tions are degenerate and can be connected continuously
by the sliding degeneracy found by Ref. 7, Kawamura's
analysis shows the Potts phase to be favored, again as
found in the Monte Carlo calculations.

We close by remarking that the energy scale argument
given above also serves to explain why, in zero field, XY
spins on fully frustrated lattices have both Ising and
Kosterlitz- Thouless transitions occurring at the same
temperature. Namely, both longitudinal and transverse
energy scales are the same. Thus, if longitudinal order
exists locally, so does transverse order (and vice versa),
and hence helicity can be defined. As a consequence,
both the continuous orientational order and the discrete
helicity order coexist, and the loss of either implies the
loss of the other. For ri&1, however, this longitudinal-
transverse degeneracy is broken. As a consequence,
when the temperature is raised, the low-temperature state
where both longitudinal and transverse order occur (for
which there is both continuous orientational order and
discrete helical order) goes into a state where only longi-
tudinal or transverse order occurs (for which there is only
continuous orientational order). The loss of the discrete
helicity order corresponds to an Ising transition. At a
higher temperature the orientational order is also lost be-
cause of the generation of topological excitations (the
Kosterlitz- Thouless mechanism' ).
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