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Fracton density of states by the maximum-entropy method
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We present a study of the one-magnon density of states in the three-dimensional dilute Heisen-
berg ferromagnet. The ensemble-averaged density of states is evaluted by calculating a small num-
ber of spectral moments and employing a maximum-entropy criterion. Finite-size-lattice data, via
common numerical simulation techniques, are also presented. The results demonstrate the fracton
excitations at the percolation concentration p, as expected from the Alexander-Orbach conjecture
and show the presence of the magnon-to-fracton crossover. At the percolation threshold p„we esti-
mate a value for the spectral dimension of d, = 1.52. The corresponding problem of phonons in ran-
dom materials is also discussed in connection with the available experimental data.

I. INTRODUCTION

There is intensive current interest in the study of spin-
wave excitations in randomly dilute ferromagnets.
Within the Anderson theory of localization it is expected
that dilution, which is a geometrical kind of disorder,
will drastically affect the spectral and transport proper-
ties of one-magnon excitations in a way similar to what
disorder does to electrons in metals. In the usual picture
of Anderson localization, mobility edges may appear in
the energy spectrum that separate extended states, having
amplitude constant on average, from localized states that
usually decay exponentially. Very rich localization prop-
erties are also expected for spin waves in dilute magnets.
Classical localization of excitations on finite clusters of
connected sites may occur but strong localization for spe-
cial energies is also common even on the infinite percolat-
ing cluster due to its self-similar fractal geometry. The
problem can be treated at the percolation threshold
where the percolation correlation length diverges and the
underlying lattice is known to be a random fractal object
on all length scales. The solutions of the Schrodinger
equation in this limit are well understood. The excita-
tions are named fractons and the asymptotic behavior of
the density of states is reasonably well known. In this pa-
per we investigate the spectral properties of magnon exci-
tations on site-dilute three-dimensional lattices. Our re-
sults are also relevant for phonons or classical diffusion.
In particular, we considered the spectral density of states
for any given amount of dilution by combining the results
of an exact calculation of spectral moments with a
maximum-entropy method. Our first aim is to point out
that the method of moments when combined with the

maximum-entropy technique allows a reasonable semi-
analytical treatment of spectral density problems in
high-dimensional disordered lattices. As an alternative
we also present a computational study of the spin-wave
density of states. We set up and diagonalize a Hamiltoni-
an matrix ensemble as a function of the concentration p
in three dimensions. Such accurate methods, as the exact
diagonalization Monte Carlo technique become exceed-
ingly difficult in this case due to the large coordination
number of the lattice. The two techniques we use are
shown to be powerful and largely complementary. In
particular, the usefulness of the moments maximum-
entropy method is exploited in comparison with the more
accurate numerical data and other approximate effective
medium approaches. However, our main purpose is to
clarify certain questions concerning the fracton states in
three dimensions, such as the estimation of the spectral
fracton dimension and the study of the magnon-fracton
crossover.

The problem of calculating the magnon density of
states in high-dimensional disordered lattices is usually
dealt with self-consistent-type mean-field theories, such
as the coherent-potential approximation (CPA). '" Al-
though the CPA is the best approximate method known
to treat disorder and is widely applicable in dilute sys-
tems or alloys it cannot be easily improved. Recently, it
was shown that the maximum-entropy method can be an
alternative approach to the reconstruction of a spectral
density if a small number of its spectral moments are ex-
actly known. Maximum-entropy methods for the solu-
tion of undetermined inverse problems have been intro-
duced a long time ago. They are useful approximations
when there is a limited supply of data since they are max-
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II. THE MODEL

We consider the one-magnon dynamical matrix equa-
tion arising from the Heisenberg Hamiltonian

H= —2J happ, S; S, ,
(l,J)

(2.1)

where J)0 and (i,j) denote the nearest-neighbor pairs
defined on a magnetic site-dilute cubic lattice. The p, s
are random site variables taking the values 1 and 0 with
probability p and 1 —p, respectively. The ground state of
Eq. (2.1) is the ferromagnetic ~0& state and we can write
the Schrodinger equation for a state

~

4 & corresponding
to a single spin deviation so that the total z component of
the crystal spin is one unit less. The wave function ~%'& is
expanded in the Hilbert space basis set which consists of
one-particle spin deviations defined on every lattice site n,
that is

irnally noncommittal with respect to missing information.
The method for determining densities of states was
mathematically founded in Ref. 5 and subsequently ap-
plied to various physical problems including various
kinds of disordered systems (see, e.g. , Ref. 7). It proceeds
as follows. The density of states is written as the ex-
ponential of a polynomial whose coefficients are subse-
quently self-consistently determined. The advantage of
the technique is that even a small number of given mo-
ments for an unknown spectral density is sufficient in or-
der to recover its basic features. The details of the
method and its numerical implementation can be found
in Ref. 5. Our purpose is the application of this powerful
technique to the problem of one-magnon density of states
in dilute magnets, including the fracton density of excita-
tions at the percolation threshold.

tration for small enough length scales restricted by the
percolation correlation length. The density of states for
the fracton spectrum at p, shows a divergence for long
wavelengths following the universal Alexander-Orbach
law:

d jd —1

p(E) ~E f, E~O . (2.4)

III. CALCULATIONS

The exponent df is the fractal dimension which takes the
value df =2.51 (Ref. 1) for the three-dimensional per-
colating cluster and d is the dynamical exponent follow-

s
ing from the obeyed anomalous dispersion E ~ k for
k ((1. If we cast Eq. (2.4) into the usual form of the
magnon density of states then

p(E) ~E * E~O (2.5)

and the relevant exponent which plays the role of the
space dimension is now d, =2df /d, better known as the
fracton or spectral dimension. It has been conjectured
that d, takes approximately its mean-field value (d, = —', )

in any Euclidean dimension d ~2. For concentrations
above p, the magnon density of states is observed in the
long-wavelength (small-E) regime while a crossover to the
fracton regime occurs at shorter wavelengths (larger-E).
The magnon-fracton crossover is expected at a charac-
teristic energy which is inversely proportional to the per-
colation correlation length. The Alexander-Orbach con-
jecture as suggested by Eq. (2.4) has been numerically
verified in two dimensions ' where the magnon-fracton
crossover was found to be smooth. ' The absence of such
studies in three dimensions was the main motivation for
the present work.

(2.2)

where ~n & =(2S) ' S„~O&. If we set 2JS=1 the equa-
tion studied can be derived from an equivalent general
tight-binding Hamiltonian

H= yc, „~n&(n~+ g ~n&( ~m.

(n, m)

(2.3)

In this case n covers all the existing magnetic lattice sites
on a three-dimensional lattice and ( n, m) denotes all
present nearest-neighbor pairs of connected sites. The
site-energy c.„ is equal to the number of nearest neighbors
of n present which ranges from 0 to 6 for a simple cubic
lattice. The model has a special form of correlated disor-
der between the diagonal and ofF-diagonal matrix ele-
rnents. The energies are measured from the ground state
and the gapless spectrum consists of strictly positive en-
ergies confined within the energy interval 0 ~ E ~ 12. The
E=O mode is extended, even in the presence of site ran-
domness, due to the continuous degeneracy of the ground
state.

At the critical percolation concentration p, (p, =0.31
for a sc lattice in d=3) the excitations are known as frac-
tons, due to the underlying fractal nature of the cluster.
The fracton states are expected to persist at any concen-

A. The moments

Firstly, we focused on the density of states problem for
the site-dilute ferromagnet in a cubic lattice as a function
of the concentration p by evaluating exactly its first ten
frequency moments. We have used the already known
moments for the k-dependent spectral functions of Ref.
11 calculated by a variant of a finite-cluster method. ' In
order to obtain the moments of the density of states we
must integrate the k-dependent expressions of Ref. 11
over all k vectors in the first Brillouin zone. In fact, we
evaluated integrals for the difFerent powers of functions
containing the following lattice expressions:"

s, =6—2[c s(ozark„)+ cos(~k» )+cos(rrk, ) ],
s2= 12—4[cos(n.k„)cos(nk )+cos(~k» )cos(hark, )

+cos( nk, )cos(

hark„)

],
(3.1)

s~ = 8 —8[cos(~k„)cos(~k )cos(hark, )],
which enter in the k-dependent moments. We have done
this efficiently by expanding the corresponding powers
and a list of the obtained first ten moments as a function
of the percolation concentration p is analytically given in
Table I. For the pure lattice limit the moments we obtain
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TABLE I. The first ten moments of the one-magnon density of states for the site dilute lattice in d=3 as a function of the concen-
tration p.

Order

10

Moment

1

6p
12p + 30p

24p + 180p + 120p '
48p +750p + 1524p'+360p

96p +2700p +11040p'+8880p +720p'
192p +9030p +62 556p +102690p +38424p'+864p

384p+28980p +310464p +850332p +683952p +140856p +3264p
768p+90750p +1423 548p +5853432p +7902360p +3703 872p +587712p +39792p8

1536p +279 900p +6 207 888p'+35 964000p +72073 536p'+57 150264p +19461960p
+ 3 410 688p + 337 200p

3072p +855030p +26 193 900p +205 138440p +567 549 156p +663 580 182p +372219936p
+113727048p'+24234792p +2 112096p'

are given in Table II. If these results are transformed for
the corresponding tight-binding electron problem in a di-
lute lattice, better known as the quantum percolation
model, they agree for p= 1.0 with the results of Ref. 13.

p(E)=exp g A, E
m=Q

(3.3)

The values of the parameters k are chosen so that they

satisfy the constraints of Eq. (3.2) by calculating and sub-

sequently minimizing the function

TABLE II. Moments of the one-magnon density of states for
the ordered lattice (p = 1.0) in d= 3.

Ord er

0
1

2
3
4
5

6
7
8
9
10

Moment

1

6
42
324

2682
23 436

213 756
2 018 232
19602 234

194 886 972
1 975 613 652

B. The moments maximum-entropy method

The integrable and non-negative p(E) is the required
quantity which is defined for E on the interval [0,12].
Our purpose is to achieve the evaluation of the density of
states when a small number of its moments is known.
Suppose that the following X moments

p = p EE dE, m=01, . . . , %, (3.2)

are known. The maximum-entropy solution is a density
p(E) which maximizes the entropy functional
—fp(E)ln[p(E)jdE, under the constraints of Eq. (3.2).
According to Ref. 5 a unique maximum-entropy solution
exists of the form

N N

fexp gA, E dE —gp A,

m=0 m=0

A numerical procedure of how to do this efficiently, at
least for not too many moments, is given in Ref. 5. The

's are numerically obtained by inverting a Hessian ma-
trix and p(E) is recovered from Eq. (3.3). In our applica-
tion we have used as input the moments given in Table I.
The results are displayed in Figs. 1 —3.

C. The exact diagonalization approach

In order to complement and back up our calculations
we have also used a more accurate but cumbersome ap-
proach. We generate numerically a statistical ensemble
of randomly dilute finite cubic lattices using periodic
boundary conditions in every direction. The correspond-
ing one-magnon Hamiltonian matrices were set up and
diagonalized numerically as it was done before for
d =2. ' To calculate p(E) for a particular value of p all
the eigenvalues were computed. Their distribution densi-
ty is shown in histogram form for various concentrations
p in Figs. 1 and 2 compared with the moments
maximum-entropy results. The lattice size for most calcu-
lations is 14X14X14. In this type of calculation there
exist two sources of error. Firstly, a statistical error
arises due to the finite number of samples considered in
taking the average. We estimated the relative statistical
fluctuations for the number of states in every bin and was
found to be no more than about 6%. Finite-size effects
are also unavoidable and become noticeable in the figures
particularly for low disorder, since every bin contains a
rather small number of states. In order to estimate the
errors from this source we tried varying the lattice size.
In Figs. 1(a) and 1(b) we present averages in a histogram
form for two different lattice sizes which give an estimate
of the total error.

IV. RESULTS

The results of our calculations by both the methods de-
scribed above are demonstrated in Figs. 1 —4. The nor-
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malized p(E), as p approaches p„ is seen to display the
well-known 6 function singularity peaks containing high-
ly degenerate eigenstates. The most prominent peak
occurs at E=O but peaks at E =1,2, 3, (3+V5)/2, . . . ,
can be also seen causing a rapid increase in the number of
states in the corresponding energy bins. A sufhcient ex-
planation on the origin of these special states is given in

Ref. 14 for the related quantum percolation model. They
are due to states localized both on small isolated clusters
as well as special parts of the infinite percolating cluster.
Their degeneracy ratio can be evaluated by cluster-
counting procedures and for p =p, we numerically find
that the E=O states consist of = 17% of the total number
of states. At the percolation threshold (Fig. 1) we obtain
a divergence at long wavelengths as expected from Eqs.
(2.4) and (2.5). It can be seen that the results obtained by
the maximum-entropy method compare reasonably well
with the detailed numerical data (see Fig. 2). Difhculties
arise when one tries to improve the comparison mostly
due to the presence of 5-function singularities which are
not maximum-entropy but instead minimum-entropy
solutions. For higher p values the significance of the 6
functions diminishes and the maximum-entropy method
becomes very good. Even for the regular-cubic-lattice
limit, which is highly unsuitable for this kind of ap-
proach, the maximum entropy using ten moments is
reasonable. In Fig. 3 the regular lattice density of states
is recovered, with the square-root behavior for low E, al-
though finite-moment efFects result in positive p(E) values
at the band edges. The agreement is improved when
more moments are considered.

In order to discuss the fracton excitations due to the
percolating cluster at p, we consider the numerically
computed integrated density of states X(E). In Fig. 4 we
plot X(E) against E in a double logarithmic plot. In the
energy range considered there is no significant number of
degenerate eigenstates, We expect from Eq. (2.5) that in
the fracton regime the data should lie on a straight line of
slope d, /2. In the magnon regime the square-root law
for p(E)( ~ E '

) suKces and results in X (E) ~ E ~,
which means that d, takes the value of the space dimen-

0.3-
hl

Q.

0.2-

O. i-

0.0
0

FICi. 1. {a) The averaged normalized one-magnon density of
states is displayed at the critical percolation concentration

p, =0.31. The continuous line is the result by the maximum-

entropy method using the first eight moments via Table I. The
histogram is obtained from a direct finite lattice {14X14X14)
exact numerical diagonalization. The average is taken over 20
random configurations. The large peaks correspond to 5-
function singularities {see text) which occur at special energies.
The peak containing states in the range 0 ~ E &0.1 is not shown.
{b) The same as in {a) but the histogram is now obtained by di-
agonalizing a smaller lattice (12X12X12) and the average is
taken over 50 random samples.

0.0
0 12

FICx. 2. The histogram is of the density of states for p=0.6
[as in Fig. 1(b)]. The continuous line gives the corresponding
result of the moments maximum-entropy method using the ten
moments of Table I.
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FIG. 3. Plot of the moments maximum-entropy method re-
sult for the density of states of the ordered cubic lattice using
the ten moments (p= 1.0) of Table II.

sion d= 3. For p =p, despite the various sources of error
the data lie approximately on a straight line and a least-
squares fit gave a gradient leading to a value of
d, =1.52+0.05. The error bound is estimated from per-
forming various runs and contains both the statistical and
finite-size components. Our results for d, are small
overestimates in respect to the nearly universal value of

For values of p above p, the two excitation regimes
are seen to be roughly characterized by the correspond-
ing exponents d, and d, respectively. Our results show no
indication of a well-defined fracton peak, although a
smooth curvature of the data is seen at the crossover. By
the maximum-entropy method we fail to obtain a very ac-
curate value for the exponent d, . This is due to the fact
that in the method we cannot eliminate the degenerate 5
functions already present in the input moments. Howev-
er, the divergence of p(E) at low E is seen and a d, close
to the previous value can be extracted. For wavelengths
longer than the scale of dilution the pure density law
p(E) ~E'd '~~ is obtained by this technique. In Fig. 2
for @=0.6 the difFerence from p, is high enough but a
small peak in the density of states at small E is seen even
in the gross scale of the figure which may be due to the
magnon-fracton crossover in d =3.' We can conclude
that for most disordered systems the maximum-entropy
technique becomes very powerful, even when a few mo-
ments are used.

The fracton states are expected to have interesting lo-
calization properties' ' such as the occurrence of super-
localization. ' From our preliminary numencal data the
scaling of the moments for the wave-function amplitude
distributions implies superlocalization of the fracton
states as in d =2. ' We hope to consider this question in
a future publication.

FIG. 4. log-log plot of the averaged normalized integrated
density of states N (E) vs energy E. From Eq. (2.5)

d /2
N(E) ~ E ' and the crossover from the magnon (d, =d=3) to
fracton (d, =4/3) (Ref. 2) excitations can be seen for p )p, .
The obtained value for the exponent d, is d, =1.52+0.05 at all
low enough energies for p =p, and only at the higher energy
part of the spectrum for p, &p & 1 (fracton regime). From the
present data it can be concluded that p(E) varies smoothly at
the crossover.

V. DISCUSSION

The results of this paper should also apply to the prob-
lem of vibrational density of states if E is replaced by the
squared phonon frequency cu . The steep change in the
density of states (see Fig. 2) is also found in the original
eff'ective medium treatments. ' The present results be-
come relevant for the specific-heat density of states in
glasses and neutron-irradiated quartz. Equilibrium
properties of adsorbed films also should depend on the
spectral dimension of the substrate following recent dis-
cussions of Bose-Einstein condensation in porous sys-
tems. "

In conclusion, a moments maximum-entropy method is
presented here as an alternative powerful tool for calcu-
lating densities of states in disordered systems together
with the more cumbersome direct finite-size lattice nu-
merical method. We are able to recover the basic
theoretical results concerning the spectra of magnon exci-
tations on random fractal networks in d= 3, limited so far
only to effective medium treatments. Our results are in
favor of the fracton interpretation in amorphous systems.
Clearly more work is needed on two fronts: firstly, on the
improvement of the method for more accurate studies,
also by including a larger number of moments and ex-
tending the range of applications to other complicated
spectral problems in disordered systems.



11 176 EVANGELOU, PAPANICOLAOU, AND ECONOMOU 43

ACKNOWLEDGMENTS

Thanks are due to Professor N. Papanicolaou of the
Research Center of Crete (see also Ref. 5 and please note
that one of us has the same name) for helpful discussions

and for allowing us to use his numerical program for the
evaluation of the spectral density and Dr. R. Djordjevic
who initially helped us with the calculation of the first
few moments. The work was also supported in part by a
H.EN.E. A. Grant from the Greek Secretariat of Science
and Technology.

D. StauFer, Introduction to Percolation Theory (Taylor and
Frances, London, 1985).

~S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43, L625
(1982).

A. B. Harris, P. L. Leath, B. G. Nickel, and R. J. Elliot, J.
Phys. C 7, 1693 (1974).

~E. N. Economou, Green 's Functions in Quantum Physics,
Springer Verlag Series in Solid State Physics, Vol. 7

(Springer, New York, 1983).
5L. R. Mead and N. Papanicolaou, J. Math. Phys. 25(8), 2404

(1984).
E. T. Jaynes, Phys. Rev. 106, 620 (1957); 108, 171 (1957).

7P. A. Fedders and A. E. Carlsson, Phys. Rev. B 32, 229 (1985).
S. J. Lewis and M. C. O' Brien, J. Phys. C 18, 4487 (1985).
S. J. Lewis and R. B. Stinchcombe, Phys. Rev. Lett. 52, 1021

(1984).
S. N. Evangelou, Phys. Rev. B 33, 3602 (1986).

I ~B. Nickel, J. Phys. C 7, 1719 (1974).

' C. Domb, Adv. Phys. 9, 149 (1960).
M. E. Fisher and W. J. Camp, Phys. Rev. B 5, 3730 (1972).
S. Kirpatrick and T. P. Eggarter, Phys. Rev. B 6, 3598 (1972).
B. Derrida, R. Orbach, and Kin-Wah Yu, Phys. Rev. B 29,
6645 (1984).
R. Rammal and G. Toulouse, J. Phys. (Paris) Lett. 44, 13
(1983).

' I. Webman and G. S. Grest, J. Phys. (Paris) Lett. 44, L1155
(1984).
Y. E. Levy and B. Souillard, Europhys. Lett. 4, 1233 (1987).
T. Nakayama, K. Yakubo, and R. Orbach J. Phys. Soc. Jpn.
58, 1891 (1989).
S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg,
Phys. Rev. B 28, 4615 (1983).
P. Pfeifer and M. Order, in The Fractal Approach to Hetero-
geneous Chemistry, edited by D. Avnir (Wiley, Chichester,
England, 1989), pp. 11—43.


