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Phase boundaries near critical end points. I. Thermodynamics and universality
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The vicinity of a critical end point is analyzed in order to reveal singularities arising in the form
of the first-order phase boundary to the noncritical phase. Phenomenological arguments are
presented and critically assessed that directly relate the nonanalytic behavior of the phase boundary
to universal features of the bulk thermodynamics on the associated critical line. Explicit values are
given for universal amplitude ratios describing the boundary for various types of criticality.

I. INTRODUCTION

At a critical end point a critical line (or lambda line) is
truncated by meeting a first-order phase boundary delim-
iting a new noncritical thermodynamic phase, a, quite
distinct from the phases, say, 13 and y, associated with the
criticality. Critical end points are, in fact, ubiquitous
thermodynamic features observed especially frequently in
studies of the phase equilibria of binary Auid mixtures
and other multicomponent systems such as alloys, liquid
crystals, etc. However, they occur also in pure systems:
For example, the ferromagnetic Curie points and antifer-
romagnetic Neel points of elements such as nickel, iron,
and chromium, or compounds such as manganese
fluoride, are critical end points when observed under
their crystalline vapor pressures —a being the vapor
phase. The lambda line bounding the superAuid phase of
"He exhibits two end points: The lower end point is the
standard A, point observed under helium vapor pressure;
at the upper end point the noncritical "spectator" phase,
o;, is the solid crystal. In magnetic systems end points are
often found as the external magnetic field is varied in
magnitude and direction. More generally, critical end
points are intimately associated with the vicinity of tri-
critical points in thermodynamic spaces of appropriate
dimensions. '

Despite their ubiquity, , critical end points have been lit-
tle studied for their own sake either from a general phe-
nomenological standpoint or within specific theoretical
models. However, it has been pointed out recently that
even the bulk thermodynamics of an end point should
display new critical singularities, not observable on the
associated critical line, which, furthermore, ought to be
characterized by various uniUersal parameters. In partic-
ular, the phase boundary between the a and P or y
phases should exhibit nonanalyticities as the end point is
approached, reminiscent of the singularities in the critical
lines (or surfaces) predicted' and observed in bicritical
phase diagrams. More concretely, for the simplest criti-
cal end point situation depicted in Fig. 1, in which g may
be taken as, say, the pressure, it was asserted that the
phase boundary, g (T), should have a divergent curvature
obeying

as T approaches the end point temperature T, from
above or below. Here a is the critical exponent describ-
ing the specific heat singularity (at constant g) on the crit-
ical line above g, =g (T, ) and is supposed positive as for
Ising-like (or n =1) systems in d =3 dimensions. Furth-
ermore, the amplitude ratio X+ /X should be universal,
independent of the details of the end point (up to the
universality class of the critical line) and equal to
A+ /A where A+(g) and A (g) are the amplitudes of
the specific heat singularity observed on the critical line.
This ratio in turn should be universal (and so independent

FIG. l. Illustration of a critical end point at the join of a crit-
ical line A, , T = T, (g ), and a first-order phase boundary,
g =g (T), which separates the noncritical spectator phase gz

from the coexisting phases P and y (or ordered phase P ) and
from the disordered phase Py (or P+).
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of g) by the general theory of critical phenomena; for
Ising-like systems onehas A+/3 =0.523

Our aim in the present work is to explain and assess
this prediction and extend it to other universal features of
the phase boundary, in particular, those observable when
one departs from the coexistence surface and its smooth
continuation (which corresponds to the plane of Fig. 1).
We find, at the phenomenological level, that the difFerent
universal ratios characterizing the phase boundary can all
be related to bulk universal amplitude ratios combined
with certain geometrical parameters of the critical end
point. On that basis we present explicit predictions for
various types of critical end point including classical or
mean-field theory end points and those in spherical mod-
els (n —+ ~ ) with short-range and long-range forces.

To check these predictions beyond mean-field theory,
however, requires the analysis of specific models which
actually have end points! To that end, Parts II and III of
this series will be devoted to extended spherical models,
of a type introduced by Sarbach and Schneider, which
display tricritical points and, as we show in detail, also
have nonclassical critical end points. These analyses do
verify the conclusions of the phenomenological argu-
ments expounded here. Nevertheless, the results are not,
in general, beyond question so it remains of interest to ex-
plore nonclassical critical end points in other models.
Experiments to check our predictions on favorable sys-
tems, such as superAuid helium, are also called for.

In outline the remainder of this paper is as follows:
Considerations pertaining to the nature of the coexistence
surface between the P and y phases and its continuation
are presented in Sec. II. The appropriate universal scal-
ing description of criticality near a critical line is recalled
in Sec. III. The classical argument for obtaining phase
boundaries by matching free energies of distinct phases is
assessed in Sec. IV. Accepting the plausible but uncer-
tain conclusions of this argument the behavior of the
phase boundary to the spectator phase a is analyzed in
temperature and field variables in Sec. V. Various new
universal amplitude ratios are formulated and specific
predictions for some models are listed. Section VI sum-
marizes the conclusions briefly.

vert phase P smoothly and, indeed, analytically as regards
the g, T, and h variations of all thermodynamic proper-
ties, into phase Py and, thence, moving around the criti-
cal line, into phase y: see Fig. 2.

If the order parameter, M, of the transition is more
complicated than a density or concentration, as in an n-
vector system with n =2, 3, . . . , the full ordering field is
no longer a simple scalar; rather it is, for example, an n-

component vector- h. Likewise the ordered phase below
T, (g), say P, will have some sense (e.g., of a vectorial
character) determined by the sense of h in the limit
~h ~~0. We may then identify the phases P and y as
phases f3 and P

' with opposite senses. Likewise, we
may let h denote a single component of h (the others van-
ishing identically). The h =0 disordered phase P+ above
T, (g) has no sense and may be identified with the n =1
phase Py. Then one may ignore the distinction between
n = 1 and other universality classes except for remember-
ing, when necessary, any exact symmetries associated
with A and there consequences, such as Goldstone-mode
or spin-wave singularities on the phase boundary.

When the system under study has a special global sym-
metry, as a ferromagnet with respect to a magnetic field
or a superQuid under an overall gauge transformation,
the coexistence condition h =0 has an unambiguous phys-
ical meaning for all g and T (even if the phases P and y,
etc. , are not realized). More generally, however, in un-
symmetric situations the coexistence surface, p (see Fig.
2), which is bounded by A, , the critical line T= T, (g),
and, if present, by r the triple line g =g (T), must be re-
garded as a curved manifold in an underlying thermo-

critical line

II. CRITICAL LINE AND
THE COEXISTENCE SURFACE

It is helpful to recapitulate, first, the thermodynamics
associated with a critical line. To this end, let g in Fig. 1

denote a nonordering thermodynamic field, like the pres-
sure, a chemical potential, or a component of the magnet-
ic field, that modifies the critical temperature, T, (g), but
does not change the universality class of the continuous
phase transition. We may safely suppose that the critical
line, A, , is a smooth and, indeed, analytic function of
g )g, . For a full thermodynamic description one must
also recognize the existence of an ordering field h that
destroys the transition. For an Ising-like or n =1 system
beneath T, (g) two distinct phases, 13 and y, may coexist
when h =0. Above T, (g) these merge into a single h =0
phase which we call Py; however, imposition of a
nonzero field h enables one, in the standard way, to con-

FIG. 2. The full thermodynamic space {T,g, ho) showing an
unsymmetrical critical line A, terminating at a critical end point
(open circle), and the corresponding coexistence surface p,
bounded by k and by the associated triple line ~, where p meets
the spectator phase boundary, o.. The dot-dashed line on o.

represents the intersection with the extended coexistence sur-
face p specified by h =0.
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dynamic space (g, T, ho). Here ho is the basic thermo-
dynamic field corresponding to h but entering directly
into the original thermomechanical specification of the
system. Away from the boundaries of p, A. , and ~, we
may safely suppose (A) that the manifold p is fully analyt-
ic; in other words we can regard h as an analytic function
of g, T, and ho on p. We may also safely suppose (B) that
p has a unique tangent plane everywhere including on A,

and ~.
Beyond that, however, we will assume (C) that the

coexistence manifold p is suKciently smooth on its boun-
daries A, and ~ that it can be extended with insignificant
ambiguity into a manifold p, defined for general g and T
and analytic away from A. and ~, the critical and triple
lines. More concretely, we will assume that the curvature
and further T, g, and ho derivatives of p (and hence of p)
are well defined on the boundaries up to some order
N & 2, the appropriate value of N depending on the par-
ticular context. More strongly, one might wish to
assume —although we will not need to—that p is analytic
on its boundaries and so may be analytically continued to
define the extended manifold p.

While very plausible at the phenomenological level, the
smoothness and, even more, the analyticity of the coex-
istence surface p thvough the critical line A, (and through
the triple line r) cannot be regarded as obviously correct
from the viewpoint of statistical mechanics. Indeed, if, as
we argue, the curvature of g ( T) diverges in accord with
(1.1), why should a similar divergent curvature not arise
in the coexistence surface p on approach to k? It might,
in fact, be the case that for certain choices of thermo-
dynamic fields, g and hp, such a singularity does arise
while for others of a more optimal character it can be
avoided. For systems such as the penetrable-sphere mod-
el, ' where there is some underlying or hidden symmetry,
analogous to the manifest symmetries discussed above,
such a guess is reasonable. We will not pursue the issue

further here. Nevertheless, it is worth noting that some
experimentally observed disagreement with the predic-
tions we make could, in principle, reAect on assumption
(C).

In summary, we will assume that the ordering field h is
a smooth function of T, g, and hp everywhere, including
on the critical line, A, . Then we may use h in place of Ap,
which will not appear further in our analysis (although
the dependence of h on h p may need to be recalled in in-
terpreting experiments). The coexistence surface p and
its extension p are thence simply described by h =0. As
mentioned, we also suppose that T, (g) is analytic away
from the end point.

III. CRITICAL-LINE THERMODYNAMICS

To characterize the critical behavior in the space
(T,g, h) as the critical line A, is approached we consider
the appropriate thermodynamic potential or Gibbs free
energy, say G& (g, T, h). General scaling and renormal-
ization group principles indicate that there should be an
analytic background piece, Go(g, T, h ), and a singular
piece which embodies the leading critical singularities
and the corrections to scaling. " To give an explicit form
for G&z it is most useful to introduce nonlinear scaling
fields

t(g, T, h) = I T —T, (g)]/T„h (g, T, h) =h, (3.1)

where T, enters here only as a convenient reference tem-
perature and the "asymptotically equals" symbol entails
T~T, (g) and h ~0. The functions t and h are smooth,
if not actually analytic functions of their arguments and
embody any exact symmetries in h.

If o. is the specific heat exponent, 6 is the gap ex-
ponent, and 0—= 04, 05, . . . are the correction-to-scaling
exponents, ' we then have

Gpr(g, T, h) =Go(g, T, h) gl~— (3.2)

where Q, U, U4, and U5 are smooth and/or analytic
functions of g, T, and h. we suppose that none of the ir-
relevant variables are dangerous' so that the asymptotic
scaling function,

W+(y) —= W+(y, 0,0, . . . ), (3.3)

is well defined and may be normalized by W'+(0)=1.
The two branches of the scaling function W+(y, . . . )

must satisfy matching conditions as y —++ ~ which en-
sure the analyticity of G&r for all h%0. For simplicity
we write these conditions for a symmetric (under
h ~—h) critical point as

~+(y)=~ lyl" " [1+~ilzl
(3.4)

In the standard way we now define various critical am-
plitudes A+, 8, . . . . First, for the specific heat at con-
stant g,

C(g, T)=T, '3+(g)ltl, t~0+, (3.5)

Mo(g, T)—:—lim — (h ) — ( —h )
aG aG

I -p2 Bh Bh

=B(g)ltl~, p=2 —a —b, ;

then, for the critical isotherm, T = T, (g) at fixed g,

(3.6)

where, in case a (0, C denotes only the singular part of
the specific heat;" second, for the spontaneous order pa-
rameter

Finally we note that the normalized scaling function will
be universal.

bM(g, h) =M(g, T„h)—M, (g)

=+B,(g)lhl'", I3&=a, (3.7)
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W+ (0) C+
W' (0) C

W'+ (0)
W" (0)

(3.11)

where asymptotic symmetry in +h is again assumed for
convenience; finally for the susceptibilities above and
below T„(g),

y(g, T)—:— =C+(g)ltl ', )'=2 —a —2it3. (3.g)
8 6
Bh

From (3.2) we easily find

&+(g)=(2—a)(1—a) W~(0)g [g, T, (g),0], (3.9)

8 (g) = W' (0)Q [g, T, (g),0]U [g, T, (g),0], (3.10)

and similarly for 8, (g) and C+(g), where, for brevity, we
have dropped the superscript 0 on 8'+, etc. , here and in
the following few formulas.

Then we may introduce various dimensionless ratios of
the critical amplitudes which, since they depend only on
W+ (y), are universal. Specifically we consider

G (g (T, h), T h)=Gti (g (T, h), T, h } . (4.1)

However, this view is contradicted by arguments based
on the droplet picture of the condensing phases, ' '
which have been supported, more recently, by rigorous
results for Ising models. ' Rather, the free energy of both
phases should encounter a manifold of essential singulari-
ties at o.,

' although all derivatives with respect to g, T,
and h should remain finite on each side of o., neither
function can be continued unambiguously to define a real
metastable free energy. ' The status of (4.1) as an equa-
tion determining g ( T, h) is thus in some doubt, although
as a relation involving g (T,h) it is certainly valid since
the overall free energy G(g, T, h) must be continuous
everywhere including on o..

As regards the a phase, its noncriticality and the finite-
ness of all its derivatives at o., even allowing for droplets,
means that we can justify an asymptotic expansion about
the end point of the form

where the primes denote dig'erentiation (with respect to
the argument y); and

6 (g, T, h ) = G, +G, Ag+ G~ t + G3h + G4 kg 2+

(4.2)

A+ C+e, =—
B2

A+B,
6+18

(2 —a)(1 —a) W'+ (0) W+ (0)
[W' (0)]

(2—a)'+ (1—a)8' (0) W'„

ps[ W~ (0) ]
1+5 (3.13)

It may also be useful to consider the derived ratios

e, —=a'-'c, /a, '= e, /e, , (3.14)

for systems in which 3+ =0 as in mean field theory, and

(3.15)

Of course, additional universal amplitudes involving
W+'(0), . . . and the W'k in (3.4) may be readily defined
but are harder to observe experimentally. Further
universal ratios enter when the corrections to scaling are
explicitly studied; however, we will leave aside the
corrections until Part III.

IV. SPECTATOR PHASE BOUNDARY

By definition of the spectator phase, a, it is noncritical,
with a finite correlation length, throughout the vicinity of
the critical end point at (g, T, h)=(g„T„O). Hence its
free energy, G (g, T, h), should be analytic everywhere
except, possibly, on the phase boundary o. which we will
specify by g =g (T, h). Our aim, of course, is to deter-
mine any singularities of the function g (T, h) at (T„O).
Now, according to the traditional Gibbsian view of equi-
librium thermodynamics, both the free-energy functions

G&r (g, T, h ) and G (g, T, h ) should continue smoothly
and, presumably, analytically beyond the boundary o. to
define "metastable extensions" in the regions where the
other free energy is actually lower, so describing the
stable phase. If that is accepted the phase boundary can
be derived simply by equating the suitably continued free
energies and solving the resulting equation, namely,

on and below g (T, h), where

bg=g —g, and t=(T —T, )/T, . (4.3)

However, the situation as regards the phases g, y, and
/3y (or /l+ a,nd /3 ) which are approaching criticality is
more delicate. Thus it is not unreasonable to speculate
that the presence of droplets of a noncritical phase in a
near-critical phase might lead to a new type of
criticality —say, end point criticality —with new ex-
ponents, u, 6, . . . or, perhaps, only new amplitude ratios.
Indeed, within real space renormalization groups' ' a
critical end point is usually controlled by a fixed point
Hamiltonian, say &, , with a discontinuity eigenexponent
and operator, which is distinct from the purely critical
fixed point Hamiltonian, &, , controlling behavior on the
associated critical line. Of course, this need not imply
difT'erent critical behavior at the end point since &,* and
&,* could have matching critical spectra: In fact, just
this scenario has been observed in models yielding the
Migdal-Kadanoff recursion relations!' ' But that might
not be the invariable rule. On the other hand, an
(@=4—d)-expansion study for n =1 found that both
critical line and end point were controlled by the same,
standard 0 (e) fixed point and so had identical critical be-
havior.

Previous calculations for spherical models (n ~~ ) ex-
hibiting tricritical points with associated end points also
found identical criticality as on the critical line howev-
er, the critical end points examined were purely classical
with no significant fiuctuation contribution. For this
reason we study spherical models with nonclassical end
points in Parts II and III.

In fact our work also confirms the equivalence of criti-
cality on the line and at the end point. If we accept this,
generally, at least for what might be termed regular criti-
cal end points, the critical free energy (3.2) may be ex-
panded in the end point vicinity by taking
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G (g, t, h)=G, +G, bg+G t+G3h+G„hg + .

(4.4)

droplet picture then yields, ' at 1east in leading orders,
precisely the same singular behavior for the phase bound-
ary near the end point as found here.

Q(g, t, &) =Q, +Q, bg+Q, t+Q, h+

U(g, t, h)= U, + U, kg+ Uzt+ U3h+

and, for the nonlinear scaling fields

t =t+q&Ag+q2hg +q3thg+q4t +q5h +-

h =h (I+r lb g+rzt+r3h+r4bg 2+ ),

(4.5)

(4.6)

(4.7)

(4.8)

V. UNIVERSALITY ON SPECIAL LOCI

Let us now examine the equation for the spectator
phase boundary, namely (4.11), in various regimes and
define amplitudes describing the behavior of o .

A. Coexistence surface

We specialize first to the surface h =0. Then when
t ~0+ (4.11) yields

where we should note the geometrical significance of

dTcqi-
Tt dp

(4.9)

as the slope of the critical line at the end point. This fol-
lows since t =0 specifies T, (g ).

Finally, equating the free energies as in (4.2), putting

g (T)—go(T)= —R, W+(0)lt+q, g (T) q&g, l—

(5.1)

which, on using (4. 12), is readily solved by iteration to
give

g (T,O)=g, +g, t+ . —X gati Il+&(gati' )],
D, =G, —G; for i =1,2, 3, . . . , (4.10) (5.2)

assuming that D, WO, and neglecting the corrections to
scaling, yields

g (T,h)=go(T, h) R(T, h)~t—
~ W+

t
(4.1 1)

where the background function has the expansion

go(T, h) =g, +g, t+gzh+ (4.12)

e
e

(4.13)

The smoothly varying amplitude obeys

R (T, h) —= Q [g (T, h), T,h]/(D, +Dz t+D3h+ )

with gl = Dz /D& and—gz = D& /D&. Th—us the slope of
the phase boundary and of the triple line

(g =g (T,O), h =0], at the end point, is given by

where the ellipsis denotes higher-order analytic terms.
This confirms the nature of the singularity in the phase
boundary mentioned in the Introduction. The ampli-
tudes of the singular form may be written

X =R, ~e, ~z- W, (0), (5.3)

in which it is convenient to define a geometrical factor by

g dTc
ey i

= 1+4giqi = 1
e ~g e

(5.4)

For 6=1 this vanishes only if the critical line k and the
triple line ~ are tangent at the end point. This is clearly
an anoma1ous situation which we wi11 disregard by as-
suming henceforth that co&0. Note also that for n) 0
and the configuration of phases illustrated in Fig. 1 the
amplitudes X+ are non negative B-y appea. l to (3.9),
(4.10), and (4.14) we may write the amplitudes directly in
terms of observable quantities as

=R, +R, t+Rzh +, R, =Q, /D, , (4.14) X+ = 3+(g, )leo l
/(2 —a)(1—a)(v, —v, ), (5.5)

where D z, D 3, R „Rz, etc. , are coeKcients expressible in
terms of the coe%cients in (4.4) —(4.8). It should also be
noted that further contributions proportional to ~t ~'

with k =2, 3, . . . have been dropped and that (4.11) is
not as explicit as it looks since g (T,h) enters into t and
h via (4.7) and (4.8). Accordingly we will examine

g ( T, h) in more detail in various subspaces.
Before turning to this, however, let us recall a feature

of the droplet approach, ' namely that the location of the
phase boundary follows by examining the free energy of
one phase, say the a phase, alone: No direct matching of
free energies is required. In fact, if one recognize that the
droplets in the a phase near the end point will themselves
exhibit incipient criticality, further progress can be made.
The natural approach' is to adopt an appropriate finite
size scaling form ' ' for the droplet free energies as t ~0
on the extended critica1 line below T, . Remarkably, the

where, if we take g as the pressure, v, and v, are just the
specific volume of the spectator and critical phases, re-
spectively, evaluated at the end point. ' From this ex-
pression, which has a not unexpected similarity to a
Clausius-Clapeyron relation, the actual magnitude of the

~
t

~
singularity in g ( T) or, better, in d g /d T can be

estimated in realistic situations. It is also now evident
that

X+/X = A+/3 (5.6)

B. Small fields

For small fields above T, the phase boundary varies
analytically through h =0 but contains a quadratic piece

is a universal ratio determined purely by bulk behavior on
the critical line.
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diverging at T, and given by

g (T, h) —go(T, h)= —
—,'Z+h't ~+O(h~) (5.7)

X6—1Z6+ 1

+ +
4 yZ6

C

6+1
1

2

)s+ l~
g25( 1 )s —1

(5.17)

with amplitude

Z+ =R, U, ~eo ~W'+ (0) . (5.8)

are all universal and, in principle, susceptible to observa-
tion.

About the triple line r below T, there is (for n =1 sys-
tems) a similar contribution but a term varying as

~
h

~

also
appears so that

g. (t, h) —g, (T,h)= —F~h ~~~&~~ ,'Z—h—'t '+O(h'),

(5.9)

Z+ /Z =C+ /C (5.10)

X+Z+
p2

3+C+
(2—a)(1 —a)B

61
(2—a)(1 —a)

(5.11)

where the amplitudes Y'and Z are easily found in terms
of W' (0) and W" (0). Reference to (3.9) and (3.10) then
yields the independent universal ratios

D. Explicit predictions

For completeness we record the universal predictions
for the phase boundary singularity amplitudes which fol-
low from knowledge of the bulk amplitude ratios in par-
ticular cases.

1. Mean geld-theory

Mean-field theory is characterized by o; =0, 6= 3, and
6= —,

' but is anomalous in that 3+ and 3 are not well

defined although, of course, the specific heat exhibits a
jump AC at T, . It is clear, however, that the Gibbsian
view underlying the free-energy matching equation (4.1)
is fully justified for all classical theories. Thus we con-
clude that g (T,O) must display a jump in curvature at
T, proportional to AC. The asymptotic equation of state
for mean-field theory may be written in reduced form as

h =M(t+M ) . (5.18)
C. Field variation at criticality

T —T, dT,

, e

(5.12)

Note that 6=0 corresponds to the manifold T = T, of
the end point isotherm. On the other hand, 8= 1

specifies a plane which asymptotically contains the criti-
cal line, T, (g), as it approaches the end point. The phase
boundary on the general locus may now be written as

g (h)e —g, = Igzh —Y, ~h~' +"

X [1+0(h' ",h )] I /ee

(5.13)

Finally it is interesting to examine the intersection of
the phase boundary with planes normal to o. but passing
through the end point: Specifically consider the general
locus given by

From this follow all the bulk universal amplitude ratios
and thence we find

Z+/Z =2 and:-3= Y Z+/Y, =(—', )' . (5.19)

2. General spherical models

It is instructive to consider d-dimensional spherical
models, which correspond to the n ~ ~ limit of n-vector
models, having either short-range interactions or long-
range power law couplings with J(R) decaying as
1/R + (o )0). '' Above the upper borderline dimen-
sion d+ =minI4, 2cr] the leading behavior is classical;
however, there are nontrivial corrections to scaling
which, in turn, acct the phase boundary near an end
point, as discussed in Part III. At and below
d =min [ 2, o ] transitions occur for T )0. For
d (d (d+ criticality is always found with/3= —,

' and

where the geometrical factor e&, was defined above,
while the amplitude

y =1—a=A —
—,
' =

—,'(6 —1)

=[(d/a) —1] ') 1 . (5.20)

Y=R U' "~8
C e e oo (5 14) The reduced asymptotic equation of state is simply

must be positive for phases arranged as in Figs. 1 and 2.
Finally, the related ratios

(5.21)

X+ F,
@6+1

r6-'z+
y6

C

63,

(5.15)

(5.16)

X
X+ 2(@+1)'

2y+ 1

2/+2
2p+ 1

(5.22)

These predictions will be tested in Part II by specific cal-

Below T, the specific heat is described by 3 =0 while
the susceptibility, g(T, h), diverges when h~0 so that
C is not defined.

For an end point on a spherical model (or n = ~) criti-
cal line we thence obtain the results
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culations for spherical models displaying nonclassical
critical end points.

3. Two-dimensional Ising models

The exponents a =0(log ), 5= 15, and b, = 1—', are, of
course, known exactly for two-dimensional Ising models.
The amplitude ratios in zero field are known exactly or to
very high precision; those in a field have been estimated
by series expansions. ' On that basis we find

X+
X

Z+ ==37.69
Z

4. Three-dimensional Ising models

For three-dimensional Ising models only numerical es-
timates are available for exponents and amplitudes. '

We may adopt a=0. 104 and @=1.2395 from which
scaling gives 6=1.568, 6=4.777. However, one must
not have great confidence in the last decimal place quot-
ed. Then we find

X+ =0.523,X
C+ =4.95, :-i——0.329 3 —4.34,

(5.24)

where again, the last places are uncertain.
Various simple models are known, notably the Blume-

Emery-Griffiths spin-one model and the three-state Potts
model in external fields, which exhibit critical end points
with associated Ising critical lines. Unfortunately, none
of these models seem sufficiently tractable to test the pre-
dictions (5.23) and (5.24) analytically. Numerical tests
may be possible using transfer matrix methods or,
perhaps, Monte Carlo calculations. It must be recog-
nized, however, that the singularities predicted in the
phase boundary g (T, h) are fairly weak in numerical
terms. Most promising is the ratio =3= Y 'Z+/Y,
which describes the field dependence near the coexistence
manifold (h =0).

:-
)
=0. 159 28 . , :-3——17.84 .

Note, however, that in (5.2) t~ must be replaced by
t '»It

I
and

I
t I' by t »I"tl.

VI. CONCLUSIONS

We have analyzed bulk thermodynamics near a critical
end point with the particular aim of elucidating the
singularities that may appear in the phase boundary,
g (T, h), to the noncritical spectator phase. Characteris-
tic behavior is anticipated which, it is argued, should be
controlled by the universal bulk critical exponents, ampli-
tude ratios, and scaling functions that are observable on
the critical line away from the end point. Relevant bulk
critical-point amplitude ratios are defined in (3.5)—(3.8)
and (3.11)—(3.14). The behavior predicted for g (T, h) on
particular interesting loci is then detailed in the results
(5.2), (5.7), (5.9), and (5.13); the corresponding universal
amplitude ratios are defined and related to the bulk ratios
in (5.6), (5.10), and (5.11), and in (5.15)—(5.17). Explicit
numerical predictions for these phase boundary ratios are
presented for classical systems in (5.19), for general
spherical models in (5.22), and for Ising models in (5.23)
and (5.24).

Although our results are very plausible, they are based,
as explained in Sec. III, on assumptions that are not en-
tirely well founded inasfar as they suppose one may
neglect any counter-phase or droplet fluctuations which
must enter a full microscopic description near an end
point. Although a droplet-picture calculation' corro-
borates our results, explicit analyses for systems actually
exhibiting end points are certainly desirable and, conceiv-
ably, could lead to unanticipated modifications of the
theory. Parts II and III of this paper will present such an
analysis for spherical models in all dimensions and with
both long- and short-range interactions.
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