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Soliton excitations in the alternating ferromagnetic Heisenberg spin chain are investigated with
the use of the coherent-state method combined with the Holstein-PrimakoA'bosonic representation
of spin operators. When the Hamiltonian and the equations of motion are recast in dimensionless
forms, we obtain two partial difFerential equations with nonlinear coupling. Their nonlinear
modified terms are strongly restricted by two dimensionless small parameters that are used in the
semiclassical approximation and in the long-wavelength approximation. With use of the method of
multiple scales, these equations are reduced to the nonlinear Schrodinger equation, which describes
the slow spatial components of the coherent-state amplitudes. The results show that solitonlike
magnon localization and the two-magnon bound state are possible in the system. The possibility of
observing a gap soliton in the alternating ferromagnetic Heisenberg chain is also discussed.

I. INTRODUCTION

Low-dimensional magnetism has attracted consider-
able attention in recent years. A great deal of experimen-
tal work has been devoted, in particular, to the study of
linear and nonlinear excitations in one-dimensional and
two-dimensional systems. Ferromagnetic and anti-
ferromagnetic chain compounds, such as CsNiF3 or
TMMC [(CH3)4 NMnC13], have been shown to provide
good systems exhibiting soliton-type nonlinear excita-
tions. Such nonlinear excitations, which can be viewed as
Bloch walls propagating along the chain, have been ex-
tensively studied with inelastic-neutron-scattering experi-
ments. '

There are several theoretical methods to study the non-
linear excitations in quasi-one-dimensional magnets. In
the classical methods, ' the general soliton solutions are
obtained for a continuum version of the classical Heisen-
berg chain. For the quantum spin system, a bosonic rep-
resentation of the spin operators turns out to be a very
convenient method for studying the soliton excitations,
since the quantum corrections can be included in a sys-
tematic way. In the spin-coherent-state representation
one can work directly with spin operators, make no ap-
proximations to the Hamiltonian, and obtain an exact
nonlinear equation of motion for the system. The other
coherent-state treatments' ' use a severely truncated
Holstein-Primakoff (HP) expansion for S— and further
approximate H by a Hamiltonian which is biquadratic in
boson operators. Working in Glauber's coherent-state
representation and making the semiclassical and long-
wavelength approximations, one thl n finds solitary-wave

profiles of the system.
The consistency and validity of the semiclassical treat-

ment, which has been widely used in the study of non-
linear excitations in magnetic systems, have been reexam-
ined in our previous papers. ' ' We found that the non-
linear modified terms of the equation of motion of the
coherent amplitude are strongly constrained by the rela-
tion between the semiclassical and long-wavelength ap-
proximations that are represented by two small dimen-
sionless parameters, c. and g, respectively. Arguments
concerning how to consistently treat the problems of non-
linear excitations in the ferromagnetic chain with use of
the coherent-state method have been settled. In this pa-
per, we extend our method to study nonlinear excitations
in the alternating ferromagnetic Heisenberg chain. Alter-
nating interactions can occur in layered materials that
can exhibit quasi-one-dimensional character' and other
materials for such studies may well be grown synthetical-
ly in a layered manner by molecular-beam epitaxy.
Another reason for considering the alternating-bond
model lies in the fact that it can be considered as a first
step towards studying nonlinear excitations in the alter-
nating antiferromagnetic chain and in the square-lattice
antiferromagnet. It should be noted that the spin soliton
has been observed in a one-dimensional antiferromagnet-
ic system of Galvinoxyl single crystals. '

The organization of this paper is as follows. In Sec. II
we rewrite the model Hamiltonian in a dimensionless
form, introduce the Hp transformation for spin opera-
tors, and make the semiclassical approximation. In Sec.
III we use Glauber's coherent-state representation and
make the long-wavelength approximation to the equa-
tions of motion. In Sec. IV the method of multiple scales
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is introduced to reduce these equations with nonlinear
coupling into an envelope-function equation. In Sec. V,
one-soliton and two-soliton solutions are given. The pos-
sibility of observing a gap soliton in the alternating fer-
romagnetic Heisenberg chain is predicted. The last sec-
tion is the summary and discussion.

II. THE MODEL HAMILTONIAN,
THE HP TRANSFORMATION,

AND THE SEMICLASSICAL APPROXIMATION

The Hamiltonian for the alternating ferromagnetic
Heisenberg spin chain is given by

N/2 N/2 N/2

H HQ Ji g (Szj. 'Szj. + 1 S A' ) —Jz g (Szj +1 Szj +2
—S A' ) D 1

—g (Sp&szj S R )

J J J

N/2 N/2 N/2

Dz g (S2J + 1Szj+ 1 S fi ) gpii f—g (Szj —SA') gjzijf—g (S2j+ 1 SA)
J J J

where S„is the spin on site n and J, ,J2 are the bond strengths, both of which will be taken to be positive. D&,D2 are

the uniaxial crystal-field anisotropy parameters and f is the intensity of an external magnetic field in the z direction.
The ground-state (T=O) configuration of this system corresponds to all the spins aligned in the z-axis direction.
Ho= —Ks A' (Ji+Jz+Di+Dz)/2 Ngjzzf—sh is the ground-state energy of the system. Hence H Ho de—notes the

energy of excitations.
Introducing the dimensionless spin S„=S„/A' and defining S „—=S"„+iS~, we can recast the Hamiltonian (1) into the

dimensionless form,

H=(H Ho)/(JS, )—= —g(S2 Sz +, —S )/S —J g(Szj+, Szj+2 —S )/S
J J

D ig(S—2S 2 S)/S —Dz g (S—z +,Sz +, —S )IS
J J

f g (S zj S)—IS f g —(S zj +1——s )Is,
J J

(2)

where S, =limz 0 s „(SA')and

J=12/Ji, f=ggjil(J, S, ),
D, =D, /J„D2=D2/J,

(3)

a„anda„satisfy Bose commutation relations

[a„,a„,]=5„„,,

[a„,a„.]=[a„t,at ]=0 . (10)

are dimensionless parameters of the system. S „+,S, ,
and S '„satisfy the commutation relations

[S „+—,S'„]=+S„+—5„„.,

[s+,s „-,]=2s „n„„,,

with S„S„=S(S+1).After this, we can introduce the
HP transformation for the spin operators'

S + = [2S—a ta„]'"a„,
S „=at[2S—ata„]'
S' =S—a~a„.

—s a„a„a„a„a„/32+ 0 ( 8 )],
S

„

/S =&2[Ea„t—s'a„taJa„/4
—E a„a„a„a„a„/32+0(E)], (12)

where E= 1/v'S is a small dimensionless parameter used
in this approximation. Then the dimensionless Hamil-
tonian (2) can be written as a power series in E,

In low-temperature a, a„&(2S,we can use the semiclassi-
cal expansions

S „+/S=V2[ea„—E a„a„a„/4

(13)H =Hi +II2,
Hi =E g [(f+2D1+1)azjazj+azj+iazj+1 —(azjazj+, +azj+iazj )]

J
4+e y [ D1a2j 2j 2j 2j azjazJ 2J'+1 2J'+1+( 2ja2J+1 2J'+1 2j +1+ 2j 2J 2J 2J'+1+

J

+E g(a zjazj+az +Jaizj+a zj+a zj++azjazjazjazjaz, az, +, —2azjazjaz, azj+, az, +,azj+, +H. c. )/32+0(E'),
J
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Hz=E g [(f+2D2+ 1)azj+,azj+, +J(azj+za, , +, )
—J(a,,+,a»+2+az, +zaz, +1)]

J

4~ I+ ~ ~ L 2 2J'+1 2J'+1a2J +1 2J +1 2J'+1a2J'+1 2J'+2 2J'+2
J

+J(azj+, az +z z +zaz +z+az. +,az +,az +1az.+z+H. c. )/4]
6m (+ E ~ ~a2j+1 2J'+2 2j+2 2j+2 2J'+2 2J'+2+ 2j+1 2J'+1 2J'+1 2J'+1 2J'+1 2J'+2

J
—2a zj+,azj+, azj+1a zj+za zj+zazj+2+ H. c. ) /32+ O(E ),8 (15)

where H.c. represents the corresponding Hermitian-conjugate terms. The Heisenberg equation of motion for operator
an

i fi Ba„/Bjt = [a„,H )

can be written in the dimensionless form

i no Ba„/dt = [a„,H ], (17)

where coo=A'coo/(J, S, ) (coo is a typical frequency of the excitations) and t =coot is the dimensionless time. Because of
the alternating bond strengths of the system, the operators a2 and a2 +1 will satisfy different equations of motion. This
is similar to the diatomic chain in which there are two different atoms in each elementary cell. As a result, we have

and

i coo Bazj/Bt =s [(f+2D, +J+1)azj —azj+1 —Jazj, ]

+8 [azjazjazj+, /2+ Jazjazj, azj/2+azj+, azjazj/4
4

+ 2j —1 2j 2j i + 2j +1 2j +1 2j +1/4+ 2j —1 2j —lazj 1/4
—a zj+,azj+, azj. —Ja zj,azj 1azj —D1(1+2azjazj )azj ]+0(e ) (18)

icoo Baz +1/Bt =8 [(f+2Dz+1+ J)az +1 —Jaz +z
—az ]

+ E [ 2j +1 2j +1 2j +2/ + 2j +1 2j 2j+1/ +J 2j +2 2j+1 2j+1/
4

+ 2j 2j +1 2j +!/ +J 2j+2 2j +2 2j+2/ + 2j a2j 2j/
—Jazj+zazj+zazj+, —azjazjazj+, —Dz(1+2azj+, azj+, )azj+1]+O(E ) . (19)

Equations (18) and (19) are Heisenberg s equations of motion for operators az and az. +, in the semiclassical approxi-
mation.

III. GLAUBER'S COHERENT-STATE REPRESENTATION AND THE LONG-WAVELENGTH APPROXIMATION

In this section we introduce Glauber's coherent-state representation for Bose operators '

-&=nl-. &, (20)

(a„&=exp(——,'(a„() g [(a„)/&m!](m &,
m=0

(21)

with (a~a & =1. The semiclassical approach allows us to consider the projections of spins which can be continuously
distributed along the z axis. The states (20) are the eigenstates of the operators a„with eigenvalue a„:

a a =n„n (22)

For the system in the state ~a&, we can find the equations for the averages (a~azj ~a& and (a~az +, ~a& using Eqs. (18)
and (19). Using this, we obtain

icooBazj IBt =s [(f+2D, +/+1)azj —azj+, —Jazj. , ]

+e [az az, az +, /2+ Jazjazi, azj/2+a&~+, azjazj/4

+JO.'2 1a2ja2 /4+a2. +1+2 +1CX2 +1/4+ Jn2 1CX2j 1a2j 1/4

—azJ+1azj+1azJ —Jazj,azJ, azj —D, (1+2lxzJazj )azj]+O(E ) (23)
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and

ice Baz +,/8t=e [(f+2Dz+I+J)az. +,—Jaz. +z
—az ]

+e ~J 2J+1 2'+lazj+2/2+a2'+laz' 2'+]/2+ azj+z z +]azj+]/4

2j 2j +1 2j+1 2j +2+2j+2 2j+2 + 2j 2j 2j ~

Jazj+zazj+zazj+] azjazjazj+] Dz{1 + 2azj+ $azj+] )azj+ j ]+O(E (24)

where asterisks denote the complex conjugate. When the O(E ) terms are neglected, Eqs. (23) and (24) are linear. It is
easy to get the 1inear dispersion relation

co=(coi+coz)/2+5&[(co& —coz) +4S, [J&+Jz+2J& Jzcos(2kdo)]]'i /2, (25)

az. (t )—+g, (x, t ),
az +z(t) —+g)(x, t)+dQ( +d Q„„/2!+dg, „„/3!+

=P,+rig, „+z)Q,„„/2!+rtQ,„„/3!+O(g)=,

(27)

(28)

with

co =gp~f+S, (2D +J&+Jz D /S—), m =1,2 {26)

when returning to the dimensional quantities. Here do is
the 1attice constant. 5,=+1 labels the two branches: the
upper branch co+ of this relation (5,=+ 1) is designated
"optic" and the lower branch co {5,= —1) "acoustic"
by analogy with the phonon case. The dispersion curve is
shown in Fig. 1. There is a frequency gap at the border
of Brillouin zone k =k~ =+sr/2do.

Although (18) and (19) have been transformed to the
c-number equations in Glauber's coherent-state represen-
tation, to solve them is very dificult because of their non-
linearity and discreteness. If we assume that a typical
wavelength of the excitation Xo))2do (in case of soliton
excitation, A,o will correspond to the soliton width), then
we may take the continuum approximation

az +,(t) +fz(x,—t),

)(t) +Qz rt—Qz
+—z) gz /2! rt Pz

—/3!+O(z) ),
(30)

g ~(1/d) Jdx =(I/z)) Jdx, (32)

where d =2do, x =x/ko. g=d lko is a small dimension-
less parameter used in the long-wavelength approxima-
tion. Here we must point out that o. is not a continuous
variable as j changes from point to point (j= 1,2, 3. . . ),
but o.'2 and o,'2 +& are. The reason for this is that the
bond strengths in the Hamiltonian (1) are alternating.
The system is divided into two sublattices with lattice
constant d =2do. Equations (23) and (24) in the contin-
uum approximation become

az +3(t)~gz+z)gz, +q fz„„/2!+rtQz„„,/3!+O(rt ),
(31)

icoop) , =8 [(f+2D-)+1+J)Q) —(1+J)fz+qJgz rt Jgz„ /2!+z)—Qz„„/3!+O(z))]

+ '[ DP »
I g I—'g +(J—+ I )(2lq I'@,+q', @,*+

I q, '@, 4l,q, l'y, )/4—

+qJ [ —2I g, I'@,. P', q,*„—( I q, I'g, )—.+4q, (
I q, l'). ]/4+O(q') ] +O(E'), (33)

&~oyez , =E [(f+2Dz+ I+-J)gz (1+J)g, r)JQ, —rt JP, /—2! rt Q,
—, /3!+O(rt —)]

+E'f —Dzgz —»z lgzl'@z+(J+ I)(2lqzl'q, +qzP*, + lq, lz@,—4lq, Ized, )/4

+nJ [21@zl'@,„-+@z@*,.+{ I g( I'@g).——4&z{I @(I'),]/4+O(n')] +O—«') . (34)
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FREQUENCY GAP

0
k

FIG. 1. The two branches (6& =+1) of the linear dispersion
curve for alternating-bond ferromagnetic chain. co+ (5&=+1)
is the optic branch and co (5& = —1) is the acoustic branch.

All quantities in Eqs. (33) and (34) are dimensionless. e
and g, which are two small expansion parameters used in
the semiclassical approximation and in the long-
wavelength approximation, respectively, are explicitly
written.

All works made so far on the soliton excitations in the
Heisenberg ferromagnet in the HP representation are
based on the semiclassical approximation and the long-
wavelength approximation. ' ' The two approxima-
tions had been thought to be independent of each other.
In our previous papers, ' ' we have shown that the rela-
tive ratio of c. to g is very important for determining the
nonlinear modified terms of equations of motion. For a
given physical system, s and q are related to the charac-
teristic quantities of the system. That is to say, 2I=g(c, )

(g is a function of e). Theoretically, we cannot determine
which case is the most important because different cases
correspond to different physical pictures. Only from the
experimental conditions and initial excitation conditions
can we estimate which case is more appropriate. The
reason is the same as in the nonlinear theory of long
waves in shallow water. ' In this paper, we only con-
sider the case 21=0(E). Retaining terms in Eqs. (33) and
(34) to O(e ), we have

tg„=co,f,—S,(J, +J2)$2+J2S,dg2„J2S,d $—2x~/2

and

+(S./S)~ 2D1~&1~ &)+(Jl+J2)(2~iI"1~'02+0102+ ~02~'it'2 4~@2~ tj"1)/4] (35)

1/2, co2$2 S,(J—1+J2)—(t)1 J2S,df)„—J2S,d P)xx—/2

+(S,/S)[ —2D211(j2I2@2+(J)+J2)(2ly212y(+q22q) + ly) I2y) —4lq) 2y2)/4] . (36)

IV. REDUCTION OF THE EQUATIONS
OF MOTION

To solve Eqs. (35) and (36) exactly is very difficult be-
cause they are nonlinear and coupled. In spite of this, we
can use the method of multiple scales to reduce them to
another nonlinear equation which can be solved exactly.
This method has been used recently by de Sterke and Sipe
to study gap solitons in nonlinear periodic structures.
We introduce the multiple-scale variables x =p~x,
t =p t(p((1, j=. 0, 1,2, . . . ). These variables are con-
sidered to be independent. ' .Then the first spatial and
temporal derivatives can be written as

written as expansions

py( ( ) +p2 q(2 ) +—p3 y( 3 ) + (39)

y(1)+ 2y(2)+ 3q(3)+. . . (40)

g,'J' (s =1,2 and j= 1,2, 3, . . . ) are functions of all x. and

t, but these arguments will not be written explicitly.
Equations (37)—(40) are now substituted into (35) and (36)
and terms with equal powers of p are collected. This sub-
stitution results in equations for P(J) as follows:

(37) (37')

(38)

from which expressions for higher derivatives follow
straightforwardly. Similarly, the quantities $1 and $2 are j=1,2, 3, . . . with

(38')
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L)=s,(J1+J2)—J2S,d a/axo+(J2S, d /2)a /axO,

L =S,(J, +J )+J S,d a/ax +(J S,d /2)a /ax2,
p(1)—()1

p = —iaq /at +J S dali) /ax —J S d a2$ /a a

p',"=
1 [a—y"'lat, +ay', "/at, ]+J,S,d (ay"'Iax 1+a@',"Ia, )

—J2S,d [2 a f'l '/ax()ax, +(2a /ax()ax2+a /ax, )1()(~"]/2

+S (J +J )[2/y("/'1t"'+lt)("(@('))*+ q(') '@("—4 q(')/'lt)"']/4S 2D —(S IS)/@")['@(')

(39')

(40')

(41)

(42)

(43)

p(1)—()

p' '= ia—1t)"'/at, JS,d—af', "/ax, —J S,d a Q', "/ax ax, ,

p,'"=—(ali(,"Iat, +ay(,"Iat, ) —J, s, d( aq (2)/a, +ay(,"Ia, )

—J S,d [2 a 1t')(, '/ax ax, +(2a Iax ax, +a /ax, )Q', "]/2

+S,(J, +J, )[2IO',"~'~"'+O"'~',"(~l")*+I~I"~V"-41~I"~'~'"]«S-2D, (s, »)I~'"~'~',"

(44)

(45)

(46)

Equations (37') and (38') can be rewritten as

(t a/at, ~, )(i a/a,t~, )qp' L,L,q', ~'—

=(i a/at, ~, )pj~) L,p,'~', —(47)

(i a/at co )(t)(J—) =p(J) L)t)")—
j=1,2, 3, . . . . We shall solve g()~' from Eq. (47) and get
g(zj) from Eq. (48).

(1) Let j= 1; the11 we obtain tile eqllatlolls

(t a/at, ~, )(ia/at, ~, )q'," L,L,q',"—

=(1 a/at, ~, )p(" I.,p,"),—

(i a/at co )Q' '=—p' ' LQI ' . —

Using (51) and (52) we obtain

(i a/at —co, )(ia/at —co )Q', ' L,L f', '—
= —i(ad /at, + C aA /ax()exp(i8),

(57)

(58)

(( a/at —co, )(i a/at —co )Q(, ') —L,L Q(, ')=0,

(i a/at —co )P'"= LPI" . —

(49)
where C =dao/dk is the group velocity of linear waves.
The terms proportional to exp(i1) ) on the right-hand side
of Eq. (58) are secular terms that must be eliminated in
order for the theory to be valid. ' . Hence the function
3 must evolve according to the equation

)t)I"= 2 (x),x2, . . . , t(, t~, . . . )exp(ill), (51)

These are just the linear wave equations. We can obtain
a harmonic solution for them, but, since the differential
operators are only in the fast scales xo and to, we may
write

aW Iat, +C, aW Iax, =0 .

Consequently we have

3 = A(g;xz, . . . ', t~, . . . ),
g=x) —C t, .

(59)

(60)

(61)
gz" = —[g/(co —col)] 3 (x(,x2, . . . , t), tz, . . . )exp(&1) ),

(52)

(53)
g(( ) =D(g, x2, . . .;t2, . . . )exp(ili), (62)

From here we conclude, that on the first slow space and
time scales the waves travel with the group velocity. The
particular integrals of 1))I

' and g& are

co =
( co, +co2) /2+ 5( [(co,—co2) + 4'* ]

' /2,
y=s, (J(+Jl) J2S,k d /2+iJ~—s, kd .

(54)

(55)
)t)p'= —[iy/(co co2) +J2—S,d(1+ikd )/(co —col)]

Equation (54) is the linear dispersion relation of the exci-
tations 6, =+1 labels the "optic branch" and 6, = —1

the "acoustic branch. " They are the long-wavelength ap-
proximation of Eq. (25). The function A in Eqs. (51) and
(52) are the undetermined envelope function of the slow
scales x and t (j = 1,2, . . . ).

(ii) When j=2 we have

Xad/a/exp(i1)) —[y/(co col)]D exp(i8), —

(63)

where D is another undetermined function.
(iii) Let j= 3; then we obtain the equations for li)I

' and
(3).



43 SOLITON EXCITATIONS IN THE ALTERNATING. . . 11 203

(i a/ato —co, )(ia/ato co—2)QI
' L—,L2$I '

=(i a/at —co )/3',
' L—,p' ',

(). a/at ~ )q(3) —p(3) L q(3)

(64)

(65)

(i a/at, ~—, )(i a/at, —,)p'," L—,L g, '

= —2[~—(~,+~,)/2][i a~ /at, +r,a'~ /ag'

+(I 2/S)/ 3
/

3 ]exp(i0),

Substituting Eqs. (51), (52), (62), and (63) into Eq. (64),
we obtain with

(66)

I =—'d co/dk

I 2=(S,(J, +J2)/t4[co —(coi+co2)]] )

(67)

~~ +[ +(~ ~1)/(~ ~2)](x+x )+4(~ ~])[Di+D2(~—~i)'/(~ —C02)']/(J, +J, ) j . (68)

Again in order to apply perturbation theory, we must
demand the coefficient of exp(i6) (the secular term) be
zero. This then forces function 3 to evolve according to
the equation

u = (2r i&OS /rz) ' sech[vo(x —xo ) ]exp(ikx —i At —y ),
(75)

A =co —(1/2)voce" (k ) (76a)

a~ /at, +r,a'~ /ag'+(r, /s)
~
~ ~'~ =o . (69)

at k=0 or ir/2do (Cg=0). Here co"(k)=d2~/dk2. For
the acoustic branch we see that

V. ONE-SOLITON AND TWO-SOLITON SOLUTIONS

From Eq. (69) we can see that the envelope function A

satisfies the nonlinear Schrodinger (NLS) equation, which
belongs to completely integrable systems and can be
solved exactly by the inverse-scattering transform. ' In
the case of the phonon localization and two-phonon
bound states of multivibrational excitations in anharmon-
ic molecular crystals, the evolution of coherent amplitude
of lattice vibrations is also reduced to the NLS equa-
tion.

By making the transformation

2 =(1/p) (uX, t) (70)

i au/at+r, a'u /ax'+(r, /s) ~u ~'u =o,
where X=x —C t. The single-soliton solution is

(71)

u =(2r,v+/r )' sechIv [x —(C +2I v)t —x ]I

X exp( i' i At —yo), —

with

and noting that g=p(x —C t) and t2 =p, t, Eq. (69) can
be rewritten as

since

~+maz'
~+maz

~+min

~+min

1I
k =p —min ~—min 2 p~ —min ~—min &

;„=(d'co /dk')„o & 0,

(76b)

(77)

A

C)

CI

K=k+~,
A=co+ [C ~+(~ —~o)I, ],

(73)

(74)

where Kp K xp and yp are integration constants. Equa-
tion (72) is a wave packet traveling to the right with ve-
locity C +2I,~. If ~ is set to be zero, it becomes

FIG. 2. Four frequency values 0;„,0,„,Q+, , and

A+,„enter into the frequency gap of the linear dispersion
curve of the system. They denote the nonlinear localized vibrat-
ing modes of the chain.
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and

II+
~ k =a/2d ~~ —max ~—max V+0~ —max + ~—max

For the optical branch, we have
II+Ik= /M +min +min 2 0 +min +min

Il
~k =0 +max ~+max p+0~+max + ~+max (80)

So the soliton frequencies have four values ( 0
,„,0+,„,and 0+ „),which enter into the frequen-

cy gap of the linear dispersion curve as shown in Fig. 2.
This shows the possibility of observing a gap soliton in
the alternating ferromagnetic Heisenberg chain. The
concept of the gap soliton was first introduced by Chen
and Mills when they studied the nonlinear optical
response of superlattices. Although the above treat-
ments involve the semiclassical and the long-wavelength
approximations, we believe that gap solitons are possible
in an alternating ferromagnetic chain.

With the use of the inverse-scattering transform, we
can obtain the two-soliton bound-state solution

u =(2I,S/I 2)' QIx. ,sech[i~, (x —C t+x0)]exp( iQ, t—)+i~zsech[i~2(x —Cgt —x0)]exp( iQ—2t)],
Q =(ii2 —a., )/((i~, +i~2) —2i~,k2[tanh[~, (x —Cst+x0)]tanhi~2(x —C t —x0)

—sech [~,(x Cg
—t +x0 ) ]sech[~&(x —Cst —x0 ) ]cosQt ] )

(81)

(82)

0, =a~ —
—,'i~ic0"(k),

02 = co —,'i~~—co"(k ),
0=—,'(~, —i~.2)co"(k) =Q~ —II, .

(83)

(84)

(85)

Equation (81) represents two bound solitons, which move
to the right with velocity C . When C =0 (i.e., k =0 or
~/2d0), they are localized two-soliton bound states in
which one soliton vibrates around equilibrium position
x = —xo with frequency A, and the other around x =xo
with frequency Q2. The mutual interaction between them
is described by the function Q in equation (82). They may
be called two-magnon bound states of the alternating fer-
romagnetic Heisenberg chain.

E=&a H~a)/&a~a) =(1/d) f d &x( xt), (86)

where &(x, t ) is the energy density. For the single-
soliton bound state (72), it is easy to get

From Eqs. (83) and (84) we can see that when k =0 or
~/2d0, (81) represents two-gap-soliton bound states of
the chain.

Recently, Bell et al. investigated the two-magnon
states of the alternating ferromagnetic chain with spin
5=—,

' by using the Bethe ansatz and scaling approach.
They found that a bound state exists in one of the gaps at
k =0, which is possibly a good candidate for detection by
a light-scattering experiment. Our approach, developed
above, provides the same conclusion.

In the coherent-state representation, the energy of the
system (1) is

E=[4I,a0S', /1 d][gP f /S, +2D, +J, +J +(gP f /S, +2&~+Ji+J2)XX*/(t0

+(Ji+J2)(g+g*)/(a~ —t02)] .

'fhe spatial configuration of the spin is given by

&S;, &=& I(S—.',,a„)l &/& I~&, (88)

&S;, , &=&a~(S—at. .a.. . )~a&/&a~n) . (89)

For the single-soliton case, we have

&S' ) S Q*, it/, =S(l —(21,—~ /I )sech [i~ [x —(C +2~I, )t —x ]I ), (90)

i ) S—itt2$2=S(1 —I2+&*I,i~ /[I z(co —F02) ]]sech I~0[x —(C +2i~t, )t —x0]]), (91)

and, for the two-soliton bound state, we obtain
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(Sz~ ) —+S—S(2I,/I 2)Q I~,sech [1~,(x —C t +xp)]+a&sech (x —C t —xp)

+2m, .1~2sech[v, (x—C t+xp)]sech[i~@(x —C t —xp)]cosset],

(S', ) S—St2gg*I, /[(rp —cp ) I ]]Q I~,sech [lc,(x —C t+x )]+i~ sech [i~ (x —C t —x )]

+2I~,~2sech[a, (x —
Cg t+xp ) ]sech[Ir2(x —

Cg t —xp)] cosset ]

(92)

(93)

where Q has been given in Eq. (82). Equations (90)—(93)
show analytically the magnon localization in the alternat-
ing ferromagnetic Heisenberg chain. They are typical
nonlinear excitations of the system.

VI. DISCUSSION AND SUMMARY

We have investigated soliton excitations in the alter-
nating ferromagnetic Heisenberg chain. For studying the
nonlinear excitations in ferromagnets and antiferromag-
nets, the approach developed above is consistent and sys-
tematic. We have emphasized the importance of the rela-
tive ratio of c. to g for determining the modified terms of
the equations of motion. This is an example of Kruskal's
"principle of maximal balance, " which states that in a
perturbation expansion involving two or more small pa-
rameters a scaling that reduces the problem as little as
possible is of interest.

For the alternating chain, the number of equations of
motion is more than one, and, with nonlinear coupling, it
is very difficult to solve them. The method of multiple
scales used here can reduce these equations to a single
equation, for example, the NLS equation in this paper.
This equation plays an important role in many nonlinear
phenomena, and its properties have been widely stud-
ied.

In summary, soliton excitations in the alternating fer-
romagnetic Heisenberg spin chains with uniaxial crystal-

field anisotropy have been investigated with help of the
coherent-state method combined with the HP transfor-
mation. After recasting the Hamiltonian and the equa-
tions of motion in the dimensionless forms, we obtained
two coupled partial differential equations. Their non-
linear terms are strongly restricted by two small dimen-
sionless expansion parameters, E and g, which have been
used in the semiclassical approximation and in the long-
wavelength approximation, respectively. By using the
method of multiple scales, the system of coupled equa-
tions has been reduced to the NLS equation. The single-
soliton- and two-soliton bound-state solutions are ob-
tained by the inverse-scattering transform. These results
show that solitonlike magnon localization and two-
magnon bound state in the alternating ferromagnetic
Heisenberg chain are possible. The possibility of observ-
ing a gap soliton in this system is also discussed. Our
next aim is to compare our theory with experiment and
to investigate the nonlinear excitations in the alternating
antiferromagnetic Heisenberg chain, which will be given
in a future publication.
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