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N. S. Almeida
Departamento de Frsica, Universidade Federal do Rio Grande do Norte, 59702 Natal, Rio Grande do Norte, Brazil

D. R. Tilley
Department of Physics, Uniuersity ofEssex, Colchester CO4 3SQ, United Kingdom

(Received 9 July 1990; revised manuscript received 25 October 1990)

Spiral states (in which the equilibrium spin vector rotates uniformly at right angles to a helical
axis) and cone states (in which the spin vector rotates at an angle 0%90 to the helical axis) are ob-
served in various rare-earth magnets within some temperature interval. The spin-wave spectrum
co(k) is rederived, and the magnetic-susceptibility tensor is found, for the cone state; expressions for
the spiral state are given as special cases. In the cone state, the susceptibility tensor has a gyromag-
netic form, and has poles at the spin-wave frequencies co(+ko), where ko is the wave vector of the
equilibrium helix; in the spiral state, the susceptibility tensor is diagonal, with a single pole at co(ko),
since the frequencies co(+ko) are degenerate in the spiral. The results are applied to a calculation of
the magnetostatic-surface-mode spectrum for the geometry in which the helical axis lies in the sur-
face. In the cone state, propagation is nonreciprocal, but due to the existence of two poles, two
surface-mode branches occur, with different ranges of allowed propagation directions; in the spiral
state, propagation is reciprocal. The implications of the results for Brillouin scattering and at-
tenuated total reflection are discussed, and a wide range of possible extensions of the calculations is
outlined.

I. INTRODUCTION

Magnetism in rare-earth metals was the subject of in-
tensive studies in the 1960s; the understanding achieved
then has been summarized in a number of major re-
views. ' Interest in the subject is currently undergoing
a revival as a result of the success in developing growth
techniques for superlattices containing rare earths.
Among the experimental techniques available for the in-
vestigation of such superlattices, Brillouin scattering by
magnetostatic surface modes is expected to play a part.

Magnetostatic surface modes on a ferromagnet were
investigated theoretically by Damon and Eshbach.
These modes were studied experimentally in the first in-
stance by direct microwave excitation and were later in-
vestigated much more comprehensively by Brillouin
scattering. Extensive discussions of these results are
available. With the development of magnetic super-
lattices, both theoretical ' and experimental' studies of
magnetostatic modes in superlattices and the resulting
light-scattering spectrum were carried out in quick suc-
cession.

Our purpose in this paper is to initiate a theoretical
study of magnetostatic and related modes on the surfaces
of rare-earth metals and of superlattices containing rare
earths. The fundamental physical quantity for all such
work is the susceptibility tensor describing the response
of the magnetization in a rare-earth metal to a driving
magnetic field at microwave or far-infrared frequency,
and the central part of this paper is therefore the evalua-
tion of the susceptibility tensor. The rare earths display a
rich variety of magnetic ordering; ' apart from simple fer-

romagnetic alignment, observed in Gd, and in Tb and Dy
at low temperatures, two of the most important —the
ones with which we shall be concerned —are the spiral
and cone states, the former occurring in Tb (221
K (T (230 K), in Dy (85 K (T ( 179 K), and in Ho (20
K( T (133 K), and the latter in Ho (T (20 K) and in
Er (T (20 K).

Despite the variety of orderings, the rare earths have
many features in common, and indeed they can all be de-
scribed by the same phenomenological Hamiltonian.
The metals all order in the hexagonal-close-packed (hcp)
structure, and in all the various states the spins within a
given close-packed plane are aligned ferromagnetically.
In the spiral state, the moment lies in the plane, with its
orientation advancing by P from one plane to the next.
In the cone state, the moment is lifted out of the plane
and makes an angle 0 with the normal (z axis); the projec-
tion in the x yplane advanc-es by P between planes. This
means that the Hamiltonian can be taken as one dimen-
sional, with effective exchange constants between
different planes. The exchange derives from the
Ruderman-Kit tel-Kasuya- Yosida (RKKY) interaction
and is therefore relatively long ranged and can oscillate in
sign. For a general description it is sufFicient to use an
effective Hamiltonian with nearest- and next-nearest-
neighbor exchange. If the former is ferromagnetic and
the latter antiferromagnetic in sign, then a spiral state
can result from competition between the two signs of ex-
change. "

In addition to the exchange interactions, anisotropy
terms may be included. While an anisotropic exchange
can be introduced, it is sufFicient for our present purposes
to use single-ion anisotropy terms. For the spiral state,

43 11 145 QC1991 The American Physical Society



11 146 N. S. ALMEIDA AND D. R. TILLEY 43

we include only a term ES, , which ensures that the spins
remain within the close-packed planes, while for the cone
states at least a term L,S, is needed in order to ensure a
cone angle 0 & 90 . A possible term in S, and in-plane an-
isotropy terms are omitted: the former would not alter
the results in any significant way; implications of omit-
ting the latter are discussed in Sec. VI. Finally, magne-
tostrictive efFects are important, particularly in determin-
ing the phase transitions between diferent ordered states
and the temperature dependence of parameters like the
angles 9 and P. They can be included implicitly, to some
extent, if the exchange parameters are taken to have a
temperature dependence consistent with the known tem-
perature dependence of 9 and P.

The plan of the paper is as follows. In Sec. II we derive
the equilibrium values of 9 and P. In Sec. III we give the
equations of motion for the spin-deviation operators
within the semiclassical approximation; the derivation is
equivalent to that in the original literature, ' but it is
given in a modified form that is more suitable for the
tasks at hand. The spin-wave dispersion relation is de-
rived from the equations of motion and illustrated nu-
merically. Both the equations of motion and dispersion
relation are given for the cone state since the spiral state
is simply the special case 0=90. The susceptibility ten-
sor is derived in Sec. IV. In Sec. V we give some elemen-
tary applications of the susceptibility tensor, namely, the
magnetostatic modes on semi-infinite and finite-slab
specimens in the cone and spiral states. Conclusions and
a general discussion are presented in Sec. VI.

II. EFFECTIVE HAMILTONIAN
AND EQUILIBRIUM STATES

The Hamiltonian is taken as

&= —J, g S„S„+,+J2 g S„.S„+q

+g (KS„,+LS„,) —y&o g S„,—yh gS„,

often expressed as an unrestricted sum over neighbors i
and j, so that the values of J, and J2 appearing in (1) are
twice those in those papers. Equation (1) includes a static
external field Ho in the z direction (normal to the close-
packed planes); as will be mentioned in Sec. VI, an exter-
nal field in the x-y plane leads to more subtle eA'ects and
is not included. The last term in (1) is the interaction
with an rf (microwave or infrared) applied field h; the sus-
ceptibility is the linear response of the magnetization to
h.

The equilibrium configuration is assumed to take the
form

S=S(sinOcos(ng), sinOsin(ng), cosO),

where S stands for the total angular momentum J. ' This
form is substituted into (1) (without the final term), and
the resulting energy E(9,$) is minimized with respect to
8 and P (the justification for minimizing the internal ener-

gy rather than the free energy is discussed in Ref. 1).
Minimization with respect to P yields

cosP =J, /4J2,

so that the cone (or spiral) state is energetically favorable,
provided that the nearest- and next-nearest-neighbor ex-
change interactions are, respectively, ferromagnetic and
antiferromagnetic, as indicated by the signs in (1) and
provided that J2) J&/4. Minimization with respect to 0
gives

4LS cos 8+2S(2J2 —J, +J& /8J2+K)cosO yHo=O .—

(4)

III. EQUATIONS OF MOTION
AND SPIN-%'AVE DISPERSION

Equations of motion for the spin operators at site n

may be derived from (1) in the usual way. Within the
usual semiclassical approximation, we linearize them by
defining

where the sums are over close-packed planes labeled n.
The exchange and anisotropy terms were discussed in
Sec. I; in much of the early literature, the Hamiltonian is

S„=S(A„+a„),
where A„ is the unit vector appearing in (2). We retain
only terms linear in a„or h and define a—„=u,+ia~,
h —=h +ih~. The linearized equations of motion are

a„=-+iGoa„+i Q(ko)sinOexp(—+in/)a'„+i(Q&+30Lcos 9)exp(+in/)a'„

+i si Oenp(x+ing)[Q, (a'„++'„a, ) —Qz(a'„+&+a'„~)]

+i cosO[Q, (a„—+, +a„—,)—II2(a„—+~+a„—2)]+iy cosOh —+i y sinO exp(+in/)h',

a'„= ,'iQ(k )s0i—n[Oae (x—ping) —a„exp(in/)] —
—,iQ&sinO[(a„++&+a„+ &)exp( —in/) —(a„+&+a„&)exp(in/)]

+ —,
' i02sinO[(a„++&+a„2)exp( —in/) —(a„+2+ az)e p(ixn P)]—,' iy sinO[h +exp(—in/)—h exp(—in/) ],

where
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Q~ =2ES,
Qi =4LS

Q, =J,S,
A2= J2S,
Gc=(2Q, —2Q2 —Q~)cosO —QLcos 0+yH~ .

The function Q(q) is defined for general q by

Q(q) =2Q, cos( —,'qc) —2Qzcos(qc),

(8)

where c is the length of the crystallographic c axis so that —,c is the distance between close-packed planes; Q(q) is pro-
portional to the Fourier transform of the exchange interaction. kz is defined as the wave number of the equilibrium
configuration, so that

—,'k() c =P .

It can be seen that with these definitions, (4) can be written as

GD=Q(k~)cos0 .

(14)

(15)

The equations of motion for a„,a„, and a„are not all independent; it is to be expected from (5) that a„and A„are
orthogonal, and A„.a, =0, so that

sinO[a„+exp( —in P)+ a„exp(in P) ]+2 cosOa'„=0 .

This is readily verified with the use of (15).
Equation (16) can be used to eliminate a, , for example. In the resulting equations, it is convenient to define

p„=a „+exp( in p ) . —

The coupled equations for p„and a'„are then found to be

P„= iQ(k~—)cosOP„+i[Q(kc)+Q„+3Qt cos 0]sinOa'„—i sin0[Q, (a'„+,+a'„, )
—Q2(a'„+2+a'„z)]

(16)

(17)

+i cosO[ Q[P„+e x(pi P ) +P„,exp( —iP) ]
—Q2[P„+&exp(2ig )+P„&exp( 2i P ) ] ]—

+iy cosOh exp( in/) iy sin—O—h', (18)

a'„=iQ(k~i)si nO„P+iQ(k~)cosOa'„—iQisinOcosg(P„+, +P„ i)+iQ~sinOcos2$(P„+~+P„~)

—i Q,cosO[a'„,exp(i P ) +a'„+,exp( —i P) ] —i Q2cosO[a'„2exp(2i P ) +a'„+~exp( 2i P )]-
,'i y sin 0—[h exp( —in P ) —h exp( in P ) ] .

The equations of motion for the spiral state are the special cases of (18) and (19) with sin0=1 and cos0=0; it is seen
that this leads to a considerable simplification.

Equations (18) and (19) can be used for the derivation of both the spin-wave dispersion equation and the susceptibility
tensor. For the former, we solve the homogeneous equations with h =0 by means of the ansatz

p„=p&exp(iqz„)exp( —

idiot),

(20)

a'„=a~iexp(i qz„)exp( i ~t ), —

where z„=—,'nc is the coordinate of the nth close-packed plane. This leads to the dispersion relation

co +co cosO[Q(kc+q) Q(kc, —q)] —cos 0—[Q(k~) —Q(k~+q)][Q(kD) —Q(kD —q)]

—sin 0[Q(k~) —
—,'Q(k~+q) —

—,'Q(kc —q)][Q(kD) —Q(q)+Q~ +3QL cos 0]=0 .

It is worth writing down the special case of the spiral explicitly:

co2= [Q(k~) —
—,'Q(k~+q) —

—,'Q(k() —q)][Q(k() )
—Q(q)+Q~ ] .

(22)

(23)
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FICi. l. Spin-wave dispersion curves for (a) cone state /=30' and 0=80', corresponding to Ho at 20 K, and (b) spiral state
/ =26.5' and 9=90', corresponding to Dy at 90 K.
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Equation (22) is identical to that derived by Kaplan;'
in making a comparison, it must be noted that he uses the
exp(+i cot) frequency convention. Equation (22), unlike
(23), had the property that co( —q)%co(q). In fact, the
equation for co( —q) differs from that for co(q) only by
having the sign of the term linear in co reversed, so that if
the two roots of (22) are written co, (q) and co2(q), then
co, ( —q)= —co, (q) and co&(

—q)= —co&(q). Since it is a
condition of stability that one spin-wave frequency
should be positive for each value of q, we may conclude
that co, (q) (say) is positive and co2(q) is negative, and the
physical spin-wave frequencies are co(q) =co&(q) and
co( —q) = —~&(q).

Equations (22) and (23) are illustrated in Fig. 1. The
numerical parameters required were determined as fol-
lows. 02/fI, was found from P by means of (3); QL /Q~
was assigned the typical value of 0.1; 0&/Qz was found
from (4). As required by (22) and (23), Fig. 1(b) is sym-
metric, co( —q) =co(q), while Fig. 1(a) is asymmetric, al-
though the asymmetry is not very marked for the cone
angle 0=80'.

g++ = y—Np[(Q„+3flL cos 0)sin 0

+ [co+A(ko)cos0
—Q(2ko )cos0]cos0] /D+, (24)

where

D+ = [co+Q(0)cos0 —A(ko )cos0]

X [co+Q(ko )cos0 —II(2ko )cos0]
—[0~ + 3QL cos 0][A(ko ) ——,

' Q(0)

—
—,
' A(2ko ) ]sin 0 . (25)

Comparison with the spin-wave dispersion equation (22)
shows that D+ =0, and therefore y++ has a pole at
co( —ko), the frequency of the q = —ko spin wave.

A similar calculation to that just described gives

AN@—, [ —,'(0, „+3QLcos 0)sin 0

—
[co —0(ko )cos0

+Q(2ko )cos0]cos0] /D, (26)

where

IV. SUSCEPTIBILITY

As mentioned, the magnetic susceptibility tensor is
proportional to the tensor giving the linear response of a
to h. The frequency region of interest is where the spin-
wave frequencies occur, that is, the microwave or far-
infrared, and here the electromagnetic wavelength k is
much larger than the spiral period, A,ko ))1. It is there-
fore sufficient to take h spatially uniform, h ~ exp( i cot)—
We solve (18) and (19) for g„and a'„, and it is convenient
to take the components of h to be nonzero one at a time.

For h'WO, the solutions are of the form
P„=Poexp( —i cot) and a'„=aoexp( —i cot ) When .these
are substituted into (19), the right-hand side vanishes,
and so czo=0. Thus there is no longitudinal response,
y„=O. Furthermore, although (18) gives a nonzero
value of Po, (17) and (16) show that a„+ and a„contain
the spatially varying terms exp(in/) and exp( in/), re--

spectively. These average to zero over any macroscopic
volume of the crystal, and so there is no response of the
magnetization components M +— to h', y+, =0. In all,
then, g,,=0.

For h +%0, the solutions take the form

D =[co—Q(0)cos0+Q(ko)cos0]

X [co—0(ko )cos0+ Q(2ko )cos0]
—[Q„+3QL cos 0][A( ko )

—
—,
' Q, (0)

—
—,
' A(2ko ) ]sin 0 . (27)

The tensor component y has a pole at co(ko), the fre-
quency of the q =ko spin wave.

We commented that (22) for the spin-wave frequencies
has the property that the roots for +q are co(q) and—co( —q). The denominators D+ and D can therefore
be written more concisely as

D~ =(co co )(cd+cd~ )

D =(co+co )(co co~ ),
(28)

(29)

where

ro~=co(+ko) .

Since the susceptibility tensor is diagonal in the +, —,z
frame, it takes the standard gyromagnetic form in the
x,y, z frame, namely,

and

P„=Poexp( —in P )exp( —i

cot�)

(31)

a'„=aoexp( in/)exp( —icot—) .

It follows from the second of these there is no response of
M', g +=0, as indeed is necessary since y must be Her-
mitian. Equation (17) shows that a„+ is spatially indepen-
dent, a„+ ~Po, so that y++WO, but it follows from (16)
that g +=0. The magnetic moment is M+=Npa„+,
where N is the number of layers per unit volume and p is
the magnetic moment per layer. The solution of (18) and
(19) for ao and /3o then gives

1 A~
Xb 2 (co co )(co+co~ ) (CO+CO )(CO CO~ )

(33)

where to bring out the essential features of the frequency
dispersion due to the poles we write

A+ A
+a +

2 (co —co )(co+co+ ) (co+ co )(co —co+ )

(32)
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It can be real, corresponding to guided waves, or imagi-
nary, corresponding to surface-type waves. Application
of the boundary conditions at the surfaces of the slab
gives

q +2q q„(1+y, )cot(q L) —
q (I+y ) —

q yb=0 .

(38)

Equations (37) and (38) determine the dispersion curves
of the magnetostatic modes.

We illustrate these results with dispersion curves for
semi-infinite specimens. Figure 3 shows the surface mag-
netostatic mode for the spiral state, which has the diago-
nal susceptibility tensor (36). It is seen that since g is di-
agonal, the curve is symmetric about 90', i.e., the +z and
—z directions are equivalent. The value of the exchange
constant J, in Dy is around 170 K, ' i.e., 120 cm ', and
so the ordinate in Fig. 3 is on a scale of order 10—20
cm

For the cone state, the +z and —z directions are no
longer equivalent, and the presence of the off-diagonal
terms in (31) lead to nonreciprocal propagation. It is
well known that in the relatively simple case of the sur-
face of a ferromagnet, propagation is only possible within
a wedge of directions centered on the +y axis. For the
cone state, however, the allowed propagation directions
consist of a wedge in the +y direction, together with two
—y tails stretching back from the z axis, as depicted in
Fig. 4. Actual dispersion curves for Ho are shown in Fig.
5. The presence of the two poles at ~+ and co in the
susceptibility components (32) and (33) leads to the ap-
pearance of two bulk-continuum frequency bands. As is
seen, the +y mode, g(90', which is the analog of that
found in a ferromagnet, is in the frequency region of the
upper bulk continuum, while the —y mode is largely
within the frequency gap between the two bulk-
continuum regions.

VI. DISCUSSION

Our main result is the derivation of the susceptibility
tensor [Eqs. (31)—(33)] for the cone state with that for
the spiral state [Eq. (36)] emerging as a special case. The
derivation is a conventional one based on spin-wave
theory, with appropriate anisotropy terms included. As
in many other spin-wave treatments, ' magnetostriction
was not included, since its main effect is probably to sta-
bilize equilibrium configurations. Damping terms do not
appear in (31)—(33), but could be inserted phenomenolog-
ically in the usual way by the replacements
co+~co+ —iI +. The magnetic resonance results' indicate
that damping is significant, but a detailed treatment is
probably best left until appropriate experimental results
are available.

One of the fascinating features of rare-earth magnetism
is the range of equilibrium states that can be induced by
applied magnetic fields. ' A strong field applied along the
c axis to the spiral state induces a conelike state, thus
presumably inducing nonreciprocity in the magnetostatic
surface modes. A fairly small field applied in the a-b
plane to either the spiral state or the cone state distorts

the uniform pitch of the helix, since the Zeeman energy
favors orientation of the spins with a large component
along the field direction. For fields which are still quite
modest, of order 1 T in Dy, ' the spiral Oops to a fan state
in which the spin directions simply oscillate about the
magnetic field. An important extension of the present
work would be the calculation of the susceptibilities and
related properties in these field-distorted phases.

Starting some 15 years ago, Brillouin spectroscopy was
applied to magnetostatic modes of ferromagnetic surfaces
and films; some of the important experimental results and
further references are given in Ref. 8. It may be expected
that Brillouin spectroscopy will be applied to rare-earth
surfaces and films; the typical frequency scale of 10—20
cm ' in Figs. 3 and 5 is about an order of magnitude
higher than that used in the work on ferromagnets, but it
should be accessible to modern instruments. A quantita-
tive theory of the Brillouin spectra requires, in the first
instance, calculation of appropriate Green s functions in
addition to mode frequencies. Furthermore, the modes
observed in Brillouin scattering on ferromagnetics are
often dipole exchange rather than pure dipolar. Exten-
sion of the present calculations to include exchange
forces is possible in principle, but would require substan-
tial effort.

The mode frequencies in Figs. 3 and 5 are intermediate
between those for ferromagnetic and antiferromagnetic
resonances. The difference between the latter is due to
the fact that in ferromagnetic resonance the spin system
precesses rigidly about the magnetic-field direction,
whereas in antiferromagnetic resonance the relative
direction of neighboring spins oscillates, and exchange
forces come into play. For the spiral and cone states, the
resonance frequencies also involve the exchange con-
stants, as is seen from (30), although these are multiplied
by trigonometric functions of the cone angles 9 and P.
This gives a simple qualitative explanation for the
intermediate-frequency range. Because of the higher 6
frequency characteristic of antiferromagnets, it has been
predicted' that the surface polaritons (retarded modes)
on antiferromagnets should be observable by attenuated
total reliection (ATR). The same is expected to hold for
superlattices involving antiferromagnets. ' The Fourier-
transform spectrometers used nowadays in far-infrared
ATR (Ref. 16) have an operating frequency range down
to 10 cm ' or a little less, and so magnetic polaritons on
rare-earth magnets should be observable by this tech-
nique. Expressions for the surface-polariton dispersion
curve and ATR reflectivity in terms of the susceptibility
tensor are well known ' and could be evaluated for the
present case.

As mentioned in Sec. I, much of the current interest in
rare-earth magnetism arises from the growth of superlat-
tices involving rare earths. In addition to the alternation
of different types of order, such as ferromagnetic with
nonmagnetic or spiral with nonmagnetic, new ordering
patterns can occur which are characteristic of the super-
lattice structure as a whole. Examples are the twisted
state observed in Fe/Gd superlattices in parts of the H-T
phase plane, ' and the period-doubled state of Dy/Gd su-
perlattices in which successive Dy spirals have opposite
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helicity. The present paper may be seen as a step to-
ward the calculation of the rich spectrum of magnetostat-
ic and retarded modes that my be expected in these vari-
ous ordered states. For samples in which bulk-type or-
dering is present in layers which are thick on the atomic
scale, it will be su%cient to characterize each layer by the
corresponding bulk susceptibility. This is the analog of
the bulk-slab model which has been applied extensively to
semiconductor superlattices. ' In fact, for the long wave-
lengths typical of the modes observed in Brillouin scatter-
ing and ATR, the effective-medium approximation
to the bulk-slab model may have an important part to
play. This has proved very useful in interpreting ATR
spectra of semiconductor superlattices; ' the extension
to magnetic superlattices' ' ' may be taken over for su-

perlattices containing spiral or cone ordering in some lay-
ers without undue difhculty on the basis of the suscepti-
bility expressions we have derived. For the more chal-
lenging situations where the ordering is specific to the su-
perlattice itself, a microscopic calculation of the suscepti-
bility is required, but it should be possible to base this on
the techniques used in Secs. III and IV.
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