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We present in detail a Green's-function approach for studying charged-spin systems which
preserves the local constraints prohibiting double occupancy. This approach satisfies Wick's
theorem, uses a fermionic expansion around a singly occupied Neel state, and treats charge and spin
degrees of freedom on an equal footing. For the antiferromagnetic Heisenberg model we recover
gapless spin excitations (renormalized spin waves) in a straightforward real-space random-phase-
approximation approach. This expansion is strictly controlled by a geometrical factor, 1/z, where z
is the coordination number. We describe the incoherent motion of charges (holes) in the t-J model
by a self-retracing-path approximation and consider two competing contributions to the coherent
hole propagation. These approximations are made conserving in a constructive fashion by mapping
Feynman diagrams to an equivalent tight-binding model. To study the accuracy of this procedure,
we have made a detailed numerical check against the results obtained by exact diagonalization of a
4X4 system with one hole, finding excellent agreement both in and near the Ising limit.

I. INTRQDUCTIQN

The problem of strongly correlated spin- —,
' electrons on

a lattice is one of the unsolved fundamental problems in
condensed-matter physics that can be described by a sim-
ple Hamiltonian. It is characterized by just three param-
eters: the density n of particles per lattice site, a hopping
amplitude t, and the strength of the Coulomb repulsion
U. The simplest realization of this model is thought to be
the Hubbard Hamiltonian, for which only one state is
available at each lattice site for each spin species.

Shortly after the discovery of high-temperature super-
conductivity, Anderson' proposed that the electronic
properties of the Cu-0 planes might be described by such
a model. This was later justified by Zhang and Rice,
who showed that the low-energy excitations of the Cu-0
planes could be described by a coherent superposition of
O holes bound to a Cu spin in a singlet state, resulting in
a single-band model.

Despite the Aurry of interest which has focused on this
fundamental problem, progress has lagged. Indeed, only
two undisputed facts are known so far.

The first is Nagaoka's theorem, which states that the
ground state for U~ ~ (taken before X~ co), with all
sites occupied but one, is ferromagnetic. Lately, several
groups have examined a possible extension of this fer-
romagnetic instability to the case of several empty sites
or even a finite density of these holes. This has turned
out to be a very subtle question, because of the extreme
sensitivity to boundary conditions. This area of attention
will be beyond the scope of the approach developed
below.

It is well known that in the limit of very strong corre-
lation, these systems can be described by what is now
called the t-J model. In this limit, only states with singly

occupied sites are allowed in the Hilbert space. This, the
famous constraint of no double occupancy, will play a
fundamental role in what follows. The charge carriers
are then the empty sites, the holes. The model has three
parameters, the hopping matrix element t, the antiferro-
magnetic spin interaction J, and the hole density n. In
the absence of charge carriers, the t-J model reduces to
the antiferromagnetic Heisenberg model.

It is in this limit that a second, generally accepted
statement can be made, namely, the existence of antifer-
romagnetic long-range order for the case of a hypercubic
lattice in two and higher dimensions. Although this was
hypothesized quite a while ago, only recently has it been
established beyond doubt for the case of two dimensions.
This is the limit that the method we will develop in detail
in this paper is based on.

Naturally, one of the ultimate goals would be to under-
stand the full phase diagram of the strongly correlated
electron gas on, say, the square lattice. Many researchers
have tried to head in this direction using various mean-
field approaches. Unfortunately, the approximations
used in many of these approaches are not always con-
trolled to the extent that one would like to see. The main
obstacle is the difhculty in handling the local constraint
of strong repulsion in a satisfactory way. Therefore,
methods which can handle this constraint exactly, such
as Monte Carlo methods at zero or finite temperature,
variational approaches with projected wave functions'
and other variational methods and expansions for the
two-dimensional (2D) antiferromagnetic Heisenberg mod-
el" have stimulated large interest.

For the case of the t-J model, the supersymmetric re-
gion t —J is similar to the region of intermediate coupling
t —U in the Hubbard model. ' In this region there is
only one energy scale, and the question arises whether
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any small parameter is left in the model. A small density
of charge carriers might be identified as a small parame-
ter, but to date it has proven impossible to exploit it as
such systematically. Instead we will argue that, at least
for the properties of a system with only one hole or no
holes, geometry alone might provide a suitable expansion
parameter. More specifically, we will examine the
inAuence on the charge excitations of the coordination
number z of a general hypercubic lattice.

Another approach to the problem of the local con-
straint is to attempt to make a connection to the weak-
coupling limit. ' Such work typically focuses on the
intermediate-coupling regime by extending techniques
valid in the small- U limit, invoking a principle of
moderation —viz. , that nature tends not to choose ex-
treme limits. ' Or, one might argue, properties vary only
smoothly between the extreme limits. If so, it becomes
important to find the correct interpolation procedure.

One of the goals of this paper is to show that it is possi-
ble to take the local constraint exactly into account, if
one limits oneself to quite specific questions; e.g., the na-
ture of a single spin or charge excitation in a correlated
background. This problem has generated interest for two
reasons. One is the hope that, even for a finite density of
charge carriers, the propagation might be similar to that
of a single hole. Ultimately, one would like to test one of
the interesting concepts which have been popularized
lately, such as the notion of a marginal Fermi liquid' or
of a Luttinger liquid. '

A second reason for interest in the properties of a sin-
gle hole is that it provides an opportunity to compare
with the results of exact diagonalization of small systems
(typically 16 or 18 sites with one vacancy' ). Although
one has to clarify the consequences of finite-size effects,
this is a very powerful test. To date, none of the analytic
theories has taken advantage of this possibility of a close
comparison with computer experiment.

Now we will discuss briefly several historical ap-
proaches to the situation with one hole, and then outline
the structure of this paper.

As early as 1970, Brinkman and Rice' examined an
essential aspect of this problem. They introduced the
now famous "self-retracing-path approximation, " also
called the Brinkman-Rice approximation. They showed
that, even in a disordered spin background, a hole can
lower its kinetic energy nearly to the bottom of what
would be the free-carrier band, in this case by restricting
motion to paths which self-retrace. This works because
the self-retracing paths constitute a substantial fraction
of all possible paths. One important result of this ap-
proximation is that the hole's motion becomes in-
coherent. Said another way, the hole is unable to propa-
gate. Although there are many different paths which al-
low the hole to propagate to a different lattice site, gen-
erally these disturb the spin background. Viewed in
terms of path integrals, most paths through which the
hole can move end up in a state orthogonal to the origi-
nal state. These paths only add incoherently.

A very nice approach to the one-hole problem has been
suggested by Trugman. ' It consist of building up a local
basis of spin Hips near the hole, and then diagonalizing

the effective tight-binding problem which results. The
strong points of this approach are that it takes both the
local constraint and translational invariance exactly into
account and that it is easy to use. On the other hand, a
correct treatment of the quantum spin Auctuations in the
spin background is not yet settled. We will be able to
connect this to our more rigorous Green's-function ap-
proach.

An approach which has strongly influenced the devel-
opment of this field is due to Kane, Lee, and Read.
Their method combines a slave-fermion with a Holstein-
Primakoff spin-wave representation. The coupling of
hole motion to the spin excitation (which is induced via
the constraints) then can give rise to a coherent propaga-
tion of the hole. It would be interesting to test this ap-
proach against numerical results ' obtained by the exact
diagonalization of small cells. This is not an easy task. It
turns out to be necessary to complement the original for-
mulation of this theory with certain graphs which, as we
will demonstrate in this paper, dominate for a weak spin
coupling J. These are graphs in which a hole hops
around closed loops so as to restore the antiferromagnetic
spin background. The importance of these graphs was
first stressed by Trugman. As we will show below, a con-
sistent conserving approximation incorporating this
motion is highly nontrivial.

A very different approach has been developed by Beck-
er and Fulde, based on a projection technique in Liou-
ville space. This method is systematic and does not need
a Wick's theorem. It has a broad range of applicability.
On the other hand, for the Heisenberg case, rotational in-
variance is not restored naturally, as it is for a 1/(coordi-
nation number) expansion. The latter point will be
demonstrated in this paper.

In the following we will set out to explain in detail a
real-space Green's-function approach, which we will then
use to calculate certain properties of single spin and
charge excitations. This method has been presented pre-
viously in a compressed form. It has by now been well
established that the Heisenberg antiferromagnet on the
hypercubic lattice has long-range order of the Neel type
(for D ~2). It is therefore reasonable to describe the
Heisenberg limit by a systematic expansion around a sim-
ple mean-field Hamiltonian, the ground state of which is
the pure Neel state. In Sec. II we will explain how to do
this in Green s-function language. For this we will use a
formulation based on the underlying electrons, an ap-
proach which allows for Wick's theorem.

In Sec. III we will then describe the implementation of
this real-space procedure to study the spin excitation.
This will have several outcomes.

First, it turns out that the spin problem is controlled
by I /z, i.e., there exists a systematic expansion parameter
determined simply by geometry. Here z is the coordina-
tion number, i.e., the number of nearest neighbors, on a
simple-hypercubic lattice; z =4 in two dimensions. Thus
we can describe the spin- —, antiferromagnetic Heisenberg
model by a rapidly converging series expansion around
the Neel state.

Second, we find that our initial explicit breaking of the
spin rotational symmetry (the Neel state is the starting
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point of the perturbation expansion) becomes spontaneous
at each order in the expansion in l/z. This occurs in the
following sense. It is easy to label the contributing dia-
grams to the spin propagator's self-energy by their order
in 1/z. If one retains all contributing diagrams to a given
order, the resulting spin excitation spectrum necessarily
is gapless in the Heisenberg limit, with a linear disper-
sion. This gapless spectrum can be associated with the
Goldstone mode of the spontaneously broken spin-
rotation symmetry. We will carry this through to the
first two orders. In lowest order, the result is identical to
results obtained by many other methods, including the
Holstein-Primakoff transformation. One might say that
this seems to be a fixed point in approximation space.

We also calculate the first quantum correction to the
spin excitation spectrum, here to the next order in 1/z.
It turns out that the first quantum correction only renor-
malizes the spin-wave velocity, so that only in some
higher order is the dispersion relation changed. This is
an interesting result because it explains why the usual
spin-wave result agrees so well with numerical estimates
of the staggered magnetization, even in two dimensions.
The reason is that the sublattice magnetization is dimen-
sionless, and therefore at zero temperature depends only
on the dispersion relation and not on the energy scale.
But, as mentioned above, the change in the dispersion re-
lation is only of order 1/z, which is small in two dimen-
sions.

Third, we wi11 be able to simulate by our approach the
real-space basis-expansion method of Trugman, discussed
above. We then can compare the contribution of
different connected and disconnected diagrams to his
effective-Hamiltonian formulation. It turns out that the
subtraction of the spin fluctuation in the quantum ground
state, which is the reason for identifying connected dia-
grams, is a nontrivial task in a nongraphical theory.

Fourth, our formalism is closely related to a l/z ex-
pansion for some thermodynamical properties of the 3D
Heisenberg ferromagnet developed independently by
Fishman and Liu. They perform a cluster expansion
around the same mean-field Hamiltonian we use as the
starting point for our perturbation expansion. For the
free energy, they retain the lattice-independent terms,
which we would call self retracing. -

Now, how is this technique generalized to case of a
charge excitation. At first, this might seem difficult,
since our expansion is based on the case of exactly half-
filling. Indeed, this method has no straightforward gen-
eralization to the case of finite density of holes.

However, in the spirit of Brinkman and Rice, the prop-
erties of a single charge excitation can be obtained by
studying the Green's function for the creation and propa-
gation a hole in the half-filled ground state. In this for-
mulation, the kinetic energy, which is the term which
prop ag ates the hole, does not perturb the half-filled
ground state. The main difficulty is that, because of the
constraint against double occupancy, the kinetic-energy
operator is made up of six (instead of the usual two) fer-
mion creation and destruction operators. As a result, at
no point during the propagation is a doubly occupied site
ever created. This kinetic energy leads naturally to the

emission of a spin excitation every time the hole hops to a
different site, as was pointed out by Kane, Lee, and Read.
Therefore the charge motion is strongly coupled to the
spin system.

Since it is so important to handle the constraints
correctly, it will be convenient to work in real space.
Furthermore, we will consider the isotropic spin interac-
tion as a limiting case of a more general Hamiltonian,
where the diagonal coupling between the z component of
spins is given by J, and the transverse coupling is given
by J~. Then to study the Green's function for the hole,
we will proceed in three steps. First, we will consider the
Ising limit, J&=0. Second, we will examine the asymp-
totic Ising limit, 0& J~ &&J, . The last step is to recover
the Heisenberg point, Jz=J, . We have earlier argued
that the essential physics of the Heisenberg limit can be
described by retaining all graphs contributing to the
asymptotic Ising limit, and replacing all spin excitation
lines by the full, gapless spin propagators. In a previous
paper we laid down some essential aspects of this limit.
In this paper we will concentrate on the first two steps.

One of the main aims of this paper is to develop a sys-
tematic method which is checked wherever possible
against numerical results, i.e., results obtained by exactly
diagonalizing a 16-site system with one vacancy. Only by
cross-checking different methods, we believe, can one
control the approximations inherent in any analytic
theory.

In order for such a comparison to be possible in detail,
all approximations made must be conserving. Although
nonconserving approximations might describe a similar
physical picture, they generally generate some unpleasant
side effects, such as a negative density of states. Such an
outcome would seriously hamper any detailed compar-
ison with computer experiments. Here we used a con-
structive technique to generate conserving approxima-
tions beginning with some low-order Feynman diagrams.
The technique we have developed involves a mapping
from the diagrams to an equivalent tight-binding problem
which is then solved exactly. This procedure automati-
cally shows what extra diagrams must be added to those
already selected in order to gain a conserving approxima-
tion.

Exact diagonalization efforts have typically calculated
the bandwidth, defined for the 4 X 4 lattice by the
difference in the lowest eigenvalues for k=(0, 0) and

=k(~ 2/, m. 2/). k is a good quantum number. The out-
come is that for large values of J/t, the minimum lies at
k=(~/2, vr/2), while for small values this switches to
k=(0, 0). The level crossing occurs at J/t —

—,', in the
Heisenberg limit. Note that this ratio is near to what is
proposed to be the relevant physical regime for the high-
T, superconductors. Now, slightly below this crossover,
the transition to the fully polarized Nagaoka state takes
place. (By Nagaoka's theorem, the ground state is fer-
romagnetic for J=0 and one hole. ) The common inter-
pretation of this level crossing has therefore been that it
is a precursor of the ferromagnetic transition to the
Nagaoka state. In a finite system, the Nagaoka state
disappears for J greater than some finite, critical J&, But
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in an infinite system the Nagaoka state disappears at
infinitesimal J &0, i.e., J&~0. We will show strong evi-
dence that the crossover in the energy minimum is in fact
not due to the onset of the Nagaoka phase. We can
reproduce this crossover using a Green's function calcu-
lation for one hole in an infinite system: we find that the
crossover occurs at finite J&, not, as would be expected
by the above argument, an infinitesimal.

It was earlier pointed out that even in a Neel state the
hole can propagate coherently. That is, it can move on
certain paths to a different site during which the antifer-
romagnetic spin configuration of the background is com-
pletely restored. These paths, which were neglected in
the self-retracing-path approximation, generally trace out
a loop. Therefore we will refer to them as "loop paths"
in what follows. The smallest such path, which traces
out a single square, is the "plaquette path. "

In Sec. IV we will examine the Ising limit, by consider-
ing both the self-retracing paths and the dominant pla-
quette graph. The latter can be viewed as the lowest-
order vertex correction to the hole propagation in the Is-
ing limit. We will show that one can map the problem
exactly onto an effective tight-binding Hamiltonian. This
Hamiltonian has one-dimensional rings in each unit cell,
but can nevertheless be solved analytically. Because of
this mapping, this approximation to the Green's function
is guaranteed to be conserving. The essential physics of
the plaquette graphs is that of a one-dimensional tunnel-
ing problem on a discrete lattice, where the barrier (of or-
der J, ) is provided by the Ising energy of the disturbed
spins during intermediate steps. Consequently, for low J,
the hole acquires a large dispersion, with the bottom of
the band at k=(0, 0). For lower and lower J„more and
more (i.e., longer and longer) loop graphs begin to con-
tribute. In our approach we take into account only the
shortest, or plaquette, graph, plus one other that arises
when the approximation is made conserving. This ap-
proximation will therefore break down when longer paths
matter, i.e., J, -t/5.

In Sec. V we consider the asymptotic Ising limit. In
addition to all graphs retained in the Ising limit, a
different type of motion is now possible. This is a process
in which a hole hopes twice, leaving two Aipped spins
behind. These can then be flipped back to Neel order by
a vacuum fluctuation. This process, proportional to J~,
we call the "string-erasure" graph. As is true for all our
graphs, our formulation yields an explicit analytic formu-
la for this process. It is quite remarkable that a straight-

forward extension of the conserving approximation used
in the pure Ising limit is possible. The interesting fact is
that this process competes with the plaquette graphs, i.e.,
the two channels interfere. The erasure graph alone
yields a coherent band with a width proportional to J~.
The minimum of this band lies at k=(~/2, 7r/2). At
sufficiently large J~, this graph dominates. Thus it is pos-
sible to see how accurately this single graph represents
the physics of string erasures. To check this in more de-
tail we compare our results to small-cell values for J~/J,
equal to —,

' and —,', . We find —3% agreement for J,—t (a

J, large enough to give small finite-size eff'ects). This is
one order of magnitude better than the 25%%uo accuracy
one might have expected for J~/J, =

—,'. This strongly
suggests that the higher-order corrections, beyond the
string-erasing graph —J~ considered by us, must be re-
duced by a geometrical expansion factor [perhaps 1/(2z)]
just as was the case for the spin waves.

Additionally, we will discuss in Sec. V a process which
lets the hole move between the two sublattices. This pro-
cess is the dynamical analog of the fact that the expecta-
tion value of the kinetic energy is linear in t whenever
quantum fluctuations are present in the spin background.
This in contrast to the case of a Neel background. But,
as was suggested to us by Brenig, we will show that this
process only contributes to the spectral weight by
influencing the intensity of certain poles, but not their po-
sitions.

II. FORMALISM

In this section we outline a fermionic real-space
Green's-function method for studying the t-J model. In
sum, we perturb about the half-filled mean-field Ising
Hamiltonian, the ground state of which is the Neel state.
We use ordinary fermion operators, replacing electron
operators by operators which create vacant or doubly oc-
cupied sites to eliminate explicit reference to the two sub-

lattices. The unique feature that allows a straightforward
analysis is that we work in real space, so that it is very
simple to ensure that the constraints against double occu-
pancy are preserved. The price paid is that the Hamil-
tonian breaks into several perturbations, and, moreover,
that the interesting Heisenberg limit can only be ap-
proached perturbatively.

We treat the t-J model generalized to include asym-
metry in the spin coupling:

((I c; c; )c; cj —(1 c, ci )+H—.c.J+ g jJ,S S'+(Ji/2)(S, S +S,. Si+)J .
(i,j ),o- (I,j)

Here c; is the creation operator for an electron with
spin o = t, 1 on the lattice site i, and (i,j ) denotes pairs
of nearest-neighbor (NN) sites. The spin operators are
S =

—,'(c; &c; t
—ct&c; &), S;+=c; tc; t, and S; =c, &c; &.

We want to study R, z on the restricted Hilbert space
from which states with doubly occupied sites are exclud-
ed. Viewed as a limit of the Hubbard model, this implies
that doubly occupied sites are so high in energy, due to

I

strong electron correlations (the Hubbard U), that they
can be ignored entirely. Therefore in the t-J model the
strong electron correlations are represented crucially by
the constraint against double occupancy, as well as by the
residual coupling between electron spins.

The first term in H, J represents the kinetic energy of
holes doped into the half-filled state. The second term is
an antiferromagnetic coupling between the spins of elec-
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trons on adjacent sites. (We assume that t, J„J))0.) The
operators in parentheses in the first term enforce the con-
straints against double occupancy.

In the following we will consider only bipartite lattices,
focusing on hypercubic lattices (square, cubic, etc.). (A
generalization to any lattice, such as the triangular lat-
tice, which allows for a classical antiferromagnetic spin
ordering is possible. ) For dimensions D 2, the ground
state at half-filling (i.e., one electron per site) is known to
possess N eel-type antiferromagnetic order. We will
therefore take the Neel state as our starting point. Split
the Ising part of the Hamiltonian into a mean-field and
an interaction piece:

gzgz i
( gz+gz)+(gz i )(gz+ i )+ i

l J 2 l J 2 J 2 4 (2)

Ht J —Hp+Hz+Hi+ Trt-.

H() =(E()/2) g (h;th, +d; d, ),
iEA, B

H, = —(J'/4) g (h, h, +d; d, )(h, hj +d& d, ),
(l j &

H~=(J /2) g (d,."h, dtht+h djh;d, ),
(, &

''''
Tx = —t g [(d, d, )h,.d,.(h,th))

(l, j&

+(h;h, )d, h, (d dt)+H c ]

(4)

Here E0=zJ'/2, where z is the number of nearest neigh-
bors. Hp, the mean-field Ising interaction, will be our un-
perturbed Hamiltonian. H, and H~ are perturbations in
the spin coupling. H„ the remainder of the Ising S S'.
coupling, represents the energy decrease that occurs
when two Ripped spins are moved onto neighboring sites.
Hz, the transverse spin coupling, lets antiparallel spins on
neighboring sites Aip simultaneously. Tz is the kinetic
energy for hole motion. It is important to note that the
operators within parentheses in T~ are the constraints
which enforce single occupancy. For example, the first
term in Tz can hop an up-spin from site j to site i, but
only if there is no down-spin on either site. That is, Tz

Here i and j denote sites on the 3 ( l') and 8 (l) sublat-
tices, respectively. The first part of Eq. (2) is the mean-
field part of the Ising interaction and, like the complete
Ising interaction, has the Neel state as its ground state.
Moreover, this mean-field piece is quadratic in fermion
operators and so forms a useful unperturbed Hamiltoni-
an.

It is convenient to transform from electron to
quasihole and quasiparticle degrees of freedom. The
creation operators h and d are defined as

h; =c;&, d; =c;&, i'd,
hJ cjoy~

d —c y~ J +g
Thus, acting on the Neel, state, h creates a vacant site, a
hole, while d creates a doubly occupied site. More accu-
rately, in general h destroys a "correct"-spin electron,
while d creates a "wrong"-spin electron. Within a
constant, the t -J Hamiltonian is exactly

will never cause double occupancy.
By construction, the ground state of the unperturbed

Hamiltonian H0 is the Neel state (since E0) 0). Because
the h and d operators satisfy the usual fermion anticom-
mutation rules and Hp is quadratic, we can use Wick's
theorem to generate a fermionic diagrammatic expansion
of Green's functions.

The zero-temperature time-ordered Green's functions
that are useful for us to consider are

G„,,(t) = i—( 7 h, (t)f t(0) ),
Gd, (t) = .i ( V—'d;(t)d (0)),
D0 (t)= —i ( TI);(t)d;(t)d t(0)h J(0) ~, i,j

where ( . ) is an expectation value within the exact
half-filled ground state and the time dependences here are
in the Heisenberg representation [indicated by the hat,
O(t)]. We can call G&,"(t) and Gd,"(t) the Green's func-
tions, respectively, for holes and doubly occupied sites,
with one caveat —namely, that Gd; (t =0—

) measures
the density of doubly occupied sites only in a rather trivi-
al sense, since, by construction, there are none in the
half-filled state. The two-particle function D; corre-
sponds to a Aipped spin, since h removes a correct spin
and d replaces it with a wrong spin (on the 3 sublattice
S; =c; c; =d,th, ).i i) if i i

In the interaction representation [indicated by no hat,
O(t)], h (t)=exp(iE0t/2)h and d (t)=exp(ie0t/2)d
The unperturbed Green's functions are

Gd",,'(t) =G,",,'(t) = ie ' —6(t)5,,
G(o)(t)5,

Dz '(t)= —ie 6(t)5,
&

D' '(t)5,
&

.—— .

Here 6(t)= I for t ) 0 and 6(t) =0 for t (0. Notice that
these are site-diagonal Green's functions —the unper-
turbed Green's functions are nonpropagating. This, and
the fact that they are causal [proportional to 6(t)], makes
the diagrammatic expansion very natural and simple in
real space. Physically, the unperturbed hole Green's
function is causal because no charge carriers are present
in the half-filled case. The unperturbed spin Green's
function D' '(t) is causal because no quantum fiuctua-
tions are present in the Neel state. D (t) will cease being
causal, once quantum fluctuations are taken into account.

The Fourier transforms of the unperturbed Green's
functions, defined as

f(to)= I dt e' 'f(t),
are

G(0)(~)— 1

co Ep/2+ l 5

D(0)(~)— 1

CO Cp+l5

where 5 is a positive infinitesimal. In the rest of this pa-
per, everywhere co appears it should be understood that
i6 is to be added; where useful, we have written the
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infinitesimal explicitly.
Graphically we represent 6& ' as a single line and Gd '

as a single line with a tick mark (see Fig. 1). Then D' ',
representing a Hipped spin or h -d pair, is naturally drawn
as a double line. (To make contact with the usual dia-
grams, one can expand the double line for D' ' into a
particle-hole type of polarization insertion. ) Because
there are three separate interactions in H, J when it is
written in the form Eq. (4), we need three different in-
teraction lines in the diagrammatics. These are shown as
the basic vertices in Fig. 1.

Explanations of how to evaluate the various graphs
that can arise are given in the Appendixes. Most of these
rules are best understood by examples, and we will en-
deavor to make them clear, especially in the following
section.

III. SPIN KXCITATIONS

En this section we will study the spin excitations of the
Heisenberg Hamiltonian (i.e., the t -J model at half
filling). We have two purposes here. We will show that
on hypercubic (square, simple cubic, etc.) lattices our
real-space analysis naturally leads to an expansion in 1/z
(where z is the number of nearest neighbors), and that at
each order in 1/z the rotational symmetry of the Heisen-
berg Hamiltonian is preserved —i.e., the excitation spec-
trum is gapless. First, however, we will use this problem
to illustrate several di6'erent ways to compute graphs in
our real-space analysis. This we will do by repeating the
calculation of the same graph three ways.

One way to find the energy of spin excitations is to con-
sider the time-ordered spin propagator

D,, (t)=— i('T&,+(t)S—, (O)) .

If both the initial and final sites are on sublattice 3, this

(b)
~z

can be written in terms of h and d operators as shown in
Eq. (5). Thus the propagation of a fiipped spin is here
represented by a particle-hole Green's function. The un-
perturbed D,.' '(r) is given in Eq. (6) and is represented by
the double line as shown in Fig. 1.

In the absence of perturbation, of course, the flipped
spin cannot propagate, and D,' i(t) ~5; . The perturba-
tion H~ permits the Hipped spin to move. %'e will ana-
lyze the effect of Hi (and also H, ) by summing over a
particular infinite set of graphs. The basic point we will
discover is that the resulting excitation spectrum is gap-
less when J~ is set equal to J, . To lowest order, in fact,
the spectrum is identical to the spin-wave result obtained
using Holstein-Primakoff operators. ' Now, the true
Heisenberg Hamiltonian must have a gapless Goldstone
mode, because of the spontaneous breaking of the spin's
continuous rotational symmetry. That our graphical
analysis yields gaplessness is perhaps unexpected, since
our starting point is the mean-field Ising Hamiltonian,
which is manifestly not rotationally invariant; the
lowest-lying excitation in the mean-field Hamiltonian is a
single spin Hip, which has a finite energy Eo.

The reason we obtain a gap less spectrum is that the
spin calculation can be expressed as an expansion in 1/z
or, on a hypercubic lattice in d dimensions, 1/(2d). It
turns out, for example, that the lowest-order graph in H~
also gives the lowest-order contribution to the 1/z expan-
sion. Since the complete Heisenberg Hamiltonian is gap-
less for all z, so must each contribution be gapless in a
1/z expansion. We have carried this expansion out for
the first two orders in 1/z. IMathematically an expansion
in 1/z is equivalent to an expansion in 1/d. But realisti-
cally the magnitudes of the prefactors are important.
Here they are such, indications are, that we might in fact
take 1/(2z) as an expansion parameter. ]

At the end of this section we will show that this calcu-
lation is formally equivalent to a tight-binding problem,
and exploit this equivalence to relate this approach to a
method due to Trugman. These two apparently dissimi-
lar approaches are linked by their common focus on
real-space motion. A Trugman calculation does not pre-
cisely reproduce our Green's-function results; the
difFerence appears to be the way in which diagrams can
be identified as connected versus disconnected.

FICx. 1. Basic vertices representing the perturbations in Eq.
(4). Here a single line represents GI', ', the site-diagonal Green's
function for a hole. A single line with a tick mark represents
Gd ', the propagator for a doubly occupied site. A double line
represents D' ', the Green's function for a Hipped spin. (a) H,
vertex between any single lines. (b) 0, vertex between double
lines {i.e., spin propagators): the energy of two Aipped spins is
lowered if they are moved to neighboring sites. (c) H~ can end a
pair of double lines {as shown here) or begin a pair. This
represents the Aipping of two neighboring antiparallel spins,
from wrong to right (as shown here) or from right to wrong. (d)

Tl, can hop a hole to a neighboring site, leaving a Hipped spin
behind. The loop with a tick-mark is the constraint forbidding
double occupancy.

A. Lowest order: spin waves

Let us proceed to calculate the spin excitations, first to
lowest order in J~. The perturbation H ~ allows the
Hipped spin to move to a next-nearest-neighbor site by
two steps, as shown in Fig. 2. We can completely analyze
the spin problem by keeping only processes like these, in
which the Aipped spin propagates only on sublattice A.
(We took this approach in earlier work; ~ see also below. )

Here instead we present an alternative approach, based
on the use of an anomalous Green's function, which
proves simpler for the higher-order ca1cu1ation. We
define a 2X2 matrix D;~ where the row and column in-
dices a and P specify the sublattice upon which, respec-
tively, i and j lie (i.e., i E a, jEP, and both a and P can
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(a)

(b) ~ ~ I Hj X X

X ~

H~ ~ x

(c)

FIG. 2. (a) The simplest process by which a flipped spin can
move around on one sublattice. (b) A pictorial representation of
the same process. The flipped spin, represented by X, is moved
by two applications of H, . (c) There are two kinds of sites that
can be reached. Type "a" sites can be reached via two paths.
Type "b" sites can only be reached via one path. [The graph in
(a) can also return the flipped spin back to its original location
on site j in z ways. ]

t t

FIG. 3. (a) The basic step by which a flipped spin can move
about the plane. This, and a partner in which both double lines
are absorbed, leads to the off'-diagonal self-energy X" [Eq. (24)].
This self-energy is of order cp. (b) Both time orderings of the
graph shown in (a). Time runs from left to right. Because the
unperturbed Green's functions are causal, t, ( t and t, & tp. The
time orderings of the two graphs shown here are, respectively,
t} (t(tp and ti &tp&t.

be either A or B). Define

(10)

D;1"(t)= i (7—[f;d;](t)[d h t](0)), i E 3, j E 3,
D,j (t)= i(V [d; 6—tj(t)[f,d ](0)),i EB., j&B,
D;" (t)=+i("T[h, d](t)[h d ](0)), i H 3, j EB, '

D,""(t)=+i('T[d;h, ](t)[d .h ](0)), i EB, jHA
D (0)(~)—

EJ

D(o)(~)

0
0 —0 (o)g

D (0)( ) ij ij

representation; hereafter, O(t) means in the interaction
representation. Using Eqs. (5) and (8), the unperturbed
Green's function here is

D is almost the spin propagator given in Eq. (9), except
that the sign of the off-diagonal elements is reversed (so
that our Feynman rules, given in the Appendixes, are still
valid). The notation [ . ](t) means that all of the
operators within the bracket have the time dependence t.
O(t) means that the time dependence is in the Heisenberg

The lowest-order process which lets the spin move is
shown in Fig. 3(a). We will solve this in three ways to il-
lustrate the diFerent approaches possible. First for orien-
tation is a direct calculation in time space. The graph in
Fig. 3(a) is a particular diagram in the Wick's expansion

f32

D; (t)=(+i)( i) J dt—, (V [h;d, ](t)[h d ](0)H (tt))).„„„„„.d

In particular, Fig. 3(a) arises from a single term in the expansion of
r

D, . (t)=5()& f dt, (V'([h, d, ](t)[h d, (]0)[d htdthtt](t, )))„„„„„d.lJ (13)

Here 5~, ~
means that i and j must be nearest neighbors.

By directly contracting the expression Eq. (13), one readi-
ly finds

D AB( )
Jq

2
D(o)( )D(0)( ) (15)

where the —1 can be traced to the choice of sign in the
definition of D" . Fourier transforming this [Eq. (7)]
gives

The integrals are easy bearing in mind that our unper-
turbed D' '(t), although time ordered, is also causal:
nonzero only for positive time arguments.

The above calculation illustrates the origin of the
Feynman rules in time space given in Appendix A. We
can also simply write down the answer is frequency space
using the rules in Appendix B. In Fig. 3(a), time is run-
ning from left to right. That is, lines connecting a vertex
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from its left are entering the vertex, and those connecting
to the vertex's right are leaving it. Conservation of ener-

gy in Fig. 3(a) thus requires the bottom and top double
lines to have frequencies co and —co, respectively. Then X(1)( ) (19)

mation) or Dyson's resummation, as follows. From Eq.
(16), the self-energy for Fig. 3(a) and its partner is

D AB( )
J~ &(0)(~)&(0)(—~)( —1)'+' (16)
2 where

which is equivalent to Eq. (15). There are two fermion
loops in Fig. 3(a) (since each double line is equivalent to
the usual bubble); and because our definitions of D and D
contain an overall ( —1) relative to ordinary rules, the
sign is ( —1) +', as explained in Appendix B.

Finally, we obtain this result a third way, one which is
unnecessarily complicated here but which makes higher-
order diagrams very easy to solve. This method is ex-
plained in Appendix D. A basic parent diagram leads to
a set of daughter graphs in which every possible time or-
dering is specified; it should be borne in mind that the un-
perturbed Green's functions are causal, so that lines can-
not reverse direction (i.e., time runs from left to right in
all of our diagrams). The possible time orderings of Fig.
3(a) are shown in Fig. 3(b). In this case there are only
two, to & t and t & to. The contribution from each time-
ordered graph is obtained by a product of factors, one
corresponding to each time interval. In Fig. 3(b), each
graph has two time intervals; e.g. , the second has inter-
vals [ti, t0j and [t0, t). To find the contribution from
each time interval, figure out a total frequency co„, (a
vertical sum of the frequencies on each line crossing the
interval) and a total on-site energy E„, ( a vertical sum of
the on-site energy E0 for each double line); this gives a
factor (co„,—E„,+i5) '. Multiply one such term from
each time interval. For example, for the second graph in
Fig. 3(b) this procedure gives

(co 0) 2E()+—i6) —'(co —E0+i6)

Multiply the factors arising from each time interval, and
add the contribution from each graph corresponding to a
distinct time ordering. The sign and other prefactors
come from the usual Feynman rules. For Fig. 3(b) we
have

D AB(

—D (0)+D (0)X(1)(k ~)D (0)

+D' 'X"'(k )D' 'X"'(k to)D' '+

D (0)+D (o)y(1) D (1)

where R, is the coordinate position of site i, and so, as
usual,

D"'(k, 0))=[1—D' '(c0)X"'(k,co)] 'D' '(co) .

To evaluate this we need the Fourier transform

(23)

X"'(k,0))=g e ' X'"=X'"(k,co)(T„,

where

Jq

2
zXa= —~~01k ~

0 1

(20)1 0

The possible ways to get from the origin (site 0) to any
other site i, using only repetitions of the basic steps, corn-
bine to give the propagator

D (1)(~) D (0)5 +D (0)X(1)D (0)
io io io

+D (0)y( & ) D (0)y( & ) D (0) +lJ jo

where a repeated subscript implies a sum. The third
piece above, for example, represents a two-step move
from site 0 to j to i. The sum here is nothing but the usu-
al Dyson's sum (or RPA sum for bubble graphs like
these) written in the real-space language that we favor.

The Fourier transform of D ', 0' is

D "'(k, 0))=g e ' D ';(')'(0))

1 1=( —1) 5(; )2 '~
( —2E()+i6) co —E()+i5

Eo+ l 6

and

6=J~/J, ,

z/2
y„=—g cask„.

p, =1

(2&)

(26)

which as one can readily see, is equal to Eq. (15). It is
simple to show why this works. The explanation, and a
summary of this approach, are given in Appendix D.

The graph shown in Fig. 3(a) is a step which permits a
flipped spin to move to a nearest-neighbor site. There is a
second graph, leading to D, which can be obtained by
reflecting Fig. 3(a) about a vertical line. By repeating
these basic steps, the Aipped spin can walk around the
plane. This repetition is an RPA (random-phase approxi-

(col'1 ~)'
CO F0+le co+'&

(27)

Here we are explicitly limiting ourselves to hypercubic
lattices in d =z/2 dimensions. The sum in Eq. (26) is
over the distinct Cartesian coordinates, so that yk =cosk
in 1D, yk=(cosk +cosk )/2 in 2D, etc. , and thus

~ y„~ ~ 1, regardless of the dimensionality.
Inserting Eq. (24) into Eq. (23) gives, for the AA com-

ponent of our first-order spin propagator
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(This Green's function for motion around the 3 sublat-
tice can also be obtained directly from the graph in Fig.
2, without the use of a matrix Green's function; see also
below. ) Because of the frequency dependence of the self-
energy, this has poles at co=+(co&—i5), where

so+I ~ 'Yk . (28)

Notice that in the Heisenberg limit (J~ =J,=J) this gives
cok=(zJ/2)+1 —yz, which is gapless and, in fact, is ex-
actly the result from spin-wave theory. Furthermore, Eq.
(28) contains no explicit factors 1/z. As we will show in
the following subsection, it is the lowest (zero order) con-
tribution to a 1/z expansion of the spectrum.

We can rewrite Eq. (27) to show its poles:

D~'~(k, co) =—1+
2 6)k co co~+ l 5

1+—1—
2

Cp 1

Q)k co+ cok l 5
(29)

In the Ising limit cok ~op and the second term, which ex-
plicitly breaks causality, vanishes. Similarly, one can
derive and expand the formula for D~'~:

FIG. 4. Next-lowest order corrections in 1/z to the spin
propagator. All of these have self-energies of order c.o/z. (a)
and (b) contribute to the diagonal part of X, and (c) is off'-

diagonal. (a) is a correction to the on-site energy, (b) derives
from an interaction with a vacuum fluctuation, and (c) is a ver-
tex correction.

EB'k
D~~(k, co) =

2' k CO COk+ l 5 CO+ COk l 5

(30)

B. 1/z expansion

E(k,z)= g E„(k)z
n=p

(31)

Since the spectrum is gapless for all z [i.e., E(0,z)=0],

This gapless spin-wave spectrum is a somewhat
surprising result. Our starting point is the mean-Geld Is-
ing Hamiltonian, which is far from rotationally invariant.
Besides, the gaplessness is restored when J~/J, is set to
unity, even through we are performing perturbation
theory in J~. How then can this level of perturbation
theory, resulting from the Dyson's sum arising from one
low-order graph, restore rotational invariance? The
answer is that there is an additional control parameter
(1/z) in the spin calculation, and that at any given order
in 1/z gaplessness, and so apparently rotational invari-
ance, is restored. This is like the way a 1/X expansion
retains the Hamiltonian's symmetries at each order in

I/X, or the way a loop expansion does so. Since the true
Heisenberg Hamiltonian is rotationally invariant for
every z, then at each order in 1/z the spectrum must be
gapless.

When J~ =J„the complete Heisenberg Hamiltonian is
rotationally invariant, the true ground state spontaneous-
ly breaks this symmetry, and the Goldstone mode is gap-
less. If this solution can be expanded in powers of 1/z, as
we show by construction, then necessarily the contribu-
tion at each power must be gapless. Symbolically, ex-
pand the spectrum in a series in 1/z:

then it must also be the case that E„(0)=0. That is, the
contribution to the spectrum at each order is gapless.

We will argue that a 1/z expansion arises and learn
how to identify the order of various graphs in the follow-
ing. These arguments are very similar to those which
lead to a 1/z expansion in a cluster expansion of the free
energy. The basic point is that the energy scale for spin
excitations is Eo=zJ, /2, which contains a factor of z.
This is the energy scale because our starting point is the
mean-field Ising Hamiltonian, in which a fiipped spin (an
excitation) feels the average displeasure of z nearest
neighbors; equivalently, the unperturbed spin Green's
function D' '=(co —so+f5) ' has Eo as its on-site energy.
Feynman diagrams possess energy factors of order J (i.e.,
J, or Jz) for each interaction line. Since J—Eo/z, an nth
order diagram is generally of order 1/z" relative to the
unperturbed case. Actually this is not quite true —there
are also geometric factors of z which tend to offset this
reduction. These are easy to handle, as we will now illus-
trate.

We have asserted that the Dyson's sum developed from
Fig. 3 gives the lowest-order contribution to the 1/z ex-
pansion. [Notice that X''~, in Eq. (25), is of order Eo, i.e.,
the same as the energy in the unperturbed Green's func-
tion, Eq. (8).] All of the next-order contributions are
shown in Fig. 4. These are a subset of the graphs that are
first or second order in H~, and zeroth or first order in
H, . They turn out to be all of the graphs with self-
energies of order cp/z, i.e., those which give corrections
of order 1/z. The first two graphs, in Figs. 4(a) and 4(b),
contribute to the diagonals of X and hence renormalize
the unperturbed on-site energy cp. The third graph, in
Fig. 4(c), is off-diagonal and renormalizes 2"'.

Let us estimate the order in 1/z of each graph in Fig.
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1 1

co cp co 3E,p

2
1 1 1

co ~—co ~—3co 2cp

1 1

2cp co 3Gp

4. The first diagonal graph [Fig. 4(a)] has a self-energyX"-J~J,Z /zp. Here the J~2J, factor arises because this
graph is second order in H~ and first in H„ the 1/co
comes from the frequency dependence of the internal
propagators (or by dimensional analysis), and —most
importantly —the geometric factor of z appears because
there are z nearest neighbors upon which the upper dou-
ble lines can lie. Hence X"-so/z. Similarly, the other
diagonal graph [Fig. 4(b)] has X' '-Jiz/EO-EO/z. The
ofF-diagonal graph in Fig. 4(c) is a dressed version of the
basic step shown in Fig. 3(a). Relative to this basic step,
Fig. 4(c) picks up an extra factor of J, /Eo-1/z and
hence X&"-X(,"/z -Eo/z. Because it is so simple to esti-
mate the order in 1/z of any graph, we believe that those
pictured in Fig. 4 exhaust the possible next-lowest-order
contributions in 1/z.

Now let us actually evaluate the graphs shown in Fig.
4. This is simple using the Feynman rules of Appendix
D. For example, Fig. 4(a) has four possible time order-
ings, which give the frequency dependence

propagator D' ' in Eq. (37) becomes identical to Eq. (27),
with the substitution of the renormalized frequency 6 and
on-site energy co. The dispersion is thus simply

co=EOQ 1 (39)

and therefore co=m& —i 6, where, at the Heisenberg point,

k
—

EO 1+ Ql )k
1

(40)

C. Effective tight-binding problem

Thus we have regained the gapless spin-wave spectrum,
but with a renormalized spin-wave velocity
so —+so(1+ 1/2z). [Compare Eq. (40) with Eq. (28)]. As
explained above, keeping all the graphs contributing to
lowest or to first order in 1/z restores gaplessness. No-
tice that this is quite unlike the correction to the spin-
wave velocity that occurs in an ordinary calculation of
corrections to spin-wave theory, using, for example,
Holstein-PrimakoA' operators. There the corrections are
formally of order I/S, which is questionable for spin —,',
as here, and the spin-wave velocity to this order is found
to be di6'erent. ' The velocity renormalization is in rath-
er good agreement with the result found by Singh using a
series expansion around the Ising limit.

Hence

D AA, (a) z2( J )IJ Z 5," . (33)
1

(co —Eo) (
—2EO)

The factor of z arises because of the z nearest neighbors
upon which each of the upper double lines can lie. With
a similar graph for D, this gives

Q2X"(k co)= — E 1
2z ' (34)

and

X' '(k, (o) = — (co —3EO+i5)1b

2z

X"(k co)= —X"'(k co)
1

z

(35)

(36)

Inserting the sum of X' ", X""""' [Eqs. (24) and
(34)—(36)] into the Dyson's expression Eq. (23) then gives
the propagator D ' ' accurate to second order in 1/z. For
example, the AA component of the result is

where 1 is the 2X2 identity matrix. In a very similar
way one finds

Let us return to the lowest-order calculation above.
For the purposes of this section, it is convenient to redo
this calculation using Fig. 2—that is, restricting the
fiipped spin to lie only on one sublattice (say, A). It is
then not necessary to use a matrix formulation. Thus we
calculate not the complete 0 but D or, equivalently, D
as given in Eq. (5). Using the rules of Appendix D, one
readily finds that Fig. 2(a) has the self-energy

2

CR -RIJ co c +l60
(41)

The geometric factor CR is explained in Fig. 2(c):
C+ + =2 C+2 +2

= 1 and Cp =Z. Fourier transform-

ing this self-energy gives

XAA(k )
(Eo)'i,~)'

Ep+16
(42)

which is identical to the result extracted from the matrix
formulation [Eq. (27)].

It is illuminating to recast this solution into a tight-
binding form. Let ~r) be a state with some particle (here,
the fiipped spin) on site r Then imagin. e a tight-binding
Hamiltonian HT& for which

co Ep+l 6
(~F07 ~~)'

co Ep+l6

(37)

+t2

HT~~r) =(Eo+ tz)z~r&+2tz g ~r+5&
5=+x+y

~r+S &, (43)

where we have defined

co —co 1 + +2

2z

+2
=Fp 1+0 z

(38)

and a =2(1—b, )/z. In the Heisenberg limit Ji =J„the

5=+2x, +2y

where t2 is some hopping matrix element. Again we are
restricting attention to the hypercubic lattice in z/2 di-
mensions. It is easy to diagonalize the Schrodinger's
equation Hr~ ~

((t() = co
~ P ) here. The solution is

~q„& =y,e")r&, with
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CO=CO+Z t2yk,2 2 (44)

where yk is defined in Eq. (26). This is precisely the form
obtained by our lowest-order calculation [cf. Eq. (27)], if
we identify for the hopping amplitude

2

t2 =t2(co) =
co+'5 (45)

That is, the basic step shown in Fig. 2, when used as the
beginning of a Dyson's or RPA sum, is equivalent to an
effective tight-binding problem, but with an energy-
dependent hopping amplitude. Solving Eq. (44) for the
root co=co& then gives Eq. (28). In fact, the correspon-
dence is exact —HTz above is the effective Hamiltonian
arising from the action of Hz up to second order within
the Hilbert space in which the fIkipped spin moves only on
sublattice A.

A Hamiltonian cannot have the eigenenergies as a pa-
rameter, of course, so perhaps this formal analogy to a
tight-binding model appears more confusing than clarify-
ing. In fact, our calculation is closely related to an ap-
proach used by Trugman' to study single-hole properties
in the t-J and t-t'-J models. The basic step in Fig. 2 lets
a flipped spin move from some site to a next-nearest-
neighbor site, and, as we shall see, the same basic step is
the heart of a Trugman calculation. The Trugman
method is very similar in spirit to our real-space
Green's-function calculation, and to compare the two we
will here sketch a calculation of the spin excitation using
the Trugman method. The differences between the result
from this calculation and our Green's-function approach
shed some light on Trugman's method.

Trugman's approach is based on restricting the Hilbert
space to a small set of important states —and every
translation of these states. The Hamiltonian [in this case
Ht, given in Eq. (4)] is diagonalized within this set. In
some sense it is like a cluster calculation, except that the
"cluster" moves with the object whose properties are be-
ing studied. In the present case we will use the set of

x x

Qx x Qx

FIG. 5. Basic spin states used for a lowest-order Trugman-
type calculation of the spin excitation. These states and all of
their translations are used. Here an X represents a spin Aip on
some site. The circled X indicates the fiducial site r. The states
can be labeled

~
rm ) with m = l —7.

seven states shown in Fig. S, and every possible transla-
tion of these (on the same sublattice). These are the
states which, by repeated application of H~, allow the
Aipped spin the move. For the remainder of this section,
we restrict ourselves to 2D.

Following the approach described by Trugman, ' here
with the Hamiltonian H~ and considering spin excita-
tions, leads in lowest order to an effective tight-binding
problem with seven basis states per unit cell. These states
can be labeled ~rm ), where r is a site on sublattice A,
say, and m =1,2, . . . , 7 specifies one of the seven basis
states (labeled by this fiducial site r). We refer to
Trugman's work for an explanation of the calculation,
and present the results here. Expanding an eigenstate
~gk)=g, c g, e'"'~rm), the Schrodinger equation
yields for the Hamiltonian H~ a set of seven linear equa-
tions Ac=0 for the c 's and the eigenvalue co, where A
is

(2J, —co)/Ji 1+e
—i(k +k ) i(k —k ) i(k„+k )1+e i( —k +k )

1 + x

i(k„+k )1+e
i( —k +k )1+e
—i(k +k )1+e
i(k„—k )1+e

(4J, —co)/Jt

0 (4J, —co ) /Ji

0

0

0

0

(4J, —co)/Ji

0

0

0

0

0

(4J, —co ) /Ji

0

0

0

0

(4J, —co)/Ji

(4J, —co ) /Ji

(46)

Here m = 1 labels the state with one spin Aip, and
m =2, 3, . . . , 7 are the states with three fiips in Fig. 5.
These equations can be solved for the eigenvalue as usual
by setting det( A) =0; instead, as was pointed out to us by
Trugman, it is more illuminating to solve them by row
reduction. The latter approach yields

I(2J, —co)(4J, —co)—Ji[2+(cosk +cosky) ]]ci=0,
(47)

(4J, —co)c =0, m =2, 3, . . . , 7 .

Thus the low-energy solutions have c,WO, c~ » =0.
This eigenvalue equation for cu is equivalent to a tight-
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binding problem with only one basis state per unit cell.
That is, we can focus attention on the states with one
fiipped spin, lrl) =lr), and ignore the other states in
Fig. 5. Then the eigenvalue equation Eq. (47) can be
viewed as arising from the tight-binding Hamiltonian

(~) k

j

~

X

x x
X

e ~

H,', Ir) =(E,+»r', ) Ir &

lr+5)+t g Ir+~~
&=+x+y g=+2x, +2y

(48)

with the hopping amplitude
2

Jj
2 2

1

co —4J,

This is extremely similar to the tight-binding expression
Eqs. (43) and (45) derived from our Green's function cal-
culation. Trugman's method and our real-space graphi-
cal analysis are formally equivalent to tight-binding prob-
lems which are similar but not identical. There are two
basic differences. The first is unimportant: the hopping
amplitude t2 found by Trugman's method has an on-site
energy 4J, in the denominator [Eq. (49)], whereas earlier
in Eq. (45) we had an on-site energy ED=21, . That tz has
co and not —co, as in t2, may be related to this. Part of
the difference in on-site energy is that in the Trugman
method the Ising interaction is treated exactly, whereas
in our lowest-order calculation it is included only at the
mean-field level. As we pointed out earlier we can in-
corporate H~ and H, (the rest of the Ising interaction) on
an equal footing in a I /z expansion.

The second difference is more profound. The Trugman
calculation gives an on-site frequency-dependent contri-
bution to HT~ [Eq. (48)] which has a multiplicity of 12,
whereas the corresponding term in our approach has a
multiplicity of 4 in 2D [Eq. (43)]. The difference is im-
portant. The on-site term in a Trugman calculation re-
sults from H~ acting twice, first creating and then remov-
ing a pair of Hipped spins on sites adjacent to the original
spin. This is pictured in Fig. 6(a) and in our graphical
language in Fig. 6(b). The factor of 12 arises in this 2D
calculation because there are z =4 ways of choosing the
nearest-neighbor site k and z —1 ways of choosing i. The
on-site term in our graphical calculation, on the other
hand, arises from setting i =j in Fig. 2; this is pictured in
Fig. 6(c). Here there are z ways to choose k.

Thus the basic difference between these two results
[Eqs. (43) and (48)] is that Trugman's method, in our
language, has a contribution from a graph [Fig. 6(b)]
which we exclude because it is disconnected. Our calcu-
lation, on the other hand, has a contribution from a
graph [Fig. 6(c)] which cannot be expressed simply as a
sequence of spin Hips, and so apparently cannot be in-
cluded in Trugman's procedure. Keeping only connected
graphs means that the poles of the Green's function given
excitation energies relative to the perturbed ground state.
In this case, unless only connected diagrams are kept, ro-
tational invariance cannot be restored —i.e., we cannot
get the gapless result. The approach used by Trugman
(for hole problems) and imitated by us here to look at

(c) k

FIG. 6. (a) The on-site contribution in a Trugman calculation
results from this process, in which a neighboring pair of spins is

Aipped and then flipped back. There are z(z —1) ways to do
this. (b) The same process shown graphically is a disconnected
diagram. (c) The diagram which provides the on-site contribu-
tion in the graphical calculation. This diagram is a special case
of Fig. 2(a). There are z ways to do this.

spin excitations is very appealing because it (1) em-
phasizes real-space properties, (2) focuses on the intui-
tively important states (those which represent fiuctua-
tions near the excitation), and (3) is simple. On the other
hand, the approach lacks the kind of formal underpin-
ning which makes interpretation of the results certain.
Here we seem to see an example of that —the basic
difference between our (formally justified) Green's func-
tion approach and the Trugman method appears to be
the distinction between connected and disconnected
graphs. A calculation of the properties of one hole by
Trugman's method similarly contains contributions from
disconnected graphs (see Sec. V).

The graph in Fig. 6(c) cannot be interpreted simply in
terms of Ripped spins. It occurs because we are express-
ing spins in terms of fermion operators; it is part of the
price we pay for making Wick's theorem valid. Graphs
like Fig. 6(c), which naively appear to violate the Pauli
exclusion principle, occur in ordinary fermionic graphical
calculations, not just here. They are simply visual repre-
sentations of terms in the Wick's expansion of certain
vanishing matrix elements. Although the complete ma-
trix element vanishes, it is broken into a sum over pieces
which do not individually vanish. For example, Fig. 6(c)
plus the graphs in Figs. 6(b) (for i =j) and 4(b) all add to
zero for the time ordering shown there, because they are
the result of expanding the product

(d~(t)h (t)[d„hkd, h ](t~)[hktdkth d ](t, )h "(0)d,"(0))

(50)

which is identically zero. Since the disconnected piece in
Fig. 6(b) is used to cancel an S-matrix denominator, the
remaining pieces in Figs. 6(c) and 4(b) do indeed contrib-
ute.
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D. Summary of spin excitations

We have found that our graphical approach naturally
leads to a 1/z expansion for the energy of the spin excita-
tion, and that necessarily at each order in this expansion
gaplessness is restored. Our lowest-order calculation is
formally equivalent to a tight-binding problem, and we
have exploited the equivalence to point out the similari-
ties of this approach to that of Trugman; the difference
between the two appears to be the identification of
disconnected diagrams. In this case, unless this
identification is made correctly, rotational in variance
cannot be restored.

IV. CHARGE EXCITATIONS IN THE ISING LIMIT

In this section we will study the properties of charge
excitations in the Ising limit (Ji=0). This is sometimes
called the t-J, model. The following section deals with
the case of a small but nonzero J~. The approach we take
is to study the Green's function G(k, co) for a single hole
moving in the half-filled ground state. Ordinarily the
spectral weight extracted from this Green's function,

'ImG(k, co), has one of two basic forms. The spec-
tral weight might have one or more quasiparticle peaks (a
5 function, perhaps broadened, in co) whose position is a
function of k. Instead, the spectrum might be in-
coherent, with a broadened distribution of weight and no
sharp peaks. Generally one finds a combination of quasi-
particle peaks and some incoherent portion.

The picture is different in the case of a strongly corre-
lated system, as in the t-J, model considered here. In
this case, the motion of the charge (the hole) disturbs the
background of spins, and as a result the charge and spin
degrees of freedom are completely intertwined. In the
lowest order self retracing p-ath appro-ximation, originally
due to Brinkman and Rice, the hole is completely unable
to propagate. ' This is because a moving hole, as is by
now well known, leaves a "string" of reversed spins
which, in this approximation, is cleaned up by having the
hole retrace its path. In the language of a diagrammatic
expansion, the self-retracing path approximation is
equivalent to a "noncrossing" approximation. When J,
is set to zero, the resulting spectral weight looks com-
pletely incoherent, in that it has no peaks. ' When a
nonzero J, is turned on, but the self-retracing approxima-
tion is still made, the hole can be thought of as moving in
a one-dimensional linear potential formed by the Ising
energy of its string. This confining potential gives a se-
quence of bound states for the hole; correspondingly one
finds a sequence of 6 functions in the spectral weight. Al-
though sharp peaks, these are not quasiparticle peaks:
they are independent of k, because in this approximation
the hole cannot propagate.

Besides the self-retracing paths, there are paths which,
even in the Ising limit, clean up the string of reversed
spins. These paths, which we call loop or plaquette
paths, permit the hole to propagate, and hence give a
quasiparticle peak in the spectral weight. The impor-
tance of such processes was first emphasized by Trug-
man. ' Our formalism gives a very natural way to study
the loop paths. They turn out to have a very simple in-

A. The nonpropagating hole
in the self-retracing-path approximation

To investigate the dynamics of a single hole in the
correlated spin background we study the one-hole
Green's function

where the inner product is taken with respect to the exact
ground state at half-filling (i.e., with no holes present). In
the Ising limit, the hole is injected into the Neel state.
When the hole moves, it leaves behind a string of over-
turned spins, as shown in Fig. 7(a). Most paths through
which the hole can move will leave some spins Aipped.
Such states are orthogonal to the Neel state, and so only

~ ~

~ ~

0 0

~ ~

X 0

~ ~

X X

~ 0

~ X

X X

NOT ALLOWED

FIG. 7. (a) A moving hole, represented by O, leaves a string
of reversed spins ( X ) behind. Retracing the original path re-
stores the Neel order. (b) The simplest retracing path [of order
(
—t) ], from the site of injection to a nearest neighbor and

back, in our graphical notation. (c) A retracing path to a next-
nearest-neighboring site. (d) This graph is forbidden, since a
spin excitation and a hole cannot be on the same site; more pre-
cisely, it is canceled by other connected graphs (see text).

terpretation in terms of one-dimensional tunneling
through the Ising barrier, so that the bandwidth for hole
propagation via this propagation falls off exponentially
with J, .

A very simple physical picture emerges from this ap-
proach. The self-retracing paths dress the hole, creating
a composite object consisting of a hole plus a cloud of
disturbed spins. This composite is then permitted to
propagate by the loop path. In this section we will study
each of these processes in turn, using the language of our
real-space Green's-function approach.
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paths which somehow erase the strings will contribute to
G. The simplest paths of this sort are self vet-vacing, i.e.,
the hole reverses its motion at some point and retraces its
original path back to the origin. The self-retracing path
approximation includes only such paths, and, moreover,
neglects the fact that certain paths close on themselves
(i.e., a Cayley-tree approximation is made). We will
briefly show how to handle this approximation, which
has been considered in detail by Brinkman and Rice'
and later Shraiman and Siggia, both to illustrate our ap-
proach and to pave the way for the following subsection.

If only self-retracing paths are allowed, then the
Green's function for a hole is site diagonal —that is,
G; =5;.G(t). As a result, the Fourier transform G(k, co)

is independent of k and there cannot be any coherent
hole motion. That is, even though it is possible for a

peak to exist in the spectral weight, any such peak will be
independent of k and hence will not represent hole propa-
gation.

In our graphical language, self-retracing paths are of
the form shown in Fig. 7(b). The case shown there is a
piece of

2

;6(t)= ' f dt, f dt, (%ho(t)T~(t2)T~(ti)ho(0))
2

(52)

Using the definition of the kinetic energy Tz in Eq. (4),
the only nonzero contribution to the above is

iG(t) =( —i) ( t) z f—dt, f dt z(h 0(t)[d, dtih, d Oh noh 0](t 2)[h toh Od(~)h,
+

d, d ti](t, )h to( 0) ) .

For the graph in Fig. 7(b), which is the only nonzero 0 (t ) graph, this gives

6"'(t)=i'zt' f dt, f dt, [6"'(t, t, )]'6'"(t,—)6"'(t, —t, ),
from which we find the on-site self-energy

8coi Oco2 1
X,",,',(co)=i zt 6' '(co, )6' '(co~)6' '(co —co, co2)=z—t2' 2ir ' '

co 3soi—2+i 5

(53)

(54)

(55)

Here the fact of z occurs because the hole can move this
way to z nearest-neighboring sites. The sign is perhaps
easiest to find by direct contraction of the matrix element
in Eq. (53). It is also easy to evaluate the graph in Fig.
7(b) using the rules of Appendix D. The ordinary
Dyson's sum based on the graph in Fig. 7(b) corresponds
to the hole moving from its point of injection to a neigh-
boring site and then back again, and repetitions of this.
This gives [6'"(co)] '=[G' '(co)] ' —X(,'I„(co).

Now consider the two-step processes in which the hole
moves from the neighboring site to a next-nearest-
neighbor site before retracing [see Fig. 7(c)]. In between
it creates a string of length two. When the hole moves
out and back, it first creates a string [the double lines in
Fig. 7(c)] and then destroys the string in reverse order.
This is why the self-retracing-path approximation might
also be called a "noncrossing" approximation. There are
only z —1 such NNN sites, since a return to the origin is
already included in the Dyson sum above. The additional
path returning to the origin shown in Fig. 7(d) is forbid-
den because it is not possible to have both a spin excita-
tion and a hole on the same site. In our graphical repre-
sentation, this is accomplished by the constraint loop on
the kinetic energy vertex. In fact, this graph cancels oth-
ers in which the lines on the site of insertion are connect-

ed differently. The easiest way to see this is to recognize
that Fig. 7(d) is a connected piece in the Wick s expan-
sion of a vanishing matrix element; and because the
disconnected piece arising from the expansion vanishes,
the sum of connected pieces must vanish also.

Allowing the hole to oscillate between the neighboring
site and any next-nearest-neighbor site any number of
times amounts to replacing the upper (internal) G' ' line
in Fig. 7(b) by

6' '(co)

co cp/2+ l 5
(z —1)t'

co 3E,p /2 + l 5

(56)

y(2)
retr

Zt'

co 3E,p/2+ l 5 (z —1)t'
co —5Ep/2+i 6

(57)

Continuing in this way gives a continued fraction repre-
sentation of the Green's function in the self-retracing-
paths approximation.

Except for the replacement of z by z —1, this is precisely
the form of the G'" derived from X"'. Inserting this into
Eq. (55) gives

QZ
retr

co —3cp/2+ i6—

zt'
(z —1)t'

co —5Ep/2+ i5- (z —1)t'
7Ep/2+ l &+

(58)
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which is equivalent to
zt'

(59)X;„,(co) =
co —3eo/2+ i5 — X;„,(co —Eo)

z —1

Here we have made the usual Cayley tree
approximation —i.e., assumed that at each step subse-
quent to the first there are z —1 equivalent sites to which
the hole can move, and neglecting the possibility of loops.
(We will study the contribution of loops in the next sub-
section. ) The expression in Eq. (59) is not quite the
correct result for the Ising limit, because we have only
treated the Ising interaction in mean-field theory. How-
ever, as explained in Appendix E, it is easy to dress these
graphs to infinite order in H„and the complete result in
the Ising limit is

X;„,(co)=z X„„,(co —3EO/2+ J, /2),

1

~ ~
0 ~

(b) 4

(c)

2
~ ~
X 0

7 &I

Ji

6

3
~ 0
X X

4
0 X

X X

5
0 X

0 X

6
~ X

y 0

7
Il
1&

7
~ 0
~ ~

(60)
t2

X„„(co)= co+i5 —(z —1)X„„[co—(z —2)J, /2]
Both Eqs. (59) and (60) give spectral weights which are

a sequence of 5 functions. These represent the discrete
bound states formed by the linear confining string poten-
tial."

B. Propagation via loop graphs

Besides the self-retracing paths, there are other paths
in which, even in the Ising limit, the string of overturned
spins is erased. These paths permit the hole to propagate
and so give a nonzero bandwidth to, say, the lowest peak
in the hole spectral weight. We call these loop graphs.
The lowest-order loop graph is shown in Figs. 8(a) and
8(b). There the hole moves around the elementary pla-
quette 1 —,

' times (six steps), ending up diagonally across
from its starting site. This we will call the plaquette
graph.

This process can easily be included using our forrnal-
isrn. It turns out, however, that if this path alone is in-
corporated, the resulting approximation to the Green's
function is nonconserving —i.e., the spectral weight is
sometimes negative. But a conserving approximation can
be regained by mapping the step in Fig. 8(a) to a particu-
lar tight-binding problem. In the process one naturally
discovers that necessarily a second path —the loop in
Fig. 8(c)—must also be included. (This is necessary in
order to avoid a vast overcounting of the self-retracing
paths leading to nearest-neighbor sites, which would re-
sult in too low a band edge. ) Because the resulting ap-
proximation is equivalent to a tight-binding model, albeit
a complicated one, we are guaranteed non-negative spec-
tral weights. The calculation is simple but rather unusu-
al, so we have outlined it here in some detail for the par-
ticular case of a square lattice in two dimensions. A
more intuitive understanding of the loop graphs, and the
results of our calculation, are all collected below.

The bare plaquette graph given in Fig. 8(a) is shown in
our graphical notation in Fig. 9(a). Writing this in a
more conventional form, as in Fig. 9(b), shows that the
plaquette graph represents the lowest vertex correction to
the simplest self-retracing path given in Fig. 7(b). We can
easily evaluate the bare plaquette graph in Fig. 9(a) using
the rules of Appendix D. They give

FIG. 8. (a) The plaquette path. The moving hole is
represented by an O, a reversed spin by a X. When the hole
moves 1 —' times around the plaquette, it moves diagonally
across the plaquette while cleaning up its string. (b) The pla-
quette path shown schematically. (c) A longer loop path which
permits the hole to move to a second-nearest-neighbor site on
the same sublattice, while cleaning up its string. (d) Two pla-
quette paths which end up at diA'erent sites are joined in the
middle.

FIG. 9. (a) The plaquette path in our graphical notation.
This is the direct path in which the hole moves from site 1 to
site 7 without any other retracings. The labeling of the sites is
the same as in Fig. 8. (b) The same diagram as (a) drawn more
conventionally. Here the hole lines have been pulled together at
the interaction node, and the spin lines have been separated by
the interaction line. This illustration shows that the plaquette
path gives the lowest-order vertex correction for the kinetic en-

ergy vertex.
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2
1 1

3cp /2 + l 5 m —5Ep /2 +i 6

2
1

co 7E,p/2+ 1 6
(61)

where i and j must be on opposite corners of a plaquette.
Now, this graph by itself is not a conserving approxima-
tion. We will show how a conserving approximation can
be made by building from this bare plaquette graph a
type of efFective tight-binding model which incorporates
this process plus others. Among the additions are an ex-
tra loop graph, needed to make the approximation con-
serving. We can also completely dress the graph with H,
and also add all other retracings of the type discussed in
the previous subsection.

To see how to handle the loop graph in Fig. 8(a), and
its extensions, let us first consider a much simpler one-
dimensional problem. Figure 10 shows an infinite chain
with three sublattices (a one-dimensional Bravais lattice
with a 3-site basis), with on-site energies eo, E,E . Sup-
pose we want to integrate out the c sublattices and find a
Green's function for propagation of a particle along the
co sublattice. We do so in two steps, first focusing on a
4-site segment cp —c. —c —co, and later restoring the
complete chain. The Hamiltonian describing the com-
plete 1D chain is

H= tg c;c,+Q—E;c;c; .

First consider the segment consisting of the four num-
bered sites in Fig. 10. Suppose a particle starts at site 1.
There are two distinct types of graphs we must
consider —paths which return to 1 without ever reaching
4, and paths which go from 1 to 4 without ever returning
to 1 and which stop as soon as 4 is first reached. This ex-
hausts all possible motions without double counting.
These paths are described by self-energies X» and X,4.
XI& arises from the self-retracing paths 1-2-1,1-2-1-2-1,
1-2-3-2-1, etc. , evaluated just as in the previous subsec-
tion; then

X„(ci))=
67 C~

CO E

X&4 represents paths from 1 to 4 without double counting
any of the self-retracing paths already included in X».
That is, once the particle leaves 1 it does not return, nor,
once 4 is reached, does the particle leave. This possible
paths are 1-2-3-4, 1-2-3-2-3-4, etc. , but not 1-2-1-2-3-4.

~ ~ r ~ i ~ sX ~ ~ ~X ~ ~ ~ ~s a ~ Xi, ,X ~ . .~ o

FIG. 10. A one-dimensional tight-binding model with three
sublattices. One sublattice has on-site energies co, and the other
two have c .

This simplest path, 1-2-3-4, gives

(64)

Allowing self-retracing paths of the form 2-3-2 changes
this to

X,~(co) = ( t)— (65)

The two self-energies X» and X,4 were obtained for the
4-site cluster. Using these it is easy to write down the
self-energy for propagation among co sites on the infinite
chain:

X; (co)=2XII5; +XI4(5 j+3+5;j—3) (66)

Here the particle can start from i and return to i by ini-

tially moving either left or right; this gives the factor of 2
in the first term. Or, the particle can move to a neighbor-
ing cp site three steps away to the left or right. Every
possible path for the particle moving on the co sublattice
is built up from repetitions of these basic paths:

G(o)~ +&(o)& G(o)+ G(o)& G(o)& 6(p)+. . .
IJ IJ IJ ik kj

(67)

Fourier transforming this and Eq. (66) over the Eo sites
(the closed circles in Fig. 10) yields

G(k, co) = 1

co —so+i 5 X(k—, ~)

where

X(k, co) =2X„(co)+2X,„(co)cos(k),

with the cp-co separation set to unity. This is the exact
Green's function for propagation within the cp sublattice.
One can check that the poles of this Green's function ex-
actly reproduce the eigenenergies of the tight-binding
model. Moreover, the spectral weight ~'ImG(k, co)—
will necessarily be non-negative, since it is the exact
Green's function for a Hamiltonian.

A procedure very similar to this solves the plaquette
path in Fig. 8(a). However, the problem in two dimen-
sions is a bit harder. In the one-dimensional example just
solved, replicas of the basic paths described by XII and
2 I4 join only at the end points —that is to say, only on Ep

sites. (For example, the particle could move 1-2-1-2'-1
where 2' is to the left of 1; the two retracing paths are
connected only at the original site 1.) But in the two-
dimensional problem built up from Fig. 8(a) on the square
lattice, equivalent paths also can be joined at interior
points. This is illustrated in Fig. 8(d). There, two pla-
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quette loops, which end up at different final sites, share
the same site 6. If this overlap is ignored, one is led to an
approximation that greatly overcounts the self-retracing
paths to nearest neighbors.

A way to handle this overlap is to draw an equivalent
but expanded version of our original square lattice, in-
cluding every possible plaquette loop. The result, an
effective tight-binding model in spin-configuration space,
is shown in Fig. 11(a). Suppose that we inject the hole on
sublattice A at the site labeled 1. Then the plaquette
graph allows the hole to move among sublattice A sites.
In Fig. 11(a), each site at the center of a cross represents
a state in our original problem consisting of a hole on
sublattice A with no reversed spons. Each site at the
point of a cross represents a state in which the hole has
moved to a neighboring site, leaving a reversed spin on
the original sublattice A site. The four points of each
cross represent the four ways the hole can move to neigh-
bors in two dimensions. In general, the numbering of

(a)

r

y 5
2+5 ~21

(b)
/

/r /
/ 4U' /

/r /
/

Nr / r /
/ r

i ~Mr. r
r/

/ r/
/

T + r/ ~
4 /

FIG. 11. (a) An equivalent representation of the plaquette
graph, applied everywhere in the plane, as a tight-binding model
in the space of hole position and spin configuration. The num-
bering here corresponds to that in Fig. 8(a). If the particle here
is at the center of a cross, the corresponding state in the original
problem has the hole on sublattice A, with no spins reversed.
Site 2 here corresponds to the hole moving one step in the origi-
nal problem, leaving a reversed spin behind. Thus motion along
the path 1-2-3-4-5-6-7 here is identical to the plaquette path.
All hops have amplitude —t. (b) An equivalent representation
of the string-erasure (J~) graph described in Sec. V. The sites
on the cross are the same as in (a). The solid lines here
represent hops with amplitude —t, and the dashed lines are
hops with amplitude ( —t)J~/( —2co+J, ). Stepping from 1 to 2
to 7 [in the notation of (a)j represents the string-erasure process
shown in Fig. 14. To avoid cluttering, we have left off'one set of
dashed lines which connect 1 to 2' and all equivalent pairs.

sites in Fig. 11(a) corresponds in this way to the same
numbers in Figs. 8(a) and 8(b) and Fig. 9(a); that is, the
numbers in Fig. 11(a) represent both a hole position and a
particular spin configuration in the original square lattice.
Hopping from 1 to 7 in Fig. 11(a) is equivalent to the hole
motion given by the plaquette loop.

In Fig. 11(a) each line connecting two sites represents a
hop with amplitude —t. Each site has an on-site energy
equal to the Ising energy of the corresponding hole and
string configuration in Fig. 8(a). Thus, sites 1 to 7 have
on-site energies, respectively, c,, c2, c3, c4, c5, c6, c7, where
c„ is the energy of a hole plus its string of n —1 reversed
spins:

E7 =ei =Eo/2, Es= Ep= Eo/2+ 3J~ /2

E5 C3 Eo/2+ 5Jz /2

@4=co/2+6J, /2 .

(69)

11 22 ~ 17 26 ~ 11' 22'
I 2 2 (70)

(Hereafter primed quantities X', G' describe motion on
the 16-site diamond, and unprimed quantities are for
motion on the infinite lattice. ) Here X» represents every
way the hole can leave site 1 and return to it without
reaching any other cross center. During the motion, the
hole can move freely around a diamond. 217 represents
every way the hole can go from 1 to 7 without returning
to 1 and without reaching any other cross center. X». is
similar.

Then the complete self-energy will be

~".'"=&»~~7+~F7 X &R, R,. +
r =+x+y

+~11' X 8R, R, +r '

r =+2x, +2y
(71)

Fourier transforming, the complete Green's function for
the propagation of a hole among A-sublattice sites is

Here we have included the effect of complete dressing
with H, [compare this with the energies in Eq. (61)].

Thus we have mapped our original problem to an
equivalent tight-binding model in configuration space.
We are interested in propagation among sites at the
centers of the crosses in Fig. 11(a); this problem can be
solved exactly. The solution will include retracings
among the sites in Fig. 11(a) (e.g. , 1-2-3-2-1). This, how-
ever, only includes some but not all of the self-retracing
paths described in the previous subsection. In fact, all of
the self-retracing paths can be added to the lattice in Fig.
11(a),but for clarity we will postpone them until later.

The tight-binding problem in Fig. 11(a) is solved like
the one-dimensional example given above. There we
needed to consider a 4-site segment of sites. Here we
need to consider the 16-site diamond in the center of
11(a), and compute Gzz, G~6, and G~z propagators for
motion on the diamond only. In terms of these, the self-
energies for propagation on the 3 sublattice (i.e., between
cross centers) are
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G(k, co) = 1

co —s, +i5—X(k, co)

where

(72)

g(k, co)=X»(co)+4X,7(co)[cos(k )cos(k~)]

+2K» (co)[cos(2k )+cos(2k~)] . (73)

Here using Eq. (70) makes this the complete self-energy
for the plaquette graph placed onto the tight-binding lat-
tice.

Thus the problem has been reduced to solving for G22,
G26, and G22 on the 16-site diamond. This is a cyclic 1D
ring, and we solve for its Green's functions in turn by
pulling the smallest unit out of it: consider the cluster
consisting of a single side of the diamond, i.e., the five
sites 2-3-4-5-6. For this 5-site segment we need two self-
energies: X@2, representing all self-retracings from site 2
back to itself (without reaching site 6); and X&6, represent-
ing all paths from 2 to 6 that never return to 2 and that
stop as soon as 6 is reached. Just as in the 1D example
above, these are [with reference to Eq. (63) and Eq. (65)]

&Z2=

2

CO C4
CO 85

&z6=( —
&)

t2

t'
CO 84

M E5

QP E4
CO C5

(74)

G'(k, co) = 1

co —E~+ i5 —2X~~ —(2 cosk )2~6
(75)

The allowed discrete k values are —~/2, 0, ~/2, and ~.
Using the formulas for the inverse Fourier transform,

G~~ =
—,'[G'( vr/2, )c—o+6'(0, )co

+G'(~/2, co)+ G'(vr, co)],
G' = '[G'(O, co) —G'(n, co)],—

G~z =
—,'[ —G'( —~/2, co)+G'(O, co)

—G'(vr/2, co)+ G'(rr, co)],

(76)

we find

g 2 2(g& )2

(, )pg~

In k space, the Green's function for the hole motion
around the corners of this 1D diamond takes the form

tree approximation. From any site equivalent to 2, a hole
can move in one extra direction [besides those already in-
cluded in Fig. 11(a)], and then the hole has z —1 choices
at each further step. From sites 3, 4, or 5, the hole can go
z —2 extra ways initially and z —1 ways thereafter. Thus
in Eqs. (74) and (78) make the replacements

E„~E„=E„+X„„(co—E„), n =2,6,
(79)

s„—+ E„=E„+(z —2)X„,„(co—E„), n = 3,4, 5,
where 2„„,is given in Eq. (60) and E„ in Eq. (69). This
has the effect of hanging a Cayley tree off of each site (ex-
cept for cross centers) in Fig. 11(a).

This, then, is our final result for the Ising limit: it corn-
bines the plaquette graph of Fig. 8(a) plus the self-
retracing paths, dressing everything completely with H, .
The end result is that the self-retracing-path approxima-
tion has been partially corrected —certain paths which
were erroneously treated in the Cayley-tree approxima-
tion have now correctly been identified as loops which let
the hole move.

26
X'

2 4(g& )2
(77)

2(&~6)'g
2 4(g& )2

where

2

CO 82+ l 6 2222
(78)

Finally, the Greens' function for hole motion on the 2
sublattice, based on the plaquette loop, dressed with H„
is given by Eq. (72), using Eqs. (73), (70), (77), and (74).

In this development we have included certain self-
retracing paths, those which move around a single pla-
quette. But this is only a negligible fraction of the
infinitely many self-retracing paths described earlier.
However, it is very easy to add all other possible self-
retracing paths, as long as they are treated in the Cayley-

C. Results and interpretation

First let us point out that the spectral weight
vr 'ImG(k, co) —computed from Eq. (72) is necessarily

positive definite; i.e., the approximations made are con-
serving, because they are equivalent to a Hamiltonian-
the tight-binding model in configuration space, in Fig.
11(a). Even when the remaining self-retracing paths are
included, this is still true —in Fig. 11(a), each site except
for those at the centers of crosses now becomes the root
of a Cayley tree extending outward. The result is still a
tight-binding model.

Let us look again at the tight-binding model. A path
from one cross center to another along a diagonal in Fig.
11(a) is identical to the hole moving along the plaquette
path in Fig. 8(a). However, it is also possible to move
from site 1 to 2 to 6 to 2' to 1' in Fig. 11(a). This turns
out to be equivalent to the larger loop path shown in Fig.
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FIG. 12. An example of a spectral weight in the Ising limit
arising from the loop paths, or, equivalently, the model in Fig.
11(a). Here J, =0.2, k=(0, 0), and the small imaginary bit
6=0.01. The peaks are bound states in the confining potential
produced by the string. Here the loop path lets the hole move,
so, e.g. , the lowest peak has dispersion.

FIG. 13. Bandwidth in the Ising limit. For large J„ the
bandwidth decreases exponentially. Our approximations break
down below J,=0.2; for smaller values, longer loop paths be-
come important.

8(c). Thus, to get a conserving approximation (to have an
approximation equivalent to some Hamiltonian) we need-
ed to include both paths. This is something like the usual
Ward's identity in which inclusion of one graph requires
inclusion of another.

An example of the spectral weight computed in the Is-
ing limit is shown in Fig. 12. The many sharp peaks
represent the bound states of the hole, as in the previous
subsection. Here, however, the peaks are dispersive. Let
us focus on the lowest-energy peak; it is now a real quasi-
particle peak, with a nonzero bandwidth provided by the
loop graphs. The band minimum turns out to occur at
k=(0, 0), and the maximum at k=(vr, O) or (O, m) [be-
cause XI7 is negative and dominates XI& in Eq. (73)]. We
have plotted the difference between these, the bandwidth
W =co~o

~

—co[o o~, in Fig. 13. The qualitative features of
the bandwidth ar'e that it falls rapidly at large J„growing
with decreasing J, until a peak at J, =0.2 and then fal-
ling.

The large-J, features of this bandwidth are easily un-
derstood in terms of effective one-dimensional tunneling.
As the hole moves around the plaquette path in Fig. 8(a),
the Ising energy of its string steadily grows until the hole
reaches site 4, and then drops again. Shraiman and Sig-
gia pointed out that the hole motion can be thought of as
effectively one dimensional, with the length of the string
acting, in a continuum approximation, as a Cartesian
coordinate. Here we see another example of that: for
the hole to move around the plaquette loop, it must tun-
nel through the one-dimensional barrier created by the
string s Ising energy. This picture is even clearer in the
equivalent tight-binding model, in Fig. 11(a). There the
particle must hop along the diagonal sites, which have a
sawtooth on-site energy (rising up to a maximum -4J, at
site 4 and then dropping). This barrier gives an exponen-
tial suppression to the amplitude for the effective hop

from site 1 to 7, and so the bandwidth must be exponen-
tially small in J, for large J, . The continuum approxima-
tion, applied to this sawtooth barrier, gives a tunneling
amplitude of order exp[ —5.3(J, /t)'~ ] This .gives rise
to an effective hopping amplitude of the same order and
hence controls the bandwidth. And, in fact, the large-J,
bandwidth for J, & t is well fit by
co~o o~

—
co~ o~= —3.0 exp[ —4. 6(J, /t)'~ ], in reasonable

agreement with the continuum approximation.
As J, shrinks, on the other hand, the barrier height

falls, the hole can propagate more freely, and the band-
width grows. This is seen down to J,=0.2 in Fig. 13.
What happens to suddenly stop this growth at this point?
Something similar to a finite-size effect (even though we
are working on an infinite lattice). As J, falls, indeed it
becomes highly probable that the hole will tunnel
through the barrier and so traverse the plaquette path.
However, at small J, it can also go very far down the
Cayley tree before it is forced by the Ising energy to re-
trace its path. Essentially, the hole gets lost in the
infinitely many possible self-retracing paths, and cannot
find its way around the plaquette. However, the vanish-
ing of W seen in Fig. 13 is unphysical, a consequence of
only considering the smallest loop paths.

The two loop paths shown in Figs. 8(b) and 8(c) are
only the two smallest of an infinite set of related loop
paths which permit the hole to move, while cleaning up
its string. As long as J, is sufficiently large, only these
two will matter —longer paths will have higher barriers,
and will be exponentially insignificant relative to the
dominant plaquette graph. More quantitatively, the
expected length of the strings in the ground state,
in the continuum self-retracing approximation, is
1.87(J, /t) ' . When this length exceeds 3, it becomes
very likely that the plaquette path wi11 be traversed; this
occurs at J, /t =0.24. However, as this expected length
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becomes larger, then longer and longer loop paths will
begin to contribute to the hole's propagation. The col-
lapse of the bandwidth in Fig. 13 at J,=0.2 is a result of
the expected string length growing to 3. In reality, at
smaller J, the longer loop paths (which we neglect) will

begin to contribute to the propagation and hence the
bandwidth. This becomes a geometric question —as J,
shrinks and the expected string length grows, the hole
can move further down the Cayley tree; but simultane-
ously more and more loop paths can help it propagate. If
the latter growth wins, it will keep the bandwidth in-
creasing as J, shrinks, to some finite value at J, =O. If
the dead ends dominate, then the bandwidth will vanish
as J,—+0. Which is the case is not known. In any event,
our results are only accurate down to J, =0.2. We will
compare our results to those of exact diagonalizations in
the next section.

The picture which develops from this analysis is the
following. The basic excitation is the hole dressed by a
cloud of disturbed spins; here this cloud results from the
hole plus the many self-retracing paths which it can fol-
low. This composite object can then propagate by a kind
of one-dimensional tunneling through a barrier created
by the Ising energy.

V. CHARGE KXCITATK)NS NEAR THE ISING LIMIT

When J~ is switched on, the string of reversed spins
left by a moving hole can relax. This provides the charge
a second way to propagate, distinct from the loop paths
just treated. In earlier analytical studies of the t-J model
(including our own), only this string erasure process was
considered. In this section we will carefully examine this
process near the Ising limit (i.e., for Ji ((J,).

One interesting result is that this erasure process and
the loop path, both of which let the hole move, actually
interfere and cause a level crossing. Consequently, as J~
grows, the band minimum for the lowest-lying quasiparti-
cle switches from k=(0, 0) to k=(~/2, ~/2). This in-
terference explains some unusual features of numerical
calculations.

There have been very few controlled calculations of
hole properties in the t-J model; much of our under-
standing has resulted from small-cell numerical studies.
One interesting result found in numerical work was that
co~0 o~

—
coI z2 „zz~ (where cok is the energy at momentum k)

vanishes at a small but nonzero J in the Heisenberg rnod-
el. However, this could not with certainty be ascribed ei-
ther to real physics or to a finite-size effect [the value of J
at which this occurs is small, and not too far from the
value where the crossover to a ferromagnetic state (the
Nagaoka effect) occurs]. Our calculation provides the
first indication that this effect could be real, a conse-
quence of the interference between two channels of prop-
agation.

The picture that results here is similar to that of the
previous section. The basic quasiparticle is the dressed
hole, i.e., the hole plus a cloud of reversed strings. The
cloud is given by the hole's virtual but retraced excur-
sions. The composite object is allowed to move, now by

A. String-erasure graph

The simplest string-erasure process is shown in Fig. 14.
There the two Hipped spins left by a moving hole are re-
stored to their Neel configuration by the action of H~.
More precisely, the true ground state in the presence of
H~ adds fIuctuations to the Neel state; it is just such a
vacuum fluctuation that here erases the string and un-
binds the hole. This basic step gives a self-energy (using
the rules of Appendix D)

X, (~)=2t (80)
1 I

co 3cp/2+1 6 2cp

The factor of 2 arises from a second, equivalent graph in
which the Hipped spins are created before the hole moves
(i.e., reAect Fig. 14 both horizontally and vertically).

~ ~
( t )

0 ~

~

X o

( t) ~ 0 (J ~~) 0 0

X X

FIG. 14. (a) The basic string-erasure (J~ ) graph. Here the
hole hops twice, and the resulting pair of disturbed spins can re-
lax to their Neel configuration by the action of H~. (b) The
erasure process in our graphical notation. Nate that the inter-
mediate state (the hole plus the flipped spin it left behind after
the first hop) can be identified as a site labeled 2 or 6 in the
erat'ective tight-binding Hamiltonian (see Fig. 11).

string erasure as well as loops.
An interesting question is whether this picture survives

in the Heisenberg limit. There the spin excitations be-
come gapless, and one might imagine that the strings
might efFectively have zero energy, and perhaps could be
neglected. We will not directly address this question
here; whatever rigor is possessed by perturbation theory
breaks down in this limit. Nonetheless, we have shown in
earlier work that, using physically reasonable approxima-
tions, the same picture in fact does persist. Even in the
Heisenberg limit, that is, there is a low-lying quasiparticle
peak given dispersion by the string erasure (Ji ) process.
The reason the low-lying peak must exist is simple. The
string problem can be viewed as 1D motion in a linearly
confining potential. "As long as the gapless spin waves
do not completely eliminate this confinement, then as in
any 1D problem at least one bound state must exist. This
appears as a low-lying peak in the spectral weight. In
fact, small-cell calculations show that the string picture is
better than this argument requires. In the Heisenberg
limit, the numerical studies find, at least for moderate
values of J/t, several bound states visible in the spectral
weight. ' ' ' Our earlier analytical results, moreover,
showed that at least one bound state persisted down to
arbitrarily small J.
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Similar to Fig. 2 and Eq. (41), e+ + =2 and c+z +z =1;
but in this case, co=0. This graph can easily be dressed
completely with H„as explained in Appendix E. Here
we will partially dress with H„excluding certain vertex
corrections (in which H, lines connect the outgoing hole
line to the double line). Then the frequency factors in Eq.
(80) become (co —Ez) '( —2EO+ J, ) ', where ez is given in
Eq. (69). We can also easily include all retracing paths
away from the internal line, as we did for internal sites in
our calculations of the loop paths. This simply replaces c2
by Ez as in Eq. (79). Finally, Fourier transforming, the Ji
string erasure graph gives

Xi(k, co)=(Jit ) [(zyk)z —z],1 1

co —c. 2+ i6 —2Eo+ Jz

where yi, is defined in Eq. (26). Notice that the k depen-
dence of this expression, which arises quite naturally in
this real-space analysis, was used to fit the numerical re-
sults of Stephan.

The basic J~ graph gives the hole an alternate route to

hop, besides the loop path treated earlier. Like the latter
it can be interpreted as a hop on an effective tight-binding
Hamiltonian, from which we can then construct a con-
serving approximation. The corresponding tight-binding
Hamiltonian is pictured in Fig. 11(b). There the sites on
the crosses are identical to those in Fig. 11(a). The solid
lines represent —t hops, and the dashed lines at angles
are hops with amplitude

JJ /2
t '=—( t)— (82)

( —2so+ J, )

We will give the exact Green's function for this tight-
binding Hamiltonian below. Some dashed lines have
been omitted from Fig. 11(b) to avoid overcrowding—
there are —t' hops between sites 1 and 6', and equivalent
pairs, as well.

Moreover, it is simple to combine the two process, loop
and erasure, as a conserving approximation, while treat-
ing both equally. Pictorially this is done by overlaying
Figs. 11(a) and 11(b). The final result, the complete self-
energy for the hole, including both the loop and erasure
channels, is given by Eqs. (72) and (73). But instead of
Eq. (70) we have (in 20)

X„=z[t Gzz+tt'(4Gz6+26zz )+t' (3Gzz+4Gz6+26zz )],
X, =2[t G' +tt'(2G' +26' +2G' )+t' (2G' +56' +2G' )],
X„.=t Gzz. +tt'(26zz+46z6)+t' (26zz+4Gz6+36zz ) .

(83)

The 6' are given by Eq. (77). As before, these self-
energies come from paths which start on some
sublattice site and end as soon as another 3 site is
reached. For example, the first of these equations comes
from the sum of aH paths in which the particle starts at
site 1, moves to any of 2, 6, 2' or 6', moves around the di-
amond to any of 2, 6, 2' or 6' again, and then returns to
site 1. An example of the spectral weight arising from
this expression is given in Fig. 15.

Let us investigate the limits. When t is set to zero, so
that the erasure graph is switched off, this reduces exact-
ly to the expressions we derived earlier for the loop paths
[Eq. (70)]. On the other hand, when J, grows large, so
that the loop process is suppressed, then 222 and r,26
become small and from Eq. (77) we have
Gzz~1/(co —Ez+i5) and Gz6, 6zz ~0. Then from Eq.
(83) we find

X„=z(t +3t' )Gzz,

X»=2K» =4(tt'+t')6,', ,

and hence

forms 1-2-1 and 1-6-1. The k-dependent term has a tt'
piece equivalent to Eq. (81) (i.e., due to paths of the form
1-2-7), and another piece representing paths of the form
1-6-7. This last expression is the solution of Fig. 11(b)
alone. To develop a conserving approximation using the
erasure graph, we have put the graph onto a tight-
binding model. The exact Green's function for the latter
then teaches us that, to get a conserving approximation,
we must include several graphs in addition to the simple

3—

3 2—

X(k, co)= 1 Iz(t'+3t')
Fo+ l 6

J~ ]JUL, Ad~~ jI(j&~4)Jis&~
—2 0 2 4

~/t
+2(tt'+t'z)[(zy„)z —z]I . (85)

Here the k-independent terms come from retracings of

FIT+. 15. An example of a spectral weight, including both the
plaquette and string-erasure graphs, for J, =4JJ =0.2, k =(0,0),
and 6=0.01.
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FIG. 16. Crossover values of J~/I, . Above the line, the eras-
ure graph dominates and the hole's band minimum is at
k = (m/2, ~/2). Below the line, the loop paths dominate and the
minimum is at k = (0,0).

erasure graph. These extra graphs are representations of
the extra terms (particularly the k-dependent t' term).
In the same way, the many contributions to Eq. (83)
represent a collection of graphs, including the plaquette
and erasure graphs, which combine to give a conserving
approximation.

The most interesting property of the hole arising from
this analysis is that the two propagation channels turns
out to interfere, giving a level crossing in the ground
state. This occurs because t and t' have opposite signs.
The loop path alone gives a band minimum for the low-
lying quasiparticle at k=(0, 0). The Ji graph, however,
favors k=(vr/2, n/2) [see Eq. (81)], and so the two chan-
nels compete. Let us make this idea quantitative. When
both channels are included, the energy cok of the low-

lying peak will be a function of both J, and Ji (as well as
k, of course). For very small Ji/J„ the loop path dom-
inates and so co~oo~(co~ zz zz~. For large enough Ji/J„
conversely, the J~ graph wins and ~(pp]) co~ &z „&z~. At
some intermediate value of J~/J„a level crossing occurs
in which the band minimum switches from k=(0, 0) to
k=(~/2, ~/2). This crossover value of Ji/J, is shown as
a function of J, in Fig. 16.

At large J„the loop path's amplitude is exponentially
small in J, . The erasure graph has an amplitude propor-
tional to Ji [Eq. (81)]. Actually, both the loops and the
erasures are exponentially small in J, . But in the former
case the hole moves farther and so the constant in the ex-
ponent ( —number of steps) is larger. Hence for large J„
the erasure graph dominates even for quite small J~.
This can be seen in Fig. 16. But as J, shrinks toward our
limiting value of J, =0.2, the loop path's amplitude
grows and it takes a larger J~/J, to cross over to the
erasure-dominated phase.

These calculations are in very good agreement with,
and help explain, small-cell exact diagonalizations. We
will compare our results with exact calculations on a

4X4 lattice, the largest size generally treated. Interpret-
ing these results requires one caution: the 4 X 4 lattice is
somewhat special. It turns out that this particular lattice
has an extra degeneracy between co~ &z &z~ and cu~ &p~

which must be kept in mind. ' '"' The "bandwidth" usu-
ally quoted for numerical work is 4co=co~p p) 67(

In fact, in the infinite system, the band minimum changes
from (0,0) to (~/2, n./2) at some small J, /t, and the band
maximum switches from (n., O) to (0,0) at some intermedi-
ate value of J„so some caution is needed.

In Fig. 17 we have compared several energy differences
obtained on the one hand from the low-lying pole in the
Green's function obtained using Eq. (83), and on the oth-
er from exact diagonalizations on a 4X4 lattice. Shown
are results at three values of J~/J, . First consider the
pure Ising case, Fig. 17(a). Here the band minimum is at
k=(0, 0) and the maximum is at (rr, 0). The lower two
curves shown in Fig. 17(a) show a very good agreement
between our results and those from exact diagonalization
on a 4X4 lattice, for J, /t greater than 0.4 or so. IThe
band minimum is at k=(0, 0) and the maximum at (a, O)
in the infinite system, so the curve marked with diamonds
gives the (negative) bandwidth. ] In the numerical work,
finite-size effects set in when the expected length of a
self-retracing path grows to be of order the linear dimen-
sion of the cell. In the Ising limit, this length
—2(J, /t) '~, so roughly one expects calculations on the
4X4 lattice to be valid for J, /t )0.2 or so. (At some
sufFiciently small J„ the hole's preference for ferromag-
netic order in the finite system drives the spins into the
Nagaoka phase. ) Similarly, our calculation is valid as
long as loop paths longer than those in Fig. 8 can be
neglected, which is true at least down to J, /r =0.2.
Given the good agreement between our theoretical results
and those of diagonalizations, and the understanding of
why agreement breaks down at small J, /t, we are
confident that the loop path gives the dominant coherent
behavior when J~ =0.

Consider now the case of a small Ji. In Fig. 17(b) ener-
gies are plotted for different values of J, /t, with J~/J,
fixed to be —,', . Fig 17(c) is similar with Ji/J, =

—,'. First
let us focus on the large-J, behavior. For large J, /t, the
loop is exponentially suppressed, as described in Sec. IV,
and the erasure graph dominates. Any differences be-
tween the analytical and numerical results then are a
measure of how completely we can describe the string
erasure processes using only the low-order graph (Fig. 14)
and the partners which join it when the approximation is
made conserving. It is evident from Figs. 17(b) and 17(c)
that the agreement is quite good.

It is very encouraging that the large-J, analytical re-
sults are in such very good agreement with the numerical
bandwidth. We have included only the lowest-order
string-erasure process, of order J~, and have neglected
higher-order erasures of order, e.g. , Jy ~ At J„/J =

4 one
might then expect our calculation to be in error by about
25%. In fact, the agreement is much better than that—
about 3% for this case. We expect, but have not proven,
that there is an extra geometric control factor present
here, as in the spin case, and that in fact the convergence
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FIG. 17. Differences in energies of the low-lying quasiparti-
cle peak at several values of k, as a function of J, . The solid
lines are the results of our theory, and the dashed lines are ob-
tained by exact diagonalization with one hole on a 4X4 lattice
with periodic boundary conditions. Note that the theory con-
tains no adjustable parameters. The theory reproduces some
fine structure in the exact diagonalization results, including,
e.g. , the maximum in (c). (a) Ising limit (J& —=J„~=0). The ener-

gy differences are always negative, since the minimum is at
k=(0,0) and the maximum at (~,0). (b) For a constant ratio
J&/J, =

—,'o. Here the band minimum crosses over from k=(0, 0)
(for J, (0.5) to k=(~/2, vr/2) (for J, )0.5). The band max-
imum changes from (m, 0) to (0,0) at J,=0.7. (c) For a constant
ratio Jy/J =

4 ~ Note, as for (a) and (b), the very good agree-
ment for large J„where the finite-size corrections are small, be-
tween theory and numerical data.

is controlled by J~/(ZzJ, ).
Let us look more closely at Fig. 17(b). For small

J, /t ~0.5, the loop process dominates, and so the band
minimum is at k=(0, 0) while the maximum is at (vr, 0).
Thus in Fig. 17(b) the lower line (diamonds) gives the
(negative) bandwidth for small J, /t. For large J, /t )0.7
the erasure path dominates, the band minimum is at
(vr/2, n/2) and the maximum is at (0,0). Thus the upper
theoretical line (squares) gives the large J, /t bandwidth.
In both of these limits there is good agreement with the
results of exact diagonalization. (For intermediate values
of J, /t, the bandwidth is given by co~ OI

—
co~ &2 &2I.) Our

results for the larger J~/J, =
—,', in Fig. 17(c), are qualita-

tively similar. Again there is a level crossing (here not
shown) above which the erasure graph dominates and the
band minimum is at (~/2, n/2)

One interesting result of the numerical calculations is
that the bandwidth appears to vanish at some finite J, .
We can completely understand this result from our
analytical work. Plotted in Fig. 17(b) are two analytical
energy differences: co~o o~

—
co~ &2 &z~ and co(o o)

—
co(

Also plotted is the single energy difference obtained from
the 4 X 4-site diagonalization. (As mentioned above,
A@I &2 &2I and coI oI are degenerate for this cell. ) Notice
first the results from the diagonalization: there the band-
widths shrinks as J, /t shrinks, passing through zero at
J, /t =0.7. This vanishing of the bandwidth, as men-
tioned above, has also been seen in calculations at the
Heisenberg point. There it was taken to be a precursor of
the Nagaoka transition. Here we see reason to doubt
that interpretation. In our analytic calculation the quan-
tity ~~o o~

—
co~ &2 &2~ is also seen to pass through zero and

become negative (at J, /t=0. 5). In our calculation the
system is of infinite extent and no Nagaoka transition is
possible. In fact, the correct interpretation of this point
is that it is simply a level crossing, a consequence of the
interference between the loop and erasure processes. The
bandwidth does not vanish, but the ground state switches
from k=(0, 0) to (~/2, ~/2).

Such a vanishing of A~=co~o o~
—

co~ &2 &2~ at small J
was first seen in numerical calculations of the Heisenberg
limit. Does the same explanation work there? We can-
not with certainty answer this question, since our calcula-
tion breaks down at very small J, . However, the vanish-
ing is consistent with our results. From Fig. 16, clearly
we predict that the band minimum lies at k=(w/2, m/2)
in the Heisenberg limit at large J. (Go up toward
J~/J, = 1 at large J, .) However, the region in which the
band minimum lies at k=(0, 0) grows as J, shrinks. Our
calculation becomes suspect below J, =0.2. Nonetheless,
it is quite plausible that at some sufTiciently small J, the
(0,0) region extends all the way up to J~/J, =1. If so, a
calculation in the Heisenberg limit would exhibit cross-
over at this value of J =J, . This might explain the nu-
merical result even in the Heisenberg limit.

Figure 18 summarizes the behavior of the low-lying
coherent states of the hole as J, /t is varied for some typi-
cal value of J~/J, . The lines schematically denote con-
stants of energy near the band minimum. The shape of
these "hole pockets" changes qualitatively near the cross-
over point discussed above. The values J/t —1.0, 0.1,



11 230 JOHNSON, GROS, AND von SZCZEPANSKI

Eo( ~ ~ ) & Eo(m. ,0) & E (0,0)

J/t- &.0

Eo( a z ) & Eo(0,0) & Eo(7r, O)

FIG. 19. The intersublattice process. The occurrence of a
vacuum fluctuation in the half-filled state (represented by the
J~/2 vertex on the left side of the diagram) allows a spin-f hole
to be created on the B site by the destruction of the d line. This
changes the Ripped spin (double line) into a single hole line in
the lower part of the diagram.

J/t - 0.1

Eo(0,0)& Eo( z a ) & Eo(~,0)

J/t - 0.01

FIG. 18. Schematic illustration of evolution of the shape of
the low-energy band as J, /t varies. The values J/t =1.0, 0.1,
and 0.01 are order-of-magnitude guidelines. For J/t ))0.1,
when the string-erasure graph is dominant, the minimum lies at
k=(~/2, ~/2) and the maximum at k=(0,0). At J/t —0. 1, the
maximum has shifted to k=(~, 0). For J!t&&0. 1, when the
loop graphs are dominant, the minimum has shifted to k=(0, 0).

and 0.01 are to be considered only order of magnitude
guidelines.

8. Intersublattice motion

Up until now, we have concentrated on the dispersion
of the lowest energy state, by focusing on processes in
which the hole is injected onto and removed from the
same sublattice. Now we wish to turn to a discussion of
the total spectral weight of the charge excitation. To do
so, we have to take into account an additional process
which lets the hole be injected onto one sublattice and re-
moved from the other. It turns out that this process does
not change the position of the poles, but it does redistri-
bute their spectral weights.

Naively one might expect that the intersublattice pro-
cess might be more important than it is. This is suggest-
ed by the useful relation' '~'

~itj) =r(it ~(2S; S, + —,'n, n, )~it ), (86)

where yi, j g are nearest neighbors, n, =c,- &c,- &+c, &c, &

and the kinetic-energy operator Tx is given by Eq. (1).
Here

~ f) denotes some half-filled spin state.
In the classical antiferromagnetic state, the Neel state,

G;, (t)= —i ('Tc,tt (t)c, t(0)) . (87)

Now, depending on the sublattice, creating a hole can be
thought of as either creating a vacant or destroying a
doubly occupied site. That is, 6;, written in terms of h
and d operators can have one of four forms. These can
be labeled by AA, AB, BA, and BB, where the second
letter denotes the sublattice on which the hole is injected
and the first where it is taken out again:

,G„( )r= —i(~h, (r)h,'(0)),
G„ii(t)= —i ( V'h, (t)d (0)),
G»(r) = i ( V'd t(r)h—t(0)),
Giiii(t)= i ( Vd t(t)d—(0)) .

(88)

It is very easy to combine all of these contributions and
make a connection to the effective tight-binding Hamil-
tonian discussed before. The lowest-order contribution
to Gz& is shown in Fig. 19. There a vacuum fluctuation
occurs in the Neel state so that a d operator can create a
hole. (In Fig. 19 the hole is created when the double line
in the lower half of the figure is changed into a single
line. ) The kinetic energy vertex then transfers this hole
to the NN site, destroying the flipped spin originally
created there by the vacuum fluctuation. This process is
the dynamical generalization of Eq. (86). Using the rules
of Appendix D, this graph (dressed with W, ) gives

the expectation value of the kinetic energy of an injected
hole, as defined by Eq. (86), vanishes. But when quantum
fiuctuations are present in g), then this expectation
value becomes nonzero, of order t. It has therefore been
suggested that one might inject a charge into a fluctuat-
ing antiferromagnet or perhaps a quantum spin liquid
and propagate it with a coherent bandwidth of order
t. ' '~' We believe that this is in fact not correct.

The above relation involves propagation between the
two sublattices, and so to address this issue we consider
the Green's function for the hole created by removing an
electron of definite spin (say, 1'):

GAB( )

—Jq /2 1 1

—2zo+ J, co —3Eo/2+ i6 co —~o/2+ i &
( t) —6(, &. (89)
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This process creates as an intermediate configuration a
state with one hole plus a Aipped spin on a NN site, as
shown by Fig. 19. We can interpret this configuration as
a state labeled 2 or 6 on the lattice for the effective tight-
binding Hamiltonian (see Fig. 11). Therefore we can han-
dle this intersublattice process in a conserving way using
the tight-binding lattice. The hole can be created or des-
troyed at either an A site, such as 1 or 7, or a B site, such
as 2 or 6. Once the hole is created it is free to propagate
and can be removed from either sublattice. Graphs like
that in Fig. 19 can only occur at the beginning or the end
of the propagation. Hence they do not change the posi-
tion of the poles in the self-energy, but only inAuence
their relative spectral weight.

The above expression for G, can be interpreted as the
(bare) Green's function for propagation from site 2 to site
1 on the tight-binding lattice, multiplied by
(J~/2)/(2Eo —J, )= —t'/r. That teaches us what to do in
general: compute the Green's function for motion on the
tight-binding lattice, not only among sites equivalent to 1,
but among all sites equivalent to 1 and 2 (i.e., sites on
both sublattices A and B). To get the corresponding elec-

tron Green's function in Eq. (87), multiply by t—'/t if i is
on sublattice B and multiply by —t'/t again if j is on B.
For clarity in what follows, let us label by G the
Green s function for motion on the tight-binding lattice,
without any extra multipliers, and use G for the electron
Green's function Eq. (87).

Suppose the hole is injected on site 2. Then the hole
could move to, say, site 1 and then to any other site i H A
in the lattice. This gives a contribution to the tight-
binding Green's function

G,"2"' =( —~G22 —2~'Gz6 —~'G22 )G;, (co) . (90)

G;, is the propagator between site 1 and i worked out in
the previous subsections. Here the hole can move around
the diamond and exit to site 1 from any of the diamond's
four corners. In addition, the hole could exit to any oth-
er A site adjacent to the diamond, and moreover could
have been injected at any site within the diamond. In-
cluding all such contributions, allowing the hole to be in-
jected on and removed from either A or B, and including
the factor t'/t a—s appropriate, the complete Green's
function is

22
I

G(k, ~)=G (k, ~) I+zonk —(r +3t')( Gz2+2Gz6+G22) +4 — [G22+2G26+G2$, ] .
t

(91)

Here G is the Green's function for motion on the A
sublattice only worked out in the previous subsections.

In Fig. 20 we have plotted the spectral weight
vr 'Im(k, co—) for a single charge, for two choices of pa-

rameters, using Eq. (91). This Green's function includes
the Brinkman-Rice self-retracing paths, the plaquette
path, the string-erasure graph, and the intersublattice
motion discussed above. All of these contributions have
been included in a conserving approximation, and conse-
quently, the spectral weight is strictly non-negative.

A1so shown in Fig. 20 are spectral weights obtained by
the exact diagonalization of a 4 X 4 cluster with periodic
boundary conditions and one hole. The quantitative
agreement of the position of both the lower band edge
(i.e., the propagating pole) and the upper band edge is
evident. In addition, the spectral weight of the lowest
pole (i.e., the integrated area) agrees very well between
theory and computer experiment. This is a stringent test
of a theory containing no adjustable parameters. (The
values for t, J„J~ and the small imaginary part of co in
Fig. 20 are the same for both theory and numerical data. )

For intermediate energies, the position and intensity of
the peaks obtained from the two calculations do not coin-
cide. In particular, the theoretical peaks are spaced
much more regularly than are the numerical peaks. This
regularity is not surprising, since the theoretical poles are
essentially the excited states of the hole moving in the
linear confining string potential of the self-retracing
paths. Thus, without being able to prove it, we suspect
that the discrepancy at intermediate values of co might be
an indication of the finite-size limitations of the exact di-
agonalization results. The excited string states are more

extended spatially and therefore more sensitive to the
finite-size boundary conditions than is the ground state.

We might ask ourselves: How systematic are the above
calculations for the properties of the charge excitation in
the t-J model? In particular, is the good agreement
which we find between the theory and the numerical re-
sults due to the fact that we have limited ourselves to the
asymptotic Ising limit, i.e., a regime where the transverse
spin coupling J~ can be treated perturbatively? We have
already noticed in the previous subsection that the agree-
ment is in fact much better than what one might naively
expect based on the ratios J~/J, =O, —,', and —,

' used in

our calculations. Here we want to propose another possi-
bility, that an additional geometrical control factor,
namely, 1/z, might be coming into play. To be sure, the
following argument completely lacks the mathematical
rigor of the 1/z expansion that we obtained for the spin
excitation. Nevertheless, there are indications that a gen-
eralization of the present work to the Heisenberg limit
(which we have left for the future) might give quantita-
tively controlled results as well.

Let us consider Fig. 21. In Fig. 21(a) the basic string-
erasure graph is shown another time. Figure 21(b) is an
illustration of the fact that this string-erasure graph does
not let the hole come back to the original site, due to the
constraint prohibiting a hole and spin excitation from oc-
cupying the same site. [This is the source of the k depen-
dence of the graph in Eq. (81).]

Clearly, this string-erasure process is only one of many
which let the hole propagate coherently. This situation is
similar to that of the plaquette graph. That graph was
also only the shortest of an infinite set of more general
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FIG. 20. The spectral weight as a function of co (in units of t)

for some selected values of k and J, . The imaginary part of m is
0. 1t. The solid line is the theoretical curve obtained by the con-
serving inclusion of the self-retracing paths, the plaquette path,
the string-erasure graph and the intersublattice contribution.
The dashed line is the data obtained by the exact diagonaliza-
tion of a 4 X4 lattice with one hole. (a) For J,=0.4,
J& J&y 0 (b) For Jz 0 4& JJ:Jzy 0. 1 . Note that both the
lowest dominant pole and the upper band edge are accurately
reproduced. The Brinkman-Rice-type poles at intermediate en-

ergies are excited states which are quite extended and expected
to be most affected by finite-size corrections.

loop graphs, all of which contribute to the coherent hole
motion in the Ising limit. In that case we understood
that the contribution of the longer loop graphs is
suppressed exponentially relative to the shortest, since
the hole has to tunnel through a barrier whose height—J, increases with increasing loop length.

Does something similar hold for the string-erasure
graph'? In Fig. 21(c) we have drawn one simple correc-
tion to the basic process of Fig. 21(a). It is surely not the
only correction, but serves here to illustrate our argu-
ment. In Fig. 21(d) the same process is redrawn as a
site-diagonal contribution [this is now allowed, in con-
trast to Fig. 21(b)]. How important is this process in the
Heisenberg limit? The two Jz/2 vertices, together with a
geometrical multiplicity factor, gives this process the

FIG. 21. This series of processes illustrates why we believe
that the corrections to the basic string-erasure graph shown in
(a) may be reduced by a geometrical factor 1/z. (b) shows that
the string-erasure graph has no site-diagonal version, because of
the constraint prohibiting a hole and spin excitation from shar-
ing the same site. {c)Is an example of a higher-order contribu-
tion to the string-erasure graph. (d) Is the (allowed) on-site ver-
sion of this contribution. As sue)i, it is evident that it is reduced
by a factor 1/z with respect to the basic self-retracing path,
shown in (e).

weight z (J~/2) /eo —1/z, following the arguments of
Sec. III. That is to say, Fig. 21(d) is a 1/z correction to
the simple self-retracing step shown in Fig. 21(e). This
suggests that (quite independent of the relative magnitude
of t versus J) the contribution of the process of Fig. 21(c)
is suppressed by one order of magnitude in the coordina-
tion number with respect to the basic string-erasure
graph.

Can we generalize this argument? If we consider the
supersymmetric case, t-J, then all energy scales are of
the same order of magnitude, namely, —zt —zJ. Each
higher-order graph has more vertices than the string-
erasure graph of Fig. 21(a). Therefore, following the ar-
guments of Sec. III, it should be suppressed by some fac-
tors 1/z, since J—t -(zJ)/z.

In Sec. III we showed that, while both Trugman's
method and the graphical calculation lead to eAective
tight-binding problems, the two approaches are not
equivalent. Trugman's method, for example, included
terms that were, in the graphical calculation, discarded
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for arising from disconnected diagrams. This seems to be
a general lesson. For example, we can repeat the Trug-
man calculation of one-hole properties based on the pro-
cess shown in Fig. 14.' This leads to a 17-state manifold.
The graphs corresponding to the matrix elements be-
tween these states include the simplest erasure graph
(Fig. 14), plus the shortest two self-retracing paths and
several others. The results of these two calculations differ
in a number of details. The simplest differenc is that the
Trugman result, interpreted in terms of a self-energy, in-
cludes a piece 12(Ji/2) /(co —E3). This is the contribu-
tion of a disconnected graph similar to that in Fig. 6(b).
There are many other differences, but this illustrates that
the basic result in Sec. III continues to hold true. While
our calculation leads to a tight-binding problem, it is not
identical to Trugman's method; e.g. , every link in our
effective tight-binding Hamiltonian corresponds to some
connected diagram.

In summary, we have developed a method to study
single-hole properties, preserving the constraints against
double oeeupancy. Near the Ising limit, this method is
quite controlled. An analysis that combines real-space
Feynman-type diagrams and mappings to tight-binding
models leads to a conserving approximation from which
we can extract the complete spectral weight of the hole.
The results are in good agreement with numerical calcu-
lations for large J„and show an interesting interference
effect that leads to a crossover in the band minimum at
certain values of J~.

VI. SUMMARY AND CONCLUSIONS

We have developed a real-space Green's-function ap-
proach to study the properties of spin and charge excita-
tions of the t-J model near half-filling. The t-J model
can be viewed as a prototypical model of strongly corre-
lated electrons in which the correlations enter the model
in two ways: via a residual antiferromagnetic coupling
between nearest-neighbor spins, and by a prohibition
against the occupancy of any site by more than a single
electron. By working in real space, we can ensure that
the restriction against double occupancy, a subtle re-
quirement in other approaches, is exactly satisfied. Simi-
larly, a real-space analysis lets us identify and include
processes —such as the loop path for a moving hole—
which would otherwise be difficult. (For example, the
loop paths give a set of vertex corrections that here can
easily be evaluated. ) Philosophically, this method builds
on the work of Brinkman and Rice.

The price we pay for this real-space approach is that
the perturbation problem is moderately complicated-
for instance, our Hamiltonian has three separate pertur-
bations and hence the graphs have three different interac-
tion lines. Qn the other hand, the graphs are extremely
simple to evaluate. Using the simple rules included here
in Appendix 0, each graph can be evaluated algebraically
without any internal momentum or energy integrals

In this paper we have studied the properties of a single
spin or charge excitation. We perturb about the Neel
state (justified on the hypercubic lattice in two or more
dimensions), using the underlying fermion operators to

represent both charge and spin. Then Wick's theorem is
valid, and we have developed a fairly ordinary graphical
method, except that by working in real space the graphs
are simpler than usual to evaluate.

In this approach the transverse spin coupling J~ enters
as a perturbation, and hence we can only approach the
interesting Heisenberg limit perturbatively. However,
convergence is actually better than this seems to imply.
In the spin analysis we can explicitly identify a different
control parameter, 1/z (where z is the coordination num-
ber). By grouping all of the graphs at a given order in
1/z, we find that when the Heisenberg limit is taken, ro-
tational invariance is completely restored. This is non-
trivial, and explains why, for example, the contribution
lowest order in J~ gives the usual gapless spin-wave spec-
trum in the Heisenberg limit. We have extended this cal-
culation to the next highest order in 1/z, where we find a
renormalization of the spin-wave velocity.

There is evidence that the charge properties also are
controlled by something like a factor of 1/z —for exam-
ple, the bandwidth calculated for Ji/J, =

—,
' is within 3%

of exact numerical results (for a 4X4 lattice), rather than
within 25% as one would naively expect.

The charge excitation shows a very interesting interfer-
ence between two competing processes which allow prop-
agation. First one loop paths in which, for example, a
hole moves around a fundamental plaquette 1—,

' times;
this permits the hole to move even in the Ising limit.
This path, a correction to the kinetic energy vertex, can
be thought of as a tunneling problem in one dimension; it
is exponentially small in the Ising energy. The second
propagation route is the erasure process in which the
transverse spin coupling permits a string of disturbed
spins to relax. It is of order J~. These different processes
interfere, changing the band minimum from k=(0, 0) at
small J, to k=(ir/2, ir/2) at larger values. This appears
to explain a surprising vanishing of the bandwidth found
in numerical calculations —the bandwidth does not truly
vanish, but what was seen in the numerical work was the
level crossing in the ground state.

Both the loop and erasure processes, plus the self-
retracing paths of Brinkman and Rice, have been includ-
ed here in a conserving approximation. This was con-
structed by a novel method in which the original graphs
were mapped to a tight-binding Hamiltonian. Solving
the tight-binding problem gives the conserving approxi-
mation, and studying the tight-binding model lets us
identify what graphs are needed (in addition to our origi-
nal choices) for the approximation to be conserving. By
comparison with the results of exact diagonalization on
the 4X4 lattice we find good evidence that we have in-
cluded the essential physics of the charge excitation for
J, /t &0.2 or so.

In summary, by considering only a single spin or
charge excitation in a correlated background, it is possi-
ble to keep the constraint against double occupancy ex-
actly and systematically learn about the strongly-
correlated electron problem.

Our purpose here was twofold —to illustrate our
method and to use it to study the above two interesting
questions. We believe this method has the potential to be
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useful in other problems, and to that end we have ex-
plained its use in considerable detail. Among interesting
problems for which this method looks useful are calcula-
tions of the Raman spectrum, the renormalization of the
spin excitation in a finite density of holes, the optical con-
ductivity, and finite temperature properties.
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APPENDIX A: FEYNMAN RULES FOR
Hi, TIME SPACE

Here we describe the possible types of graphs that arise
under the perturbation II~, and present Feynman rules to
aid in their evaluation.

1. Graphs

(i) Draw graphs with time increasing from left to right,
and label the internal time t, on each vertex. Generally
let different sites be represented by different horizontal
lines.

(ii) Note that HI only couples adjacent sites.
(iii) H~ at some intermediate time will consist either of

all creation or all destruction operators. Thus, at a given
vertex, either all four lines enter from the left or exit to
the right [Fig. 22(a)].

There are similar but slightly different rules for
evaluating graphs leading to single-particle Green's func-
tions 6 and two-particle functions D.

2. Feynman rules for G

(i) Each line gives 6' '(t. —t, ) where t, is the left-hand
time and t is the right-hand time.

(ii) Integrate over internal times f dt; and multiply

by (i/fi)"(J~/2)". Here we suppose the graph is of order
n in Hj.

fP tp

FIG. 22. (a) At an Hj vertex, all four lines must enter togeth-
er from the left or exit to the right. Increasing time is to the
right. (b) A graph for G, second order in H~, drawn as usual
with time increasing to the right. (c) The same graph as in (b),
here with the direction of increasing time explicitly indicated by
arrows. In this form it is clear that there is one fermion loop.
Also shown is the same graph labeled with frequencies.

(iii) Count the number of identical graphs to get a
geometric multiplier. This can arise when sites can be
connected by more than one path of nearest-neighbor
links. (This is the CR of Sec. III.)

(iv) The sign is given by ( —1), where F is the number
of fermion loops. Notice that this includes a ( —1) for
each double line.

To count loops it is occasionally useful to draw graphs
in a different way: put in the direction of increasing time
explicitly with an arrow, and straighten out "bent" lines.
See, e.g., Figs. 22(b) and 22(c).

(v) One can always replace [6' '(t)] from a double line
by the equivalent iD' '(t). Fo—r example, for the graph
in Fig. 22(b) these rules yield

2

6(t)=( —1)i' z f dt, f dt, G'"(t, )G"'(t t, )[6"'(t, t, )]'. — —
2 oo oo

(A 1)

3. Feynman rules for D

One can simply follow the above rules for G, and then,
at the end, multiply by an extra factor of —i. Or, when
the graph consists entirely of double lines, it can be con-
venient to use the following, equivalent rules.

(i) Each double line gives D I '(t —t, ).
(ii) Integrate over internal times I dt; and multiply

by (J~/2R)".
(iii) Count the number of identical graphs to get a mul-

tiplier, as in rule (iii) in subsection 2.

(iv) The sign is given by ( —1) +', where F is the num-
ber of double lines.

These rules give the lowest-order spin graph evaluated
in Sec. III, Eq. (14).

APPENDIX 8: FEYNMAN RULES FOR
Hi; FREQUENCY SPACE

1. Graphs

Draw graphs as in Appendix A 1. Assign an energy co,

to each internal line using conservation of energy at each
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vertex. Note that lines enter a vertex from the left and
leave it to the right. However, it can be convenient to
redraw graphs with explicit "time" arrows, as in Fig. 22
(c), to determine the co s.

2. Feynman rules for G

(i) Each line gives G' '(co; ).
(ii) Integrate over internal frequencies J " dao;/2~

and multiply by (i /A')"(J~ /2)". Here we suppose the

graph is of order n in H~.
(iii) Count the multiplicity of identical graphs as in rule

(iii), Appendix A 2.
(iv) The sign is given by ( —1 ), where F is the number

of fermion loops (including double lines).
(v) One can always use

J (dc@'/2~)G (co )G (~—m') = —iD (co)

to represent double lines.
Applying these rules to Fig. 22(b) gives

2
Jj oo d CO) oo d C02

G (co) =( —1)i z [O' I(co) j G' '(co, )G' '(coz)G' '( —co —
co&

—co2)
2 2' —~ 27T

2

Z G C0 G C0
&

LD C0
2 oo 2 7T

2

z[G' '(co)] G' (
—co —E ) .

2 0

This same result can be obtained by Fourier transforming
Eq. (Al).

3. Feynman rules for D

One can follow the above rules for G, then, at the end,
multiply by an extra —i. Or, when the graph consists en-
tirely of double lines, it can be convenient to use the fol-
lowing, equivalent rules.

(i) Each double line gives D' '(co; ).
(ii) Integrate over internal frequencies I dc@, /2~,

and multiply by ( J~/2')".
(iii) Count the number of identical graphs to get a mul-

tiplier, as in rule (iii) in Appendix A 2.
(iv) The sign is given by ( —1 )

+ ', where F is the num-
ber of double lines.

These rules were used in Sec. III to evaluate the
lowest-order spin graph, Eq. (16).

APPENDIX C: RULES FOR H,

(i) Each line gives a G' ' whether its end points are Hz
vertices or H, vertices or a mixture.

(ii) Integrate over internal frequencies or times, as be-
fore. For a graph of order n in H~ and m in H„multiply
by a factor (i/A)'+ (J~/2)"( —J, /4)

(iii) An extra geometric multiplier can arise if diferent
G' ' lines can be connected by H, without changing the
graph. This can occur because either h or d lines can be
connected to either h or d lines. For example, an H, con-
nection between double lines give a factor of 4. Also in-
clude a geometric multiplier for Hj, as in Appendix A 2,
rule (iii).

Everything else is as given in the H~ rules, including,
in particular, the sign (

—1) and an extra factor —i if the
diagram is for D.

(b)
t2

In this appendix we present rules for graphs containing
H, as well as H~ ~

1. Graphs

(i) H, can only join lines on neighboring sites, without
ending them. This is because H, consists of terms such
as A

&
A

~
A OA o which annihilate and then immediately re-

create particles. Thus at either end of an H, interaction
line, a propagator enters and then leaves [Fig. 23(a)j.

(ii) H, interaction lines cannot cross. As explained in
Fig. 23(b), this is because the unperturbed Green's func-
tion is casual [i.e., G' '(t) —6(t)].

2. Feynman rules for H, and Hj

Follow the time- or frequency-space rules given for H~
in Appendix A or B, with the following additions to han-
dle H, .

FIG. 23. (a) The H, interaction line can only join two propa-
gators without ending them. Both h and d lines can be connect-
ed to either h or d lines. (b) H, interaction lines cannot cross.
The bottom line requires t, &t2, while the top requires t~ (t,
[since 6' '( t ) is nonzero only for t )0].
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I I

I

I I

(c)

(b)

(c)

FIG. 24. All possible time orderings of the diagram in Fig.
22(b). Here the orderings are (a) to & t, & I;, & I;, (b)

&ID &f2 &I& {c) f0 &k] &t &t2& (d) tl &fo &t &t2, (e)
t, & t & t, & t, .

FIG. 25. (a) A graph connected by virtue of the H, dressing.
(b) Without part of the H, coupling, the graph becomes discon-
nected. (c) A set of graphs which naively appear to violate the
Pauli exclusion principle. Adding these together gives zero for
the time ordering shown here.

APPENDIX D: ALTERNATE RULES FOR
Hq, H„AND Tg

Here we summarize a less standard set of rules for
evaluating Feynman diagrams containing any of H~, H„
and T~. These rules tend to be the easiest to apply, espe-
cially for complicated graphs.

Rules for drawing the H~ and H, graphs are given in
Appendixes A and C. Graphs involving Tz are of the
form shown in Fig. 7, i.e., they hop a hole line to a neigh-
boring site, leaving a double line behind. At one end of
the T~ interaction line there is also a closed loop from
the constraint pieces in Tz.

These rules focus on time ordering and intervals. A
parent graph has certain time orderings unspecified; cor-
responding to each parent graph is a set of daughter
time-ordered graphs. For example, all of the possible or-
derings of the parent given in Fig. 22(b) are shown in Fig.
24. On these graphs, find the frequency of each line using
energy conservation.

(i) The frequency dependence of each parent graph is
the sum of contributions from each time-ordered
daughter; a daughter's contribution is a product over fac-
tors (co„,—c,„,+i 5) ', one such factor per time interval.
Here, for a given time interval, co, , is the sum of the fre-
quencies on each G' ' line passing through the interval
and r.„, is the sum of Ep/2 for each line passing through

the interval. For example, for the time-ordered daughter
in Fig. 24(a), this gives

1 1

2 Ep+16~ Ep+ l 6

Closed loops with tick marks (e.g. , as in Fig. 7) give +1;
these come from (dd ) factors. Without tick marks they
give 0 (i.e., they force the graph to vanish).

(ii) Multiply by ( J~ /2') "( —I, /4A) (
—t /fi)' for a

graph of order n in H~, m in H„and I in Tz.
(iii) An extra geometric multiplier is given by the num-

ber of identical graphs: (a) for H~, this is the number of
difterent ways sites can be joined by nearest-neighbor
links; (b) for H„ this is the number of different pairs of
lines that can be connected by the interaction [e.g. , there
are four possibilities in Fig. 4(a)].

(iv) For graphs leading to G, the sign is ( —1) where I'
is the number of fermion loops (including double lines).
For D, the sign is ( —1) +'. These rules apply if there
are no factors of Tz. We do not have succinct rules for
the spin when the graph has Tz vertices; in every exam-
ple thus far, the sign (found by direct Wick's expansion)
is positive unless the graph is an intersublattice process,
such as Fig. 19.

Let us complete the example of Fig. 22(b). The fre-
quency dependence arising from all five time-ordered
daughters in Fig. 24, is from rule (i),

CO
2 Fp+16

2

+2
CO

—
2 Ep+l6 co —E,p+ l 6 2cp 2ep

2

2E,p

2
1

co —Ep+16

CO
2 Ep+ l 6

2

(D2)
CO

2 Cp+l6

so that
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Cp
CO

—+16
2

2
1

3Ep

2
+i5

(D3)

(D4)

in agreement with Eq. (B1).
Now let us sketch the derivation of these rules, starting from the perturbation expansion of the Green's function.

Fourier transforming, a graph for G (co) generally yields
'n m

Jj J,
G( ) (

.
)

+ +i+1
( —t)'S dt e' ' Q dt; iG( ' . iG' )

2 4

times geometric factors like those in rule (iii) above. The sign S =+1 arises from the Wick's expansion. There are
2n +2m +2I +1 factors of 6' ' in the integrand; we have associated a factor i with each. The integral can be broken
into a sum over particular time orderings, as explained pictorially by Fig. 24. We signify this by G =g G, where G
results from a particular time ordering. For a particular ordering we can collect the i6' 's in the integrand into one

factor e '" '" '+' ' for each interval [t, , t;+, ]. Thus
n

JJ J,
LL (D5)

where there is one term in the integrand for each of the n +m + l + 1 time intervals. This gives the prefactor in rule (ii)
and the sign in rule (iv). Evaluating the time integral gives the frequency rule above. We will illustrate this using as an
example the time ordering in Fig. 24(a). There the integrand is

iG' '(t t, )[iG( '(t2 —t) )] iG' —'(t2)=[iG( '(t t2)iG' '(—t2 t) )][iG—' '(t2 t) )] [iG' '(—t2 t) )iG' '(t, )—],
using Eq. (6). The integral for this time ordering is therefore

f dt) f dt2 f dt e'"'[iG' '(ti ) j[iG' '(t2 —t) )] [iG' '(t —t2)]( —i)
1 2

co, , ~ i(ro ()/2)EO]—t) i (co —(5 2/) E](ot
—
2 t) ) i (co —()/2)EO](t —t2)

= ((t) ——,
' so+ it) ) '(co —

—,
' 8()+ i5) '(co —,' 8()+ i—5)

(D6)

(D7)

This agrees with Eq. (Dl) above. Notice that the example chosen here would be a problem if it arose in our earlier
analysis —the ordering shown in Fig. 24(e) allows a doubly occupied site. This ordering, however, was prohibited in
Fig. 4(b) by the causality of the extra unbent h line

APPENDIX E: H, TO INFINITE ORDER

Here we show that it is possible to compute the contribution of H, to infinite order for each graph. By this we mean
that a given graph in K~ can be dressed by adding all possible H, interaction lines.

The basic reason that this can be done is that [HO, H, ]=0. The contribution of H, to all orders would be given by
letting the Hamiltonian Kp ~Hp =Kp+K ~ If this substitution were made, then in the new interaction representation
the time dependence of operators would become

i(HO+H, )t —i(HO+H )t iH t iHot —(Hot —iH, t iH t —iH t

where 0 (t) is in the original interaction representation, that is, in terms of H() in Eq. (4).
Let us see the consequences of this replacement by an example. The graph in Fig. 2(a) is a result of integrals over

several time orderings, as explained in some detail in Appendix D. Consider the particular time-ordered daughter with
the same ordering as Fig. 2(a), with times 0 & t, & t2 & t. This bare time-ordered daughter is a term in the Wick s expan-
sion of

(d (t)h (t)H, (t )H, (t, )h (0)d (0)}, (E2)

where we define H; =d h d;h;, and here the time dependence is in the original (Ho) interaction representation. The
contribution of H, to infinite order is given by replacing Eq. (E2) by

(e 'd (t)h (t)e ' ' H (t )
' ' ' Ht (t, )e ' 'ht(0)dt(0))

=(d2(t)h2(t)HO, (t2)e ' ' ' H, 2(t, ) ()(h) 0()(d0)) .

That is, the on-site energy in the time interval [t), t2] is changed from 3EO to 3so —2J, .

(E3)
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1 1

ct) Ep 2E,p+ JD(i)(~)—
1J

The rule here is thus a modification of Appendix D: H, can be incorporated to infinite order if a pair of single lines
on adjacent sites get an added "on sit-e" energy —J, /4. The contribution of all five daughters arising from Fig. 2(a),
dressed in this way, is

JJ 1 1 1

2 '

J Q) cp 28p+ Jz ~p+ 2Jz
CR. —R +

1

—2cp+ J,

2

(E4)

which will yield a dressed version of Eq. (41).
Sometimes this procedure accidentally incorporates a disconnected graph which therefore must be subtracted oft.

For example, graphs of the sort shown in Fig. 25(a), dressed all possible ways with H„ include disconnected graphs like
that in Fig. 25(b). Therefore the connected, dressed contribution arising from Fig. 25(a) is

1
Doo(n~) = z (z —1) +

2 CO Cp

1

co 3Ep+ 2J
1

m —3cp+J,—2c +Jp z

2
1

—2cp+ J,
1

co 3cp+ 2Jz

1

op+ J

The piece subtracted in the final term in parentheses arises from the disconnected piece in Fig. 25(b).
It is more complicated when the graph is of a type that naively violates the Pauli exclusion principle, e.g. , those in

Fig. 25(c). Here we modify the rule: as far as the above added on-site energy is concerned, count no more than one ii

line and one d line per site, and only include graphs which are connected before H, dressing. [This can be understood
by thinking about the contribution from all three graphs in Fig. 25(c) for some fixed time ordering; e.g. , for
0 & ti & t~ & t, the sum of these three vanishes. ] The contribution of the two connected graphs in Fig. 25(c), for all time
orderings, completely dressed with H„ is

2 2
1

Dao(co) = z + (E6)
2 ~—cp CO E.p

*Address after August 1, 1990: Department of Physics, Univer-
sity of Central Florida, Orlando, FL 32816-0385.

~Address after September 1, 1990: Institut fur Physik,
Universitat Dortmund, Postfach 500 500, 4600 Dortrnund 50,
Germany.

P. W. Anderson, Science 235, 1196 (1987).
~F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
Y. Nagaoka, Phys. Rev. 147, 392 (1966).

4(a) Y. Fang, A. E. Ruckenstein, E. Dagotto, and S. Schmitt-
Rink, Phys. Rev. B 40, 7406 (1989); (b) J. A. Riera and A. P.
Young, ibid. 40, 5285 (1989); (c) B. Doucot and X. G. Wen,
ibid. 40, 2719 (1989); (d) A. Barbieri, J. A. Riera, and A. P.
Young, ibid. 41, 11 697 (1990); (e) S. E. Barnes, ibid. 41, 11 701
(1990).

5See, e.g. , C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B 36,
381 (1987).

J. Oitmaa and D. D. Betts, Cand. J. Phys. 56, 897 (1978).
7For a review, see Nandini Trevedi and David Ceperly, Phys.

Rev. B 41, 4552 (1990).
(a) G. Kotliar, Phys. Rev. B 37, 3664 (1987); (b) T. Kopp, F. J.

Seco, S. Schiller, and P. Wolfe, ibid. 38, 11 835 (1988); (c) M.
Drzazga, A. Kampf, E. Muller-Hartmann, and H. A. Wisch-
mann, Z. Phys. 8 74, 67 {1989);(d) C. Jayaprakash, H. R.
Krishnamurthy, and S. Sarker, Phys. Rev. B 40, 2610 (1989);
(e) B. I. Shraiman and E. D. Siggia, ibid. 40, 9162 (1989).

9(a) J. E. Hirsch and H. Q. Lin, Phys. Rev. 8 39, 4548 (1989); (b)
S. Sorella, S. Baroni, R. Car, and M. Parinello, Europhys.
Lett. 8, 663 (1989); (c) M. Imada, J. Phys. Soc. Jpn. 58, 2650
(1989); (d) I. Morgenstern, Z. Phys. B 73, 299 (1989); 77, 267

(1989); (e) S. R. White, D. J. Scalapino, R. L. Sugar, and N. E.
Bickers, Phys. Rev. Lett. 63, 1523 (1989); (f) S. R. White, D. J.
Scalapino, R. L. Sugar, N, E. Bickers, and R. T. Scalettar,
Phys. Rev. B 39, 839 (1989); (g) T. Barnes, E. Dagotto, A.
Moreo, and E. S. Swanson, ibid. 40, 10977 (1987).
(a) H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 57, 2482
(1988); (b) C. Gros, R. Joynt, and T. M. Rice, Z. Phys. B 68,
425 (1987); (c) For an overview, see, C. Gros, Ann. Phys.
(N.Y.) 189, 53 (1989); (d) T. Giarmarchi and C. Lhuiller (un-

published); (e) T. K. Lee and S. Feng, Phys. Rev. B 38, 11 809
(1988).

"(a) S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett.
61, 365 (1988); (b) D. Huse and V. Elser, Phys. Rev. Lett. 60,
2531 (1988); (c) P. Horsch and W. von der Linden, Z. Phys. B
72, 181 (1988); (d) R. R. P. Singh, M. Gelfand, and D. A.
Huse„Phys. Rev. Lett. 61, 2484 (1988).
D. Forster, Phys. Rev. Lett. 63, 2140 (1989)~

(a) Z. Y. Weng and T. K. Lee, Phys. Rev. B 38, 6561 (1988);
(b) G. Vignale and K. S. Singwi, Phys. Rev. B 39, 2956 (1989);
42, 2611{E)(1990). (c) N. E. Bickers, D. J. Scalapino, and S.
R. White, Phys. Rev. Lett. 62, 961 (1989).

~4J. R. Schrieffer, Bull. Amer. Phys. Soc. 35, 274 (1990).
~5C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abra-

hams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996
(1989).

' P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990).
~7(a) J. Bonca, P. Prelovsek, and I. Sega, Phys. Rev. B 39, 7074

(1989); (b) E. Dagotto, A. Moreo, and T. Barnes, ibid. 40,
6721 (1989); (c) Y. Hasegawa and D. Poilblanc, ibid. 40, 9035



43 GEOMETRY-CONTROLLED CONSERVING APPROXIMATIONS. . . 11 239

(1989); (d) K. Szczepanski, P. Horsch, W. Stephan, and M.
Ziegler, ibid. 41, 2017 (1990); (e) S. A. Trugman, ibid. 41, 892
(1990); (f) V. Elser, D. A. Huse, B. I. Shraiman, and E. D. Sig-
gia, ibid. 41, 6715 (1990); (g) E. Dagotto, R. Joynt, A. Moreo,
S. Bacci, and E. Gagliano, ibid. 41, 9049 (1990).

~8W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 1324 (1970).
(a) S. A. Trugman, Phys. Rev. B 37, 1597 (1988); (b) 41, 892
(1989).
C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 6880
(1989).

~~Work in this direction is currently in progress. F. Marsiglio
(private communication).

(a) R. Eder and K. W. Becker, Z. Phys. B 78, 219 (1990); (b) K.
W. Becker, W. Hyekyung, and P. Fulde, ibid. 75, 335 (1989).
C. Gros and M. D. Johnson, Phys. Rev. B 40, 9423 (1989).
Spin rotational invariance can be understood in two distinct

ways, as a property of the ground state or of the excited
states. Together with a spontaneously broken symmetry, the
latter leads to a gapless Goldstone branch. With respect to
the Heisenberg model, see the discussion in C. Gros, Phys.
Rev. B 42, 6835 (1990).

P. W. Anderson, Phys. Rev. 86, 694 (1952).
R. S. Fishman and S. H. Liu, Phys. Rev. B 40, 11 028 (1989).

7S. Trugman and W. Stephan (private communication).
W. Brenig (private communication), has also considered the
intersublattice process in one dimension, where it is more im-

portant.
One might be interested in the interaction of the charge
motion with a long-wavelength spin distortion. In this case
the appropriate starting point would be a classical spiral
state.
In our earlier work, Ref. 23, we used a notation with h —+b
and d~a.
T. Oguchi, Phys. Rev. B 117, 117 (1960)~

3~A. L. Fetter and J. D. Walecka, Quantum Theory of Many
Particle Systems (McGraw-Hill, 1971), Sec. 9. See especially
Eq. 9.3.

3R. R. P. Singh, Phys. Rev. B 39, 9760 (1989).
3~S. Trugman (private communication).
3~(a) B. I. Shraiman and E. D. Siggia, Phys. Rev. B 39, 6880

(1989); (b) B. D. Simons and J. M. F. Gunn, ibid. 41, 7019
(1990).
W. Stephan, K. J. von Szczepanski, M. Ziegler, and P.
Horsch, Europhys. Lett. 11, 675 (1990).
For the diagonalization method used, see Ref. 17(d) and also
their Refs. 15 and 39.


