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We investigate how the statics and dynamics of distortive phase transitions are inAuenced by de-
fects which locally increase the transition temperature. In contrast to the local condensation at a
single defect, a finite concentration n of randomly distributed defects induces a real phase transition
at the temperature T, (n). The phonon response function is calculated analytically in single-site ap-
proximation. For T ) T, (n) and low phonon damping we find a soft-phonon impurity band below
the continuum, which eventually becomes overdamped when T~ T, (n) and produces a dynamical
central peak in the phonon-phonon correlation function. In the case of stronger damping and low
defect concentration, the impurity band is masked and only appears as a narrow central peak very
close to T, (n). We develop a method which allows the computation of the order parameter and the
correlation function in random systems. For T &( T, (n), the dynamical central peak disappears in
the longitudinal correlation function, while it persists in the transverse components for rotational
symmetry. The effect of cubic terms breaking the continuous rotational invariance is also investi-
gated. In any case, the finite order parameter below T, (n) produces a static central peak in the
dynamical structure factor, which has a finite width in momentum space.

I. INTRODUCTION

We study the influence of a finite concentration of ran-
domly distributed defects, which locally increase the
transition temperature, on the statics and dynamics of
structural phase transitions. Although we formulate the
theory in the context of distortive phase transitions, it is
general enough to be applicable to other types of transi-
tions as well.

The influence of imperfections on the static critical be-
havior near second-order phase transitions has been of in-
terest for a long time. ' An additional stimulus to study-
ing the influence of defects came from the observation of
a central peak at co=0 in the dynamical structure factor
above the transition temperature in SrTi03 (Refs. 3 and
4) and a variety of other substances undergoing structural
transitions. ' For a review of the experimental results,
see Ref. 11. The widths of the observed central peaks are
so small that they have eluded direct experimental deter-
mination' ' in most cases; e.g. , in SrTi03 an upper lim-
it from Mossbauer scattering is 10 eV. ' There are in-
dications that the strength of the central peak depends on
the purity of the sample. ' ' ' While it is obvious that
any slowly relaxing mode which couples to the order pa-
rameter would give rise to a central peak, explicit mi-
croscopic anharmonic lattice-dynamical theories ' led
to widths which are typically phonon linewidths.

The narrowness of the observed peaks then prompted
the suggestion that they might be caused by static defects
which couple linearly to the order parameter. These
would give rise to elastic Huang scattering and to a
critical anomaly in the inhomogeneous electron paramag-
netic resonance (EPR) linewidth. It was also realized
that the defects could give a dynamical central peak if

they were not static, but would hop between diA'erent po-
sitions or had internal degrees of freedom which couple
to the order parameter. ' Also, a lattice-dynamical
model with defect cells was investigated and a dynamical
central peak was obtained by combining mean-field
theory and average crystal approximation. Defects
which increase the transition temperature T, locally, the
local ordering induced by the softening of a localized
phonon at the local transition temperature T,', and the
dynamic consequences on the actual phase transition
have been investigated in a Ginzburg-Landau theory. '
The local ordering in a discrete lattice model was later
studied in a mean-field approximation. ' Molecular-
dynamics simulations were performed for one- and two-
defect systems, showing the emergence of a dynamical
central peak near the transition. ' A hint for the ap-
pearance of a central mode in doped SrTi03 stems from a
lattice-dynamical shell model.

Now we return to the properties of defects which local-
ly increase the transition temperature. From the study of
single defects, the following picture emerged. Because of
the local increase of the transition temperature, a charac-
teristic soft localized phonon appears. Below the temper-
ature T,', where the frequency of this localized phonon
mode vanishes, local ordering sets in near the impurities
(because of this entirely local character, T,' does not
represent a real transition temperature). With decreasing
temperature the amplitude and fraction of space occupied
by this local condensate or cluster increases and its reori-
entation rate (hopping rate between equivalent orienta-
tions) decreases. With appropriate averaging of such
single-defect properties, a dynamical central peak could
be obtained.

The present investigation goes far beyond such aver-
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aged single-defect studies in consistently treating a ran-
dom impurity system of finite defect concentration n. It
is, however, based on a Ginzburg-Landau approximation,
the limitations of which will be discussed in Sec. VI. In-
stead of the localized states, we find a narrow impurity
band below the usual optic-phonon continuum. This im-
purity band softens at T, (n ), a concentration-dependent
temperature which we call the "defect-induced transition
temperature" and which constitutes a proper bulk phase
transition. When approaching T, (n ) from above, the
softening impurity band eventually becomes overdamped
and gives rise to a narrow dynamical central peak. Below
T, (n ), a finite order parameter is found that is concen-
trated at the defects, but also spreads throughout the
whole sample. If the impurity concentration is low, the
average order parameter will be very small in the temper-
ature range between T, (n ) and the bulk transition tem-
perature T, of the pure system and will acquire an exper-
imentally observable value only near and below T, , simi-
lar to the order parameter of a pure crystal, but some-
what rounded.

Furthermore, the finite average displacement below
T, (n) produces a static central peak in the scattering
cross section, which, because of the randomly inhomo-
geneous static order-parameter configuration, contains a
contribution with finite width in momentum space (finite
"q width") in addition to the Bragg part. The intensity of
this central peak of zero frequency width increases when
the temperature is lowered to T, .

Below T, (n), the fate of the dynamical central peak
stemming from the impurity band depends on the num-
ber M of components of the order parameter, on the sym-
metry, and on the coupling coeKcients of the nonlinear
terms. In the longitudinal component, the central peak
broadens and disappears into the continuum of the optic
phonons, which continue to soften, but remain at a finite
frequency even at T, because of the small, but finite order
parameter. Hence, for a one-component order parameter
and in the longitudinal direction of a multicomponent or-
der parameter, there is no dynamical central peak further
away from T, (n ) and, in particular, near T, . In an M-
component system (M ) I ), the transverse components,
however, show quite an interesting behavior for
T(T,(n). In the case of continuous rotational invari-
ance (Heisenberg symmetry), the narrow dynamical cen-
tral peak persists in the ordered phase. For weak anisot-
ropy it remains in a rather large temperature range below
T, (n ), while for strong anisotropy the dynamical central
peak acquires an increasing stiffness constant and disap-
pears into the continuum of extended phonon states.
None of the contributions to the scattering cross section
diverge at T, because of the finite order parameter.

This paper is organized as follows: In Sec. II we
present our model free energy, both in a continuum
(Ginzburg-Landau) and lattice formulation, taking into
account the inAuence of locally "softening" defects. The
basic equations for the statics and dynamics of distortive
structural phase transitions will be derived and the neces-
sary correlation functions defined. Section III contains a
review of earlier results (mainly from Ref. 32) on local

order-parameter condensation near a single defect, deal-
ing also with the question of how this phenomenon ap-
pears in the soft-phonon dynamics. In the following .sec-
tion, we generalize these results to a lattice with a finite
concentration n of randomly distributed defects. By tak-
ing an average over defect configurations, we are able to
compute the phonon response and correlation functions
analytically in a single-site approximation. Within our
Ginzburg-Landau approximation, the defects induce a
real phase transition at a shifted transition temperature
T, (n ). Closely above T, (n ), a phonon impurity band be-
comes overdamped and produces a dynamical central
peak. In Sec. V we perform a self-consistent calculation
of the spatially inhomogeneous order parameter below
T, (n ), leading to a static central peak with finite q width
in the scattering cross section. We also treat certain spe-
cial cases in which an additional dynamical central peak
in the phonon correlation function can be found due to
rotational invariance and investigate the inhuence of cu-
bic terms. Finally, in Sec. VI we summarize our results
and discuss their range of validity. In Appendix A the
scattering cross section is evaluated for more general lat-
tices than in Sec. IIB, and in Appendix B a different
derivation of the phonon response function is given.

II. GENERAL EQUATIGNS

In this section we introduce our model describing the
inAuence of softening defects on second-order distortive
(displacive) phase transitions, both in a continuum and in
a discrete version. Furthermore, we define the density-
density correlation function S(k, co) and discuss its
decomposition into the elastic parts (Bragg peak, Huang
scattering) and into the dynamical phonon-phonon corre-
lation function which is related to the retarded phonon
G.reen's function (response function).

A. Model

Following the ideas of Ginzburg-Landau theory, we
expand the free energy V in terms of the displacement
field g serving as the appropriate order parameter in the
case of (ferro)distortive structural phase transitions:

ND

7[Ii)'j ]]=f —,
' g a —g U(x —x; ) [P (x)]

a ia =1

+—g [g (x)] —h(x)l( (x) d"x . (2.l)
4

Here a.=1,2, . . . , M denote the components of the order
parameter field, with a =L marking the longitudinal
direction parallel to an external field h. As usual, the
harmonic coefficient a =a'(T T, ) depends linea—rly on
the temperature T, vanishing at the bulk transition tem-
perature T, of the pure system. The stiffness constant c
has to be positive in order that spatially uniform
configurations be energetically preferred to inhomogene-
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5&III ]]
5f (x)

(2.2)=0,
qCX y

CX

with the constraint V[itj] ( oo (see Sec. III A).
Furthermore, the dynamics of our model are given by

the following Langevin equation for the time-dependent
displacement field:

ous ones. The coefficients of the nonlinear contributions,
i.e., b —

U of the rotationally invariant part and U of the
cubic term, have to fulfill the constraint b )0 for stability
reasons. Finally, the short-range potential U( x ) de-
scribes the inAuence of localized defects, distributed at
the randomly selected points x;, ia = 1,2, . . . , ND.

D

In Eq. (2.1) we restrict our discussions to impurities
that break the translational invariance of the harmonic
Ginzburg-Landau coefficient only, neglecting any
inhuence on the gradient and nonlinear terms. U) 0
then corresponds to a local increase of the transition tem-
perature, implying a softening of the material near the
defects. More generally, localized defects give rise to an
interaction Hamiltonian containing also a linear coupling
to the order-parameter field o- J g rg' (x)d x. ' In
the latter case, ~& characterizes diff''erent orientations of
the defect. Now two cases have to be distinguished. The
first possibility is that ~& is fast compared with it (x) and
thus follows the order-parameter motion adiabatically.
Then ~& can be eliminated, yielding an attractive quadra-
tic coupling to the order parameter which leads us back
to Eq. (2.1). The second possibility is that the defect re-
orientation is slow compared with the order parameter,
in which situation we have to distinguish further between
two cases. If the reorientation time is so slow that the de-
fects can be considered as static, the result is a static de-
formation of the lattice with a range of the order of the
correlation length, giving rise to a static central peak of
vanishing width and intensity proportional to the square
of the static response function (Huang scattering) and
also proportional to the defect concentration for statisti-
cally independent defects. An additional dynamical
central peak stems from the broken symmetry in the de-
fect neighborhood and the ensuing coupling of the order
parameter to heat diftusion. ' If the relaxation time is
finite, but the relaxation still slow, the defects provide a
slowly relaxing mode. This leads exactly to the order-
parameter susceptibility used for phenomenological
descriptions of the observed central peaks.

After this digression we return to Eq. (2.1). In the
framework of Ginzburg-Landau theory, the static equi-
librium states can be found by solving the stationarity
condition

forces, r (x, t ), is assumed to be Gaussian with the mo-
ments

(r (x, t)) =0, (2.3b)

(r (x, t)r~(x', t')) =2IyktiT5 ~5(x —x')5(t t')—,
(2.3c)

F(IN' ])=—,
' X XW'Go, 'W) &5—;;,—&(0;)'

ij cx, p l, iD CX

+
4 X X(&')' '

a

+—g(g;) —gh;g,
l l

where the "free" static propagator

(2.4a)

q

(2.4b)

with lattice vectors a, according to Eq. (2.1), is diagonal
with respect to the order-parameter components and in
momentum space reads

G ~o '(q)=GO '(q)5 ~=(a+cq )5 ~ . (2.4c)

In order to find the stationary solutions and to specify
the dynamics of the lattice [see Eqs. (4.1) and (4.2a)], we
have to take partial derivatives of I' with respect to the
components of the displacement field at site i, yielding,
for the longitudinal (L) and transverse (a&L) com-
ponents,

and

+(b —v)g; g (g; ) +b(g, )
—h;

~(&L)
(2.5a)

the latter being related to the damping constant by the
usual Einstein relation. Linearizing the deterministic
part of the right-hand side of Eq. (2.3a) and performing
the Fourier transformation into the (q, tv) space yields an
eigenvalue problem, the eigenvalues being connected with
the frequencies of the optic phonons (see Sec. III 8).

However, a discrete version of Eq. (2.1) with a point-
like defect potential on a lattice with A points turns out
to be more convenient for the investigation of a system
with a finite concentration of defects; i.e., n =ND /N
remains fixed in the thermodynamic limit where X~~.
Introducing a positive defect strength A, , we have

5+I„(,~I/)I +y g (x, t)= — "' ' +r (x, t), (2.3a)
Bt' &t 5P (x t)

where a mass I and a phenomenological damping con-
stant y for a nonconserved order parameter have been in-
troduced. In the case of the 105-K transition of SrTi03, I
equals half the moment of inertia of the oxygen octahe-
dra. The probability distribution for the stochastic

= +GO ',Jg; —k+5, , P, +(b —v)(g, ) it;
l J lD

+(b —v)g; g (P)'+b(g, )',
p(w~, r ~

(2.5b)

respectively. Sections IV and V will be based on Eqs.
(2.5).

The present theory comprises ferrodistortive as well as
antiferrodistortive phase transitions, accompanied by
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zone-center and zone-boundary soft modes, respectively.
For the former the order-parameter components P, are
identical with the displacements P;; for the latter they
difFer by a sign. Generally, we write

(2.6)

where a; is the lattice vector of site i. For a ferrodistor-
tive transition, we have q0=0, while for an antiferrodis-

2i qo-a, .

tortive transition qo&0, e ' = 1. For instance, at
the antiferrodistortive 105-K transition of SrTiO3,
qo=(~/ao, ~/ao, ~/ao), where ao is the lattice constant
of the simple-cubic perovskite lattice.

We remark that sometimes we shall consider a one-
dimensional model, which does not exhibit a phase transi-
tion. Yet there is a temperature below which the most
probable state acquires a finite value (fiuctuations still
yield a zero order parameter even then). This one-
dimensional most probable state serves as a model for the
most probable state in three dimensions. Furthermore, in
the spirit of Ginzburg-Landau theory, one approximately
determines therefrom the order parameter. Once again
we emphasize that we use this one-dimensional model
only because of analytical simplicity. All general formu-
las (impurity-averaged susceptibility, order parameter,
scattering intensity) will be derived in arbitrary dimen-
sion. The figures generally show the three-dimensional
results. The Ginzburg-Landau parameters used for the
figures (if not specified otherwise in the figure captions)
are displayed in Table I. They are oriented at the values

TABLE I. Ginzburg-Landau parameters used in the graphs
{ifnot specified in the figure captions).

T, =105 K
a'=5. 4X 10 eV K
b =&.6X102 eV
c =3.7X 10 ' eV cm

=1.7X 10 cm
ao

A= =8.1X107 cm
ao

q =2.8X10 cm
I=1.3X10 ' eVs
Ay=1. 5X10 eV

n = =1.5X10
N

t, (n ) = [T,(n )
—T, ]/TO=0. 6

~X=18 eV
Uo=aok, =1.1X10 ' eVcm

of SrTiO3, not taking into account, however, any an-
isotropies. For the defect properties (strength and con-
centration), arbitrary but reasonable values have been
chosen.

B. Density-density correlation function

The dynamical structure factor observed in scattering
experiments is related to the Fourier-transformed
density-density correlation function. Denoting the ther-
modynamical average by ( ), its definition is

iCOt
—ik [a,. +P,.(t)j ik [a +$.(0)]Sk, co = e'

I ~i,j ~N
(2.7)

Here a; is a lattice vector and P; the displacement (2.6). In a system with quenched defects, S(k, co) has to be averaged
over the defect configuration. This configurational average is denoted by (( . )), and its mathematical definition will
be given in Sec. IV [Eq. (4.12)]. In the computation of ((S(k, co) )) we introduce a cumulant expansion for the combined
thermal and configurational averages

(&S(k,~))) = fe™1
& e

' " "exp ik. &( &P;& )) —
&& &P, & &&

1 ~i,j ~N

X exp —
—,
' y k k [(( & (y; y, )(y~ y~) ) )—)—

a,P

—((( (p; ) &)
—« &p, ) )) )(« &p~& )) —

&& &y~& &))]+ .

(2.8)

Next, we introduce the static local order parameter

pa fiaLqL

[see Eq. (2.6)] and the dynamical fluctuations u, (t ) with vanishing thermal average ( u, (t ) ) =0:

g;(t)=it, +u, (t) .

(2.9a)

(2.9b)

The mean order parameter ((g )) = ((it, )) is then independent of i [see Eq. (5.3)], and the defect-averaged scattering
cross section reads
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X[cos (k ((g)) )+sin (k. ((gp)))e ' ' ' ——sin(2k ((1())))(e ' —e ')]
2

Xexpg [k & («P,"it, &)
—&(g »«g~~&&+&& &u; (t)u~(0)) )&)e'" " "+ ]dt,

a, P

(2.g')

2iqo. a,.
where e ' ' = 1 has been used and the Debye-Wailer factor is given by

~=—y k k~[(((i'; ((y —)))(i7t~ ((if ~—)))))+(( (u; uP) ))] .
2 p

Finally, we may expand the last exponential in Eq. (2.9b), with the result

(2.10)

((S(k,co))) =2' %+6k cos (k ((g)) )+%+6k sin (k ((it))))

+ g k k~((SC~(k))sin (k ((itj)))+ g k k~((Sc~(k —qo)))cos (k ((f))) e 6(ai)
P

+ g k "k~D ~(k, co)sin (k. ((g)) )+ g k k~D ~(k —
qo, co)cos (k. ((g)) ) e

a, P a, P
(2. 1 1)

where g denotes a reciprocal-lattice vector. The elastic scattering consists of four terms: (i) The first term is the stan-
dard Bragg contribution. (ii) The second term constitutes the additional Bragg peaks at qo+ g due to the order parame-
ter. [For q0=0 the two form factors of (i) and (ii) add up to one. ] (iii) The third and fourth terms result from random
static variations of the local order parameter and can be interpreted as Huang scattering. Their intensity is determined
by

S t'(q)= — g e
' " '' (if;if~ &&P &)(&i—t~))) .

]. ~i,j ~x

The inelastic part D ~(q, co) can be identified with the averaged dynamical phonon-phonon correlation function

D e(q, ee)= fe' ' — X e ' ' (», ( ) ee(~e)O)))de,
j. +i,j ~N

(2.12)

(2.13)

2k, r
D ~(q, co)= ImG ~(q, co) . (2. 14)

The configurational average of (2.12) and the phonon
response function, and herewith the inelastic scattering
cross section, will be evaluated in Secs. IV and V. In Eq.
(2.11), for the sake of simplicity, the polarization vectors
of the order-parameter fluctuations g have been as-
sumed to be parallel to the Cartesian axes. The generali-
zation to lattices with a basis and to arbitrary, realistic
polarization vectors is deferred to Appendix A.

which in the classical limit can be derived from the aver-
aged phonon response function G ~(q, co) via

and V. It is also important to realize the significant phys-
ical and conceptional differences of the random multide-
fect system as compared to the single-defect properties.

Hence we consider a one-component order parameter
and a single defect that locally increases the transition
temperature, situated in a d-dimensional continuum in
zero external field. Putting h =0, M = 1, and ÃD = 1 (and
xD =0 for simplicity), Eq. (2.1) for the free energy
reduces to

&[it l= f

III. LOCAL CONDENSATION AT A SINGLE DEFECT
+ —[Vg(x)] + —[P(x)] d "x,

2 4
(3.1)

In this section we review a number of single-defect
properties from previous work, especially concerning
the phenomenon of local order-parameter condensation.
Although the treatment of the random system in the sub-
sequent sections does not rest on these considerations,
they facilitate the interpretation of the results of Secs. IV

e P&(0)~[y]—
f e P&(41~[q]

' k—~T
(3.2)

remembering a =a '( T —T, ), b )0, and c )0. The prob-
ability distribution t [it ] for a configuration g(x) then is
given by
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A. Statics

In view of Eq. (3.2), the most probable states are given
by the minima of the free-energy functional (3.1). The
stationarity condition (2.2) now reads

g((x)=+

with

1/2

coth +pxI (3.8a)

»[Wl =0, (3.3a)
2c

1/2
( 1 . ~ 8ac

p =—are sinh
2 Up

(3.8b)

cV' g(x) =[a —U(x)]P(x)+b[g(x)] (3.3b)

A spatially constant solution of Eq. (3.3b) is, of course,
provided by $0=0, the order-parameter value of the pure
system for T&T, (a&0). (In contrast, the constant
solutions for T&T, , g+=+[( —a)/b]' describing the
two possible orientations of the ordered state, are no
longer allowed. ) One has to be aware, however, that be-
cause of the defect inAuence, this homogeneous state may
become unstable at a certain temperature T,', and instead
a localized order-parameter condensate (cluster) near the
defect may form. Then T,' is called the local transition
temperature, although it does not define a proper phase
transition, for the order parameter differs from zero only
locally. In three dimensions the phenomenon of local
condensation occurs if the defect potential U(x) is
sufficiently attractive (see Sec. IV B) and Eq. (3.3b) can be
solved numerically. ' On approaching T, the localized
cluster can be regarded as consisting of a core part de-
pending on the details of the defect potential and of the
following asymptotic tails:

@c(x)~ e (3.4)

Its linear dimension is given by the bulk correlation
length g =~c/a diverging at T, , and also its amplitude
increases, when the temperature is lowered. '

For the idealized short-range defect potential

U(x)=U05(x), Uo=aol. &0 (3.5)

[ao=( V/X)' is the lattice constant] and just one space
dimension, d =1, all the calculations can be performed
analytically. Linear stability analysis (see Ref. 32 and
Sec. III B) shows that independent of the defect strength
Up local condensation occurs at

leading to the following nonlinear differential equation of
second order:

Note that the widths of both configurations are given by
the correlation lengths g' and g, respectively, of the
pure system, therefore diverging with the mean-field criti-
cal exponent v= —,

' for T~T, .
In Fig. 1 we sketch the order-parameter profiles in the

relevant temperature ranges. While for T & T, the order
parameter vanishes throughout the crystal, it reaches
finite values in the defect surroundings for T & T„ in-
duced by the local softening of the harmonic Ginzburg-
Landau coefficient, tending to zero, however, for Ix I

~ ~
[compare Eq. (3.7)]. Hence the condensation of the order
parameter at the defect is a local phenomenon and must
not be identified as a proper phase transition. A real
second-order phase transition occurs at the bulk transi-
tion temperature T, . In the ordered phase there still is a
local enhancement of the order parameter near the de-
fect, becoming less and less important for T«T, [Eq.
(3.8)].

B. Dynamics

Iu(x, t)=—
6$(x, t) (3.9)

P=g+u
Now we neglect all terms higher than first order in u(x, t)

IN~t
and introduce the ansatz u(x, t)=g'c'u~(x)e
which leads to the following eigenvalue problem:

Ice'u~(x)=[a —U( )x+3b[Q(x)] —cV' ]up(x) . (3.10)

Above T,' the order parameter vanishes in the most
probable state, g(x) =0, and the eigenstates are scattering

In this subsection we shall show how the formation of
a localized cluster near a defect makes itself felt in the
spectrum of the soft-phonon modes. To this end we in-
troduce the dynamic fluctuations u(x, t ) around the static
order parameter f(x) into Eq. (2.3a), which, for vanish-
ing damping y =0, reduces to

T'= T,'+
U2

4a 'c (3.6)

For T& T, one finds the following stable (see Ref. 32)
cluster configurations in the interval T, & T & T, (a &0):

1/2

g)(x)=+

where

1

sinh(IxI/g +p )
(3.7a)

XD

T'
C

XD

1/2
c Up

p =arccoth
2~ac

and in the temperature range T (T, ,

(3.7b) FIG. 1. Sketch of the order-parameter profiles in a single-
defect system in the temperature ranges T( T, , T, ~ T~ T,',
and T) T,', respectively.
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states (certain linear combinations of e'q'" and e 'q'")

with the eigenvalues
tions and the physics behind the emerging dynamical cen-
tral peak.

a +cg 2

CO I (3.1 1) A. Perturbation theory and diagrammatics

i.e., propagating optic-phonon modes, which soften at the
bulk transition temperature T, (a =0) for q =0. Fur-
thermore, for sufficiently attractive defect potential U(x)
[see the discussion preceding Eq. (3 4)], there exists at
least one localized phonon state ttt(x) whose eigenvalue
col lies below this bulk phonon continuum. When the
temperature is lowered, its eigenfrequency decreases and
finally vanishes at T= T,', corresponding to the formation
of the order-parameter cluster. The bound state then
"freezes in" and forms the localized condensate. The oc-
currence of a localized mode in the soft-phonon spectrum
thus can be interpreted as a precursor to the local con-
densation.

In the simple one-dimensional case with defect 6 poten-
tial (3.S), an explicit calculation yields, for the localized
phonon mode above T,',

BF( I1(, I )

Bg;
(4.1)

Equation (2.3a) for the fluctuations about this most prob-
able configuration becomes

+r; (t),

(4.28)

It is now more convenient to use the discrete version of
our model because of the inevitable configurational aver-
age over defects at sites iD =-1,2, . . . , ND. According to
Ginzburg-Landau theory, the most probable state, later
to be identified with the static order parameter, is given
by the solution of [compare Eq. (2.2)]

u&(x ) =&i~e
2c

(3 12 )
the Gaussian stochastic forces obeying

(4.2b)
Its eigenfrequency lies in the gap below the continuum

(3.12b)

and the localized phonon mode becomes soft when the lo-
cal condensation at the defect occurs„corresponding to
the fact that the constant solution 1(0=0 becomes unsta-
ble at T,'. Below T,' the eigenstates and eigenvalues of
Eq. (3.10) have also been calculated in Ref. 32. Just
below T, a localized mode remains in addition to the ex-
tended states, which, however, stiftens because of the
buildup of the local condensate and merges into the con-
tinuum for T~T, +3UO/20a'c.

IV. CONDENSATION
FOR A FINITE DEFECT CONCENTRATION

Of course, the problem of not just a single, but a large
number N~ of defects, their concentration n =AD/N
remaining finite in the thermodynamic limit N ~ oo, is by
far more promising to provide an acceptable picture for
the properties of impurity-doped crystals. We emphasize
that we consider quenched defects sitting on fixed, ran-
domly distributed positions. Hence one has to perform
both thermodynamic and configurational averages; i.e.,
after computing the thermodynamic quantities for a fixed
configuration, these have to be averaged over the random
positions of the defects. Of course, an exact solution for
a random defect distribution, comparable to the single-
defect problem, is impossible; nevertheless, the leading
concentration dependence can be determined. In the first
part of this section, we shall describe a systematic pertur-
bation expansion for the propagator and its diagrammat-
ic representation, while the second part is devoted to the
discussion of the resulting response and correlation func-

(4.2c)

an Einstein relation analogous to Eq. (2.3c).
The equation of motion (4.2a) can be simplified further

by linearization, using (4.1):

I +y —u; (t)
Bt

u ~+ r, ( t ) . (4.2d)

To start out we study the situation h =0 and g, =0, i.e.,

no external field and vanishing order parameter. Hence
the results of this subsection are applicable immediately
to the disordered phase. But even the dynamics in the or-
dered phase will map onto (4.2d) within the framework of
our inhomogeneous mean-field theory to be developed in
Sec. VA.

Of course, for g; =h =0, Eqs. (2.Sa) and (2.Sb) are
identical and the nonlinear terms proportional to b —

U

and U disappear. The resulting equation of motion is
most succinctly represented in terms of the Fourier-
transformed quantities

u; (co)= J e'"'u, (t)dt, (4.3)

etc. With the goal of computing the dynamical suscepti-
bility, we introduce a time-dependent external field h, (t )

and finally get

g Go '; (co)uj (co) —A, g5;; u; (co)=h; (co)+r, (co),

(4.4a)

where we have defined the free dynamical propagator
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G p
'

( q, co ) =a + cq I—co( co+ i y ) . (4.4b)

As a consequence of (4.4a) and (4.2b), the thermal aver-
ageofu; obeys

D l N
~ ~ ~

X,.
J

(4.12)

( u; (co) ) = g Gp,, (co)hi (co)+ g Gp;. (co)4)k ( uP(co) ) .
j,k

(4.5)

Here we have introduced a general defect potential N, ,
which in the special case of pointlike defects introduced
in Eq. (2.4a) reads

(4.6)

To find the configurational average of Gkk (co), one has
to iterate Eq. (4.10):

Gkk (co):Gp(k co)6kk +Go(k co)C kk Gp(k co)

+Go(k co) g C'kk. Go(k", co)@k k Go(k', co)
k"

+ l 4 ~ (4.13)

The configurational average restores the translational
symmetry:

According to Eq. (4.5), the dynamical susceptibility,
defined by

(( Gkk (co) )) =G(k, co)5kk . (4.14)

B(u, (co))
G,"~(co)= =G, (co)5 P,

J

is diagonal in a and P and obeys the equation

(4.7)

(( @kk' )~ ~~kk' (4.15a)

The evaluation of (4.14) from (4.13) requires the calcula-
tion of the configurational average of products of Nkk.
For instance,

G;, (co)=Go;J(co)+ g Go;k(co)C kIG(~(co) .
k, l

(4.8)
n

(( @kk"+k"k' ~) ~ ~kk'+ + ~kk" ~k"k'
1V

(4.15b)

Next, we define the Fourier-transformed response func-
tion

1 —i(a. k —a. k')
Gkk. (co)=— g G;)(co)e

1 ~i,j ~N
(4.9)

The corresponding equation for the susceptibility reads

Gkk (co)=Go(k, co)5kk +Gp(k, co) g 4'kk Gk-k (co),
k"

(4.10)

with the Fourier-transformed defect potential

=1 —i(a,. -k —a- k')
N;e

1 ~i,j ~N
(4.1 1)

Before we proceed we would like to note that the
present theory can also be formulated within the stan-
dard quantum-mechanical lattice dynamics. If the
fourth-order nonlinear terms are treated in a Hartree ap-
proximation, one ends up with a temperature-dependent
harmonic restoring force and the retarded Green's func-
tion obeys an equation precisely of the type (4.10).

All physical quantities, as, for instance, Gkk (co),
have to be averaged over the random spatial defect
configurations. Since the positions of the impurities are
quenched, these averages have to be performed after
the thermodynamic averages. Now we define this
configurational average. Conside a single defect D; the
configurational average means placing D at each of the
X possible sites iD and weight each result by 1/X. This

J
procedure then has to be repeated for all the ND defects.
Hence we arrive at the following definition of the
configurational average:

If double occupancy of sites by the defects is forbidden,
Eq. (4.15b) is to be replaced by

2n —n
(( @kk"@k"k' )) ~ ~kk' + ~kk" ~k"k' (4.15c)

G0{q,&) X/N N

FIG. 2. Fundamental ingredients for the diagrammatic rep-
resentation of the perturbation theory.

There exists an elaborate and widely used diagrammat-
ic representation of the above described perturbation
theory for potential scattering in disordered systems (see
Refs. 40 and 41). Its basic ingredients are depicted in
Fig. 2 containing the propagator, the defect potential,
and the impurity concentration. In Fig. 3 we sketch the
diagrams for the (full) configurationally averaged propa-
gator G(q, co) up to the third order in A, (three dashed
lines). We remark that triangles, as in Figs. 3(d) and
3(f)—3(i), imply wave-vector integration over the free
propagator within the triangles; the analytic expres-
sion corresponding to Fig. 3 (d), for example, reads
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{a) (d)

X X X X

(e)

+ o ~ ~

FIG. 3. Diagrams up to the third order in A, for the averaged propagator G(q, co).

Gp(q a~)ND(k/N) gk Gp(k co)Gp(q, ~).
Figure 4(a) then illustrates how a summation of this

perturbation series can be achieved in familiar manner by
a Dyson equation yielding

G '(q, co)=Gp '(q, cp) —X(q, co), (4.16)

+nA, —QG (k co) +1

N k

where the self-energy insertion X(q, co) consists of the
one-particle irreducible diagrams [Fig. 4(b)]. These self-
energy contributions can now be grouped according to
the number of crosses, which transforms the perturbation
theory into one where the expansion parameter A, is
effectively replaced by the impurity concentration n.

We shall restrict our approximation to taking into ac-
count only those terms that linearly depend on n (Fig. 5),
known as the single-site approximation. The resultant
series can once again be evaluated easily via the
geometric sum formula

X'(co)=nA, +nA, —g Gp(k, co)
21

k

B. Correlation function above T, (n ) and emergence
of a central peak

Equations (4.16) and (4.17) of the preceding subsection
can be applied immediately to the phonon response func-
tion at sufficiently high temperatures, such that g; van-
ishes, using Eq. (4.4b) for the bare dynamical susceptibili-
ty Gp(q, co). First, we state the important fact that
G '(0, 0)=0 in general marks an instability; i.e., there is
a proper phase transition at a certain concentration-
dependent temperature T, (n ), defined through

a, (n) 1 ——g 1

a, (n )+ck
(4.18a)

or equivalently

We remark that we have now arrived at a stage where
the phonon response function (4.16) together with (4.17)
has the form of a double fraction expansion. A different
derivation of Eqs. (4.16) and (4.17) is given in Appendix
8, which is based on the exact one-defect correlation
function and an average thereof.

nA.

1 —(A, /N) g Gp(k, co)
k

(4.17) a, (n)

n + ( 1/N ) g [ 1+[c / (an ) ]k
k

(4.18b)

X X
l /

I /
I /

(&) (b)

+ + + ~ ~-
/

/

(c) (d)

Now the focus of our discussion will be the vicinity of
this critical point, which is induced by the softening ac-
tion of a finite concentration of defects. In order to
determine the critical value of the Ginzburg-Landau pa-
rameter a, (n ) =a'[ T(n )

—T, ] and therefrom T, (n ), we
simply have to evaluate the following integral in arbitrary
dimension d:

X
+ w +

X
(e)

+
/

I

1

X
"'

I

(g'
X

+ ~ ~ ~

\

,
' (h)

X X
, ,'() )
X

(b)

(j)', ,
X

+ ~ ~ ~

X X,
I

(a) (b)

X,

I

(c)
+ g) + ~ ~ ~

FIG. 4. (a) Dyson equation. (b) Self-energy insertions to
fourth order in X.

FIG. 5. Self-energy contributions in the single-site approxi-
mation.
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1 1 V a
N k g+ck2 Na c

d/2

(2') 1+@
(4.19a)

where we have introduced U0=a0A, and the impurity
concentration per unit volume, n'=ND/V. To first order
in n', we find

Introducing a cutoff A corresponding to the boundary of
the Brillouin zone, we get

2n'U0
T, (n ) = T,'+, +O(n' ), (4.22b)

&g' dp 1 1 ) 1
2

2
=—arctanAg —+ —as A~ ao,

0 2w 1+p2 2

(4.19b)

for d =1;

2~ = ln 1+ A, 4.19cdp p 1

(2~) 1+@ 4rr

for d =2; and

d 14~ = A —arctan A
(2') 1+p 2rr

(4.19d)

showing the close relationship between the local conden-
sation temperature (3.6) of the single-defect system and
the defect-induced transition temperature of the crystal
with infinitely many randomly distributed impurities.
For higher dimensions, Eq. (4.18) is more difficult to
solve, as the cutoff A has to remain finite. The resulting
expressions contain rather complicated functions of the
temperature, and an inversion similar to Eq. (4.22a) is im-
possible. In three dimensions, Eq. (4.18a) can be solved
elementarily under the condition A&c/a ))1. Then one
finds for the minimal defect strength Uo

'" =2m c/A,
and, if this is exceeded,

for d =3.
From (4.18a) we recover in the limit n ~0 the condi-

tion for the single-defect local transition temperature T,'

considered in Sec. III:

2 3
0 16m c

c c i( Umin )2

Umin
0 (4.23a)

1
1 ——g =0,

a, (0)+ck
(4.20)

with a, (0)=a'(T,' —T, ). For finite concentration an ex-
pansion of Eq. (4.18a) together with (4.20) leads to

I 4~n '

c c 3/2 I 0 i/2(a'/c) (T, —T, )
(4.23b)

T, (n ) = T,'+ c) 1 1—a, (0)
c)a, (0) N „ct,(0)+ck2

+O(n ) . (4.21)

For d 2, a certain minimal defect strength is required
to allow for a solution of Eq. (4.18) and the ensuing
defect-induced phase transition. In the one-dimensional
model, however, Eq. (4.18) for the critical temperature
can be solved for any value of the defect strength, and we

may even take the limit A~ ~, with the result

We remark that in deriving the dependence on the lattice
constant ao (hidden in the parameters Uo [Eq. (3.5)] and
n

' in (4.22) and (4.23) ) one has to be aware that
A =(m/a )o=m N/V. From Eqs. (4.21)—(4.23b) it is ap-
parent that T, (n ) is higher than T„but very close to it
for small concentrations. The value of T,' depends only
on the strength of a single defect and may be much
higher than T, .

Using Eqs. (4.19), we can explicitly perform the wave-
number integration over the free propagator as required
in (4.17),

'2
Uo

4(a' T, c)'

1/2 2

1+ 1+n
U0

(4.22a)
l

Id(co) =—g Go(k, co),
k

reading, in one, two, and three dimensions,

(4.24a)

I, (co)=
U0 1 &1—(I /a )co(co+i y )+iAg'

In
2rri +ac &1—(I /a )co(co+i y ) V 1 —(I/a )co(co+i y ) —i Ag

U0 1
as A —+~,

2+ac + 1 —(I /a )co( co+ i y )

(4.24b)

(4.24c)

U0 (A ~)2
I2(co) = ln 1+

4m.c 1 —(I /a )co(co+ iy )
(4.24d)

I (co)= Ag ——i/1 (I/a )co(co+i )ln-
2m. cg 2i ~ 1 —(I/a)co(co+iy) iAg— (4.24e)
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tnserting (4.24) into Eqs. (4.16) and (4.17
analytical results (note that n A, =n'U ) f

honon resp onon response function. Figure 6 shows the h

p correlation function D(q, co) [E . (2.14)
ws e p onon-

several tetemperatures closely above T, (n ) in three dimen-
sions for comparativel hi h hy 'g p onon damping coefficient
y an low impurity concentration n, usin Gi
Landau coeIIIicien

n, using inzburg-
e cients that seem reasonable for SrTiO

(Table 1). Here t=(T T, —)/T and t=0.6
to T=T( ) W
A r

, n . e find the fo&tollowing qualitative features:

tmeperature is o
rather broad phonon peak, which sof, w ic so tens when the

meperature is owered, and a narrow central peak in the
'

y o,(n ), obviously a dynamical pre-
cursor of the defect-induced phase transition.

We remark thhat also different scenarios can b
achieved whwhen the concentration is higher and the dam-

s can e

ing lower. In this case aa pronounced phonon impurity
band is revealed stemming fro th 1 1'm e oca ized optic pho-
nons found in the one-defect system. Th ' feir so tening at

corresponds to the local condensation takin
place in the vicinit of the

'
n a ing

y e impurities; hence we expect
t at the origin of the dynamical central peak can be

For a more detailed physical understanding of the
mechanism thata produces the dynamical central peak, we
now keep the temperature fixed (t =0.61) and vary the
phonon damping constant y (Fig. 7). We see that for low
damping the impurity band is located at a finite frequen-
cy [approximately given by Eq. (3.12b) in the one-
dimensional case',case', , which becomes more and mor
damped when i

more over-
en y is raised. Eventually, this mod 11

T~T n a
p y relaxator behavior critically sl dy s owing own for

6 t en
, n and thereby producing a cent 1 k. F'ra pea . igure

then describes a scenario wh th dere e amping y is

0.20

O. 35

D(q, ur)
0.30

y = 2.0
1.0

'1[ = 0.5
- ----. $ = 0.2

0.25-

0.20

0. f5 .h

O. f0- (

0.05

~ I
I s

/)

I

FIG. 7. Phononon-phonon correlation function D(q, co) at fixed
temperature (t=0.61} for var inor varying phonon damping coeScient
y (co and y in units 10 eV/A).

dei
higher and the defect concentration n 1on n ow enough in or-

er that the impurity band has a ne li ib e
corn arison

a neg igi e weight in
parison to the soft bulk-phonon peak at h h

peratures. Onl
ea a ig er tem-

p . Only when the critical point at T, (n) is ap-
proached and the impurity mod h 1o e as a ready changed its
character from an oscillator tr o a pure relaxator does it
appear as a narrow central peak in the d
ion unction.

in e ynamical correla-

For the one-dimensional case w, we can easi y confirm
these results analytically. In th 1'

co —it ' with

D(q, (u)

O. f5
'1

I
l

1

1,

0. fo ~

1

t = 0.60
t = 0.61
t = 0.75

1.00

a —
( Uo/2)@a/c n'Uo—

0

Now we can formumu&ate a quantitative criterion for the im-
~ ~

purity band becoming overdamped d than us producing a
ynamical central peak: This will t

'
bwi certain'y be the case if

e wi t 1 of the relaxator peak is about half (th fa e actor
g ewhat arbitrary) the frequenc f the ncy o e impuri-

y band coI. Figure 7 confirms this assertion.
We remark that these res u ts are in qualitative accord

wit those of Refs. 31—34 and with molecular-dynamics
simulations by Weyrich Wie d S' ' e-
and t

'esen, an iems ' for a one-
an two-defect distortive system with e

' d'

con itions in one and two dimensions, inasmuch as those

eral random impurity system under discussion here

FIG. 6. Phonon- h-phonon correlation function D(q, co) above
T, (n ) for several temperatures. T= T (n )

.6 and T= T, to t =0 (co in units 10 eV/fi}.

V. STATICS AND DYNAMICS
IN THK ORDERED PHASE T & T, ( n )

and the res ons
The computation of the order-parameter conficon guration

e response and correlation functions in the ordered



DEFECT-INDUCED CONDENSATION AND CENTRAL PEAK AT. . .

phase is, in general, a sophisticated issue, because now
the nonlinearities are decisive. One has to expect that
they will not just alter the propagators introducing an ad-
ditional mass term, but also should affect the defect po-
tential strength via a screening effect. These complica-
tions must obviously be taken into account by using a
self-consistent approach, the simplest possible one
presented in Sec. V A. With this background the phonon
response and correlation functions can be calculated in a
fashion very similar to the one described in Sec. IV, with
modified parameters a and A, . For an M-component or-
der parameter, we have to distinguish between the longi-
tudinal and transverse directions with respect to the
spontaneously ordered phase. We shall see that the
dynamical central peak disappears in the longitudinal
part, while it persists in the transverse direction if there is
a continuous rotational symmetry. The effect of cubic
terms breaking this rotational invariance is investigated
also in Sec. V B. Anyway, the finite order parameter will
induce a static 5(co)-shaped central peak in the dynamical
structure function relevant, e.g. , for neutron-scattering
experiments. However, because of the inhomogeneous
static configuration, this peak will have, besides a Bragg-
type contribution, a finite width in momentum space.
These topics will be discussed in the final part of this sec-
tion.

'o;

S
A
—-r-r-r--r-rS-X-i-S-r I t ri f-1 f l t f1 I r-i=

lD, x
j

FIG. 8. Schematic illustration of the order-parameter
configuration according to the approximation (5.2j.

the defect sites. Taking the average over the defect
configurations [Eq. (4.12)] then yields for the average or-
der parameter, which of course is independent of I', ,

(5.3)

For the square of the local order parameter, as needed
in (5.1), we obtain, from Eq. (5.2),

(5.4)

A. Computation of the order parameter

In order to actually calculate the order-parameter
configuration, we have to return to Eq. (2.5a) for the lon-
gitudinal field, applying a constant external field h; =h,
which eventually is set to zero. Of course, P; =0 for
a&L, and Eq. (4.1) using (2.5a) thus reduces to

g [Go '; +b(g; ) 5)]P, —
A, g5, , g", =h . (5.1)

This equation is dificult to solve because of the com-
bined problems of nonlinearity and randomness. There-
fore, we develop a self-consistent approximation, an inho-
mogeneous mean-field theory, based on the following
physical ideas: Immediately below T, (n ) we expect a sit-
uation where the order parameter almost vanishes, reach-
ing markably finite values only in the very surroundings
of the softening defects. On the other hand, these hardly
overlapping "condensates" will certainly screen and
thereby weaken the defect potential strength. Far below
T, (n ), especially when the bulk transition temperature
T, of the pure crystal is approached, these local effects
will become far less important, the configuration being
dominated by a global, more or less homogeneous order-
parameter state. These considerations show that we have
to distinguish between the "pure" lattice points and the
impurity sites with their nearby neighbors. Obviously,
the simplest ansatz, illustrated in Fig. 8 (compare Fig. 1),
for the order parameter, taking into account the basic
physics, is

f";=A+B g5;; (5.2)

Here 3 is the polarization of the pure sites and A +8 of

Inserting (5.4) into (5.1), the space-dependent order pa-
rameter itj, obeys

yG, -'„q,'—Xy5, , q,'=h . (5.5)

Here the nonlinearity is absorbed entirely into modified
coefticients:

G o '(q) =a +cq2,

a=a+bA~,
X=X bB(2A +B)—.

(5.6a)

(5.6b)

(S.6c)

N

y0', e-
q

(5.7)

we get, from (S.5),

it'q =hGo(0)5q o+Go(q) g 4'qkQk ~

k

which can be iterated. Already, the first step

(5.8)

it q=hGo(0)5q o+Go(q)4q ohGo(0)

+Go(q) g NqkGo(k)4k ohGo(0)+ - . , (5.9)
k

Hence, indeed, the inhomogeneous order parameter leads
to a modified Ginzburg-Landau coefficient a [Eq. (5.6b)]
and screens the defect potential [Eq. (5.6c)].

The linear equation (5.5) for the order parameter g,"
can be used to determine the defect-averaged order pa-
rameter (( itj )) in analogy to Sec. IV A. If we introduce
the Fourier transform of P;,
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and the similarity of Eqs. (5.8) and (4.10) reveals that a
similar perturbation expansion for ((ttjq)) =((g ))5qo
can be introduced as in Sec. IV [see Fig. 9(a) for the ele-
ments of the graphical representation and Fig. 9(b) for a
number of diagrams and their effective summation via a
self-energy insertion X]. In single-site approximation we
obtain the following final result:

1.0

P. 8

n = 6.0
n = 3.0
n = 1.5
Uo= O

((1T'))
1 —(X/N )g(a +ck )

(5.10)

n+(I/N)g [1+(c/a)k ]
k

(5.11)

for the averaged order parameter in the presence of an
external field. In order that the value of the static dis-
placement field remains finite even in the limit h ~0, i.e.,
a spontaneous order parameter may exist, we find the
condition

o. 4 l

o.o]—
0. 0

TO

0. 4 0. 6

T, (n)

For the determination of the averaged order parame-
ter, we need a second relationship, which is obtained by
taking the configurational average of Eq. (5:5):

G o '(0)((g"))—n(A +B)l,=h . (5.12)

Equations (5.10) and (5.12), together with (5.3), constitute
the basic equations for the order parameter of this ran-
dom system. From these one can determine ((1( )) as a
function of Ii and T. In the limit It =0, instead of (5.10),
Eq. (5.11) may be used.

Now we discuss some of the consequences of Eqs.
(5.11) and (5.12), which allow the determination of the

h5q o Go (q)

(a)

I

I

X

X/N ND

X
I

+

X )f

X X
I I

+

+ ~ 0 ~

+ - ~E

FIG. 9. (a) Elements of the diagrammatic representation of
the order-parameter perturbation theory. (b) Diagrams up to
the third order in k for the averaged order-parameter ((f ))
and their summation via a self-energy insertion X. In single-site
approximation only the diagrams of Fig. 5 are summed up.

FIG. 10. Mean order parameter ((g )) = A+nB (in units
10 ) for different defect concentrations n (n in units 10 ) [and
also slightly different defect strengths Uo, such that t, (n) =0.6
remains fixed]. The pure system's (U„=O) order parameter is
also displayed.

averaged order parameter. First of all, it is reassuring
that Eq. (5.11) for A =B =0 and a =a, (n ) coincides
with Eq. (4.18b), and consequently the order parameter
sets in at the transition temperature determined from the
instability of the symmetric phase.

Inserting (5.11) into (5.12) leads to a nonlinear equation
for the parameter 3, which in limiting cases can be
solved analytically and otherwise numerically. Figure 10
depicts the three-dimensional mean order parameter (5.3)
for difFerent defect concentrations n. Very close to T, (n )

the coexistence curve starts off with the usual mean-field
exponent P= —,

' (see the inset in Fig. 10), the order param-
eter being roughly proportional to n. %'hen approaching
the bulk transition temperature of the pure system T, ,
however, the character of the static configuration qualita-
tively changes into more or less the state of the pure sys-
tem (also shown in Fig. 10 for comparison), with slightly
an enhanced value. Here the homogeneous part 3 of Eq.
(5.2) clearly dominates, while in the vicinity of the critical
point the "local" contribution B is by far important.

The dependence of t, (n)=[T, (n) —T, ]/T, on defect
strength A, (or Uo) and concentration n can be read off
from Fig. 11. Thus, for k/b =0 069 and n =6 0
X 10, 1.5X10, and 0. 1 X 10, the value of t, (n ) is
very close to t, (0)=(T,' —T, )/T, , and then the defect-
induced transition temperature is approximately given by
the local condensation temperature T, [see Eq. (4.21)].
Yet the shape of the average order parameter changes
drastically if the concentration is lowered (Fig. 10). For
high concentration (higher than shown in Fig. 10), it has
more or less the familiar square-root shape. However, for
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AL=A, —3bB(2A +B) . (5.14b)

Therefore, we find, for the longitudinal dynamical suscep-
tibility,

6.5
nA, L

Gi '(q, co) =aL+cq I—cg(co+i'y )—
1 Id (—co)

(5.15)

6 0.
/ (

(

/

5.5 - I

I

t

5.0 .

4. 5 .
n = 0. 1

"———n=15
———n = 6.0

Q. 4 Q. B

FIG. 11. Defect strength A. /b (in units 10 ) vs the defect-
induced transition temperature t, (n ) = [T,(n )

—T, ]l/T, (or vice
versa) for the concentrations n=0. 1X10 ', 1.5X10 ', and
6.0 X 10-'.

small concentration the order parameter sets in with a
small amplitude at T, (n ), stays minute in the whole re-
gion T, & T & T, (n ), and gets amplified near T, For the.
smallest concentration shown in Fig. 10, and even more
pronounced for smaller ones, the order parameter is al-
most zero for T, & T & T, (n ), such that it has the appear-
ance of an order parameter of an ideal pure system
~ (T, T)'~, which —is slightly rounded at T, .

where in Eqs. (4.24) for the integral Id (co) the parameters
a and A, have to be replaced by aL and A, L, respectively.
The longitudinal phonon-phonon correlation function
DL(q, cu) is displayed in Fig. 12, demonstrating that the
dynamical central peak is confined to the critical region
very close to T, (n ) and disappears again further away
from T, (n ) because of the temperature dependence in
(5.14). This just refiects the fact that in the single-defect
system (Sec. IIIB) the localized mode moves back into
the continuum of extended states.

Within the mean-field approximation used here, the
longitudinal static susceptibility below T, ( n ) remains
finite for q ~0. The longitudinal static response function
GL(q, 0) is plotted for several values of the wave vector q
in Fig. 13(a), and also GL '(0, 0) for different defect con-
centrations in Fig. 13(b), showing that GL(0, 0) diverges
at T= T, (n ) and obtains considerable values only in its
immediate surroundings. At the bulk transition tempera-
ture T, of the pure crystal, GL(0, 0) remains finite, al-
though it may become fairly large for low concentrations.
The divergence of the static susceptibility of the pure
crystal at T, is modified into a maximum slightly above
T, . As apparent from Fig. 13(a), the divergence of
GL(0, 0) is confined to an extremely narrow interval
around T, (n ) and will be much harder to detect than the
remnant of the pure transition near T, .

Now we turn to the transverse response function. The
transverse parameters are given by

0.20

B. Phonon response function

Below T, (n) we have to distinguish between the fiuc-
tuations parallel to the order parameter, o.=L, and in the
M —1 transverse directions, 0.=T. Thus

Dr, (q, ~)

0. 15-

t - o.eo
t = 0.59
t = 0.50
t = 0.30

G "~(q,co)=G (q, co)5 ~ . (5.13)

In order to calculate the response and correlation func-
tion in the presence of the spatially inhomogeneous order
parameter, we again start from the linearized equation of
motion (4.2d) and insert (5.2) into the right-hand side.
Including the time-dependent fields b, (r ) then yields re-
lations quite similar to Eq. (4.4a), with modified masses
and defect strengths for the longitudinal and transverse
directions. The results for the response function there-
fore take the form (4.16), where in single-site approxima-
tion the self-energy is given by (4.17).

For the longitudinal part the renormalized coefficients
to be inserted into Eqs. (4.16) and (4.17) are

0. 10-

0.05-

FICx. 12. Longitudinal phonon-phonon correlation function
DL(q, co) below T, (n ), for several temperatures (see Fig. 6).aL=a +3bA (5.14a)
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aT=a+(b —v)A

AT=X —(b v—)B(2A +B) .

(5.16a)

(5.16b)

broken continuous rotational invariance. smg Eqs.
5.10), (5.6), and (5.15), we see that, for finite uniform

external field h,

Th
'

the case of an isotropic system, with v =0, they
are identical to a and A, of Sec. VA. Because o q.
(5.11), this implies that the static transverse response
function diverges as

1
(5.17)GT(q, O)

q

in the limit of small q, which is nothing but a
confirmation of the Goldstone theorem (see, e.g. , Ref. 42)
for' translationally invariant systems with spontaneous y

Gr(0, 0) =—, (5.18)

a result also known from field theory as a certain Ward-
Takahashi identity At the first glance it may seem
peculiar that we gain relations of this kind in our highly
disordered system. One has to realize, however, that t e
continuous internal symmetry is not violated by the ran-
d d f t hile translational invariance is restored y

reasonablethe defect-averaging procedure. Thus it seem reasona e
to expect t a in, a cth t, correct treatment of the fluctuations
via a renormalization-group analysis, even the longitudi-
nal response function might diverge according to

Gl. (q, 0)
1.2 .

1.0 .

q = 0.5
1.0
2.0
4.0

G„(q,O) ™1
(5.19)

43where 0(@=4—d (2.
The general wave-number- and frequency-dependent

transverse susceptibility is of the form

0.8
7l kT

GT '(q, co) =aT+cq Ice(co+—iy )—
1 Id co

(5.20)

0.6

0.4

0. 2

0.0 0.2 0. 4 0.8

where the transverse coefficients (5.16) have to be inserted
into I, (~). Because of the divergence of the static sus-
cepti i ity in e wb'1' th hole ordered phase, the transverse
mo es ecorne yd b h drodynamic; i.e., their frequency de-

rdin to (5.20),pends on wave number as &(c/I)q. According to

diffusive. Parenthetically, we note that for v =0 t e
free-energy functional, (2.4a) is O(M) symmetric. In this

GL, (0, 0)

1.5

1.0

n = 8.0
n = 3.0
n = 1.5
Uo= 0

0.80

DT(q, ~)
jl;

0. 15-
l

jl;
jl;
ll ',

lQ. 10

= o.eo
0.50
0.35
0.20

0.5-

0 05-

0.0 0.2 0.4 0.6 0.8

FIG. 13. (a) Longitudinal static susceptibility GL(q, 0) for
severa va ues o e1 1 of the wave vector q (q in units 2. 8 X 10 cm ' ).

G '(0 0) for(b) Inverse longitudinal static susceptibility GL, or
difFerent defect concentrations n (n in units 10 '). For compar-
ison, the graph for the pure system ( Uo =0) is also displayed.

FIG. 14. Transverse phonon-phonon correlat'orre ation function
DT(q, co) for an isotropic system (v =0) below T,T n for several
temperatures (see Figs. 6 and 12).
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case a di6'erent type of dynamics is conceivable, namely,

la
equations of Inotion supplement d b he y t e conservation
aw of angular momentum. For s h dsuc ynamics the trans-

verse modes would have linear dispersio d d
i ustve) damping. Returning to (5.20), a dynamical

central peak thus persists below T ( )
'

hw, n in t e transverse
dynamical correlation function (F' 14),n ig. ~, provided that
there are no cubic terms in the fr
(2.4a).

e ree-energy expansion

In realit termy, terms of cubic symmetry are present (u&0),

the tran
and t erefore it is interesting to st d thu y eir inhuence on

e transverse correlation function F 1igure shows

GT(o, 0)-t

1.0

0.5 .

P. 20

Dz (q, u))
I

(a}
I

I ~

t = o.eo
t = 0.50
t = 0.35
t = 0.20

0.0 0.2 0.4 0.8

P. 1

P. 10 . 1

1

P. 05-

I

/
/

/.
/

FIG. 16. Inververse transverse static susceptibility GT '(0, 0) for
several values of y = —v l(b —v ).

several Plots of DT(q, co ) for q =2. 8 X 10 cm and for
i erent values of the ratio y = — /(b — ),

low values of this ratio
——v —v, v &0. For

, y, the coexistence singularity
remains relevant in a fairl y arge temperature range and a
dynamical central peak persists in the tra
ion unction. For y =0.01 the graph is indistinguishable

from y =0 shown in Fig. 14. These features are

((~"(8))

P. 20
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t = 0.50
t = 0.35

= 0.20
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FICx. 15. Tr
D ( co bel

ansverse phonon-phonon corr l t' fe a ion unction
ures, a ing into ac-T q, co e ow T, (n), for several temperatures t k'

count cubic terms [y= —ul(b —u)) 0]. ( )

e graph for y =0.01 is indistinguishable from Fi
14, corresponding to v =0.

FICx. 17. (a) Diagrams for ((SL"( )))q, t e static contribution
o e ynamical structure factor (Huang scattering). (b) Sum-

o sing e-site approxima-mation of diagrams from (a) according t '
l - '
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confirmed by the temperature dependence of the inverse
static transverse susceptibility Gr (0,0) shown in Fig. 16
for different cubic anisotropy coeKcients. We remark
that SrTi03 displays a considerable anisotropy, with a
value of y =0.23, while the anisotropy is less in the case
of LaA103.

C. Elastic part of the structure function

Now we turn to the elastic contribution to the scatter-
ing cross section of Eq. (2.11). The part related to the
static order-parameter fiuctuation is given by Eq. (2.12)
and has to be averaged over the defect configurations:

(5.21)

Note that this defect average does not factorize into (((t("))(( tP )).
We evaluate the quantity ((S (q) )) by inserting Eq. (5.5) for g,

"into (5.21). After a Fourier transformation we find

S (q) =A [Gp(0)] 5 p+h [Go(0)1 P @ok1( kfiqo+ Go(q) X eqk(( k()rq
k k

(5.22)

Now we can use Eq. (5.8) for rt( and thus iteratively determine ((S "(q))) by performing the configurational average
over the defect positions (4.12). Again, a diagrammatic representation for the corresponding perturbation theory can be
derived [see Fig. 17(a)] consisting of the same basic ingredients as for the order parameter. In Fig. 17(b) the diagram-
matic summation of the contributions according to single-site approximation is illustrated. Note that the disconnect-
ed" diagrams are just proportional to Ng 5 (( g )), while the "connected" graphs yield a q-dependent contribution.
The result is

((S"(q)»'=«y')&'N y S„+nX'«q'&)'[G, (q)]' 1+2—y G,(k)+3 —y G, (k) + . .
g k k

=((1((")) N g 8 +nA,
[Go(q) l'

s
'

1 —(X/N) g Go(k)
(5.23a)

Gp(q) '
=((q'))' N y fi„,+— (5.23b)

where in the final step Eq. (5.11) for the order parameter in zero external field was used. Here Go(q) has been defined in
Eq. (5.6a) and n is the defect concentration.

Thus, for zone-boundary soft modes, we find, as is expected, a contribution to the elastic-scattering cross section pro-
portional to sin (k ((f)) ) =(k ((g)) ), i.e., the square of the averaged order parameter (5.3) [see Eq. (2.11)]. This is
the Bragg scattering due to the appearance of the order parameter ((g )) below T, (n ). For antiferrodistortive transi-
tions these peaks appear at the reciprocal-lattice points qo+g of the low-temperature phase. However, there is an addi-
tional elastic central-peak contribution with finite width in momentum space stemming from the underlying inhomo-
geneous structure. Its scattering intensity is proportional to [Gp(q)], and the q width is given by the corresponding
"correlation length'* (a+bA )/c, which is not divergent at T, because of the finite order parameter ((g )). In Fig.
18(a) we display the elastic-scattering contribution ((Sc (q) )) [second term in Eq. (5.22b)] for several wave numbers as
a function of the temperature. For small concentration this intensity is almost zero for T ))T, , but increases strongly
for T~ T, . In order to emphasize the drastic increase of the Huang scattering, we note that in Fig. 18(a) its value at T,
is four orders of magnitude higher than at T=1.5T, . In Fig. 18(b) the quantity a/I2, which is proportional to the q
width, is shown. The q width narrows when T, is approached, but never becomes zero because of the underlying inho-
mogeneous order parameter.

At this point we sum up the dynamic and static contributions contained in the averaged scattering cross section
(2.11). The complete dynamical structure factor

r. 2
—

r 21 [ p ] 2 L —r.«S(k, ))) =2 N yfi„o '(& ((q )))+N y fi„ i '(I( ((q")))+(A: )'(((t(»' i '(I(: —(((t »)k, g qp s n [G (0)]2

+( IL)2(( q
L ))2 P o

2( LI(( q
L )) )

—2'( )
Gp(k —qo)

n [G (0)]2

+ g (k ) D (k, co)sin (I(:"((g")))+ g (I(: ) D (k —
qp, (o)cos (I(: ((rij )) ) e (5.24)
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(a) q = 0.0
q = 0, 1

q = 0.3
q = 0.5

P. 05 Q ~ 05 Q. 10

2. 5

2.0

1.5-

1.0

Q. 5

0
-Q. 05 Q. 05 0. 10

FICs. 18. (a) Intensity of the central peak contribution with
finite q width [second term in Eq. (5.22b)] vs the temperature for
several wave numbers q (q in units 2.8X 10 cm '). (b) q width
of the elastic central peak [second term of Eq. (5.22b)] ~ a Ib as
a function of the temperature.

consists of (i) the standard Bragg contribution (first term),
(ii) the Bragg contribution due to the order parameter
(second term), (iii) the elastic central peaks with finite q
width (third and fourth term), and (iv) the dynamical con-
tributions (5.15) and (5.20), which under the conditions
mentioned in Sec. V B can also contain a dynamical cen-
tral peak. None of these central peaks diverge at
the pure transition temperature T, . From (2.12) and
(2.13) it follows that ((Sc (k+g))) =((Sc (k))) and
D (k+g, co) =D (k, co). The detailed predictions of
this theory should permit a quantitative comparison with
experiments and in turn shed some light onto the under-
lying mechanism of the central-peak phenomenon.

VI. DISCUSSION OF THE RESULTS AND OUTLOOK

In this final section, we summarize our results, discuss
possible applications to experiments, and compare with
other theories.

In summary, we have considered the influence of ran-
domly distributed defects which locally increase the tran-
sition temperature at distortive structural phase transfor-
mations. The defects modify the quadratic term of the
free-energy functional, and the internal symmetry is not
broken. As a consequence, below the continuum of
optic-phonon states there appears a band of localized
modes. In one dimension this impurity band will exist for
any value of the defect strength, while in three dimen-
sions the strength of the T, -increasing (attractive) poten-
tial has to exceed a certain threshold. This impurity
band softens above the bulk transition temperature of the
pure system, at a temperature T, (n ). Below T, (n ) order
sets in. Close to T, (n ) the order parameter is of appre-
ciable magnitude only in the immediate vicinity of the de-
fects, more and more spreading throughout the entire
crystal with decreasing temperature. The impurity-
averaged order parameter has been computed in Sec.
V A. Its temperature dependence is a function of the im-
purity concentration n. For low concentration the order
parameter remains very small, of O(n ), in the whole tem-
perature interval T, ( T (T, (n ) and builds up to detect-
able values only near T, . Compared with the order pa-
rameter of the pure system, which is of the form
iP" ~(T, T)~ (P= —,

—' in the Ginzburg-Landau approxi-
mation), it looks as if this order parameter curve were
rounded, as is sometimes observed in experiments.

In scattering experiments there appears a Bragg inten-
sity due to this order parameter for temperatures
T ~ T, (n ). Furthermore, because of the random and in-
homogeneous static configuration, the elastic-scattering
intensity is not just given by the square of the order pa-
rameter, but contains an additional contribution which
has a finite q width —as observed in many of the central-
peak experiments.

In the dynamics we find as a precursor of the
impurity-induced condensation a dynamical central peak
for T very closely above T, (n ), becoming very narrow
when the transition is approached, which stems from the
overdamped impurity band. In one-component systems
this peak broadens again for T (T, (n ) and finally disap-
pears into the continuum of extended optic-phonon
states. For an M-dimensional order parameter, the longi-
tudinal component (parallel to the direction of the order
parameter) behaves in exactly the same manner. Howev-
er, the transverse components may contain a dynamical
central peak. This is a function of the anisotropy of the
nonlinear coupling constants. For a Heisenberg system
(displaying continuous rotational invariance), a central
peak persists in the ordered phase because of the
Goldstone theorem. For weak anisotropy (y = v

~
/

(b —v ) ~0.05, say), the central mode can be found in a
considerable temperature range. For higher anisotropy
the transverse dynamical central peak disappears similar-
ly to the longitudinal one. Thus we have found a remark-
ably rich behavior, which probably can accommodate
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many of the previous experimental results.
As compared to the single-defect treatments which un-

derestimate cooperative effects, the scope of the present
theory and the theoretical picture resulting therefrom
have changed rather drastically. Instead of a bound
state, there is a band of impurity states. Instead of in-
dependent clusters with a slow relaxation rate, a weak or-
dered state builds up. This ordered state can be charac-
terized by a finite static order parameter. Furthermore, it
gives rise to a static central peak (with zero frequency
width) with a finite q width. However, we have to be
aware of the fact that Ginzburg-Landau theory exag-
gerates collective behavior by neglecting Auctuations.

At this point we would like to add some comments on
the limits and range of validity of our theory. Strictly
speaking, it must break down for very small defect con-
centrations, because for small concentration, nonoverlap-
ping local moments will be formed at T,', which will or-
der only at a temperature lower than T, . The mean-field
approach takes into account the lowest minimum of the
free-energy functional only and implies that order always
sets in with the formation of the moments. For small
concentrations the energy gap between different local
minima of the free-energy functional is exponentially
small. One can easily estimate the temperature at which
the moments order, by equating this temperature with
the energy gap. The limiting effects become less impor-
tant for (i) extended defects, i.e. , a net of grain boundaries
with increased transition temperature, and (ii) phase tran-
sitions at very low temperatures.

The theory may be of practical use for the interpreta-
tion of experiments even in the concentration range,
where, strictly speaking, there is no finite order parame-
ter in the thermodynamic sense. Then the local moments
are not ordered, but fluctuate with a reorientation rate,
which is very small due to the high energy barrier be-
tween equivalent states. ' ' Both the Bragg peak and
Huang scattering of Eq. (5.24) will acquire a finite fre-
quency width. The dynamic term will be essentially un-

changed for frequencies large compared to the reorienta-
tion rate. For temperatures close to T, , the frequency
widths will be experimentally unobservable, implying, for
instance, that the experimental "order parameter" will

appear in a shape similar to Fig. 10.
In this paper we have concentrated mainly on the

overall physical picture, in order to understand the mech-
anisms of the central-peak phenomenon. The Ginzburg-
Landau parameters used (Table I) are comparable to
those for typical structural transitions, but no specific at-
tempt has been made to fit a particular substance. Clear-
ly, the theory can also be implemented into detailed
lattice-dynamical computations, e.g. , the shell model, etc.

We believe that the mechanism presented here will
have many applications to real systems. Of course, other
mechanisms are not ruled out, however. For instance,
slowly relaxing defects give a dynamical central peak;
static random fields produce a static central peak, and so
forth. For summaries of the various conceivable mecha-
nisms, we refer the reader to Refs. 11, 30, and 31. We
would like to briefly contrast our results with two
diFerent models, namely, (i) Huang scattering from static
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APPENDIX A: NEUTRON-SCATTERING
CROSS SECTION

In this appendix we indicate how the scattering law
from Sec. IIB is generalized to lattices with a basis and
realistic polarization vectors. The essential dependence
on the order parameter and the correlation function
remains unchanged; only the geometrical prefactors are
modified.

The lattice positions are given by

a„,=a„+b, , (Al)

where a„ is a lattice vector and b, is the position of atom
s within the unit cell. The actual positions of the atoms
are represented by the normal-mode expansion

Xn, s
—an, s + )i'n, s

1 ik a=a„,+ g e "e,(k, a)Qi,
+KM, k

(A2)

where Qi, are the normal modes, e, (k, a) the polariza-
tion vectors, and I, the mass of atom s. A certain subset
of these Qk coincides with the critical normal modes
studied in this paper; i.e.,

defects which couple linearly to the order parameter and
(ii) the coupling of a relaxational mode to the order pa-
rameter. The standard treatment of Huang scattering is
based on a linear superposition of the displacements
emerging from the individual defects. This gives rise to a
scattering intensity proportional to the square of the stat-
ic susceptibility of the pure system. Also, in case (ii), the
strength of the (now dynamical) central peak is propor-
tional to the divergent static susceptibility.

Obviously, the present theory has applications to other
phase transitions as well. For instance, elastic phase
transitions can be studied quite analogously. But even
beyond the field of structural phase transformations, de-
fects which locally increase the transition temperature
may be of importance (superconductors, magnetic sys-
tems). Concerning the static behavior, our results and
conclusions can be taken over without changes, while the
dynamics are, of course, different. It is quite clear, how-
ever, how to apply this theory also to the relaxational or
diffusive dynamics of superconductors or magnets. The
dynamical precursor then is an extra, even more narrow
relaxational or diffusive mode, respectively.

Concerning the experimental verification of our theory,
we have discussed primarily scattering experiments, be-
cause of their direct relation to the wave-number- and
frequency-dependent density-density correlation func-
tions exhibiting the underlying excitations of the system.
Other experimental probes, such as EPR and ultrasonic
attenuation, show anomalies as well. These can also be
studied on the basis of our theory.
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Qk,.=Wk-„. (A3) and

Restricting ourselves just to the critical degrees of free-
dom, we have

«y„, ))= y. ' '".,(, )«q )&5„,
NM, k,

1 ik.a„

yEM, g
(A4)

with

0 ng

Here P is governed by the free-energy expansion and the
equations of motion of Sec. II. Now P„, can be written
as

y~, (q„)&&q )) .
1

NM,
(A8)

P„,= « y„, ))+(y„,—« y„, )) )+u„, ,

where

(A5)

(A6)

The phonon displacements are abbreviated by u„, .
The scattering length of atom s is denoted by f, . As-

suming for the sake of simplicity that the defects do not
modify the scattering legnths, the coherent neutron-
scattering cross section is proportional to

((s(km())=(I Je' '(x f e "" x f;.e "'''
)dt)) . (A9)

The averaged dynamical structure factor of Eq. (A9) can be evaluated by following the steps of Eqs. (2.8)—(2.11) of Sec.
II.

For a zone-center soft mode (q0=0), we find

«S(k, )&)=pe,*'

X 27r N g 5k + g [k.e, (k, a)][k.e,*(k,a)]«SC (k) )) 5(co)
s

' QMM,

+ g [k.e, (k, a)][k.E,*(k,a)]D (k, co) (A 10)

where the Debye-Wailer factor is given by

~, =
—,'«[k (y„,—«y„, »)]'»+ —,'« &(k. „,)'» & .

2iq -a
For a zone-boundary soft mode (qo&0 and e "=1),the result is

«S(k, ~))) = g f,f,*,e
' ' 'e

S,S

(A 1 1)

X 2~ N + 5k cos(k.5, )cos(k.5, )+N g 5k q ssin(k 5, )sin(k 5, )

g g

+ g [k.e, (k+qo, a)][k e,*(k+qo, a)]«S, (k)))sin(k. 5, )sin(k. 5, )

+ g [k.e, (k, a)][k e,*.(k, a)]«Sc. (k —qo)))cos(k. 5, )cos(k 5,. ) 5(co)
QM, M,

+ g [k e, (k+qo, a)][k e,".(k+qo, a)]D (k, co)si (k n5, )sin(k 5,. )

+ g [k.e, (k, a)][k e,*(k,a)]D (k —
qo, co)cos(k 5, )cos(k 5, ) (A 10')

The correlation functions « Sc (q) )) and D (q, co) describe Huang scattering and one-phonon scattering, respectively,
and have been evaluated for small arguments in Secs. IV and V. We also note that e, (k+ g, a ) =e, (k, a),
«Sc (k+g))) =«Sc (k))), and D (k+g, co)=D (k, co).
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APPENDIX 8: DEFECT-AVERAGED RESPONSE FUNCTION, A SECOND DERIVATION

We present here a second derivation of the phonon-phonon response function of a random multidefect system [Eqs.
(4.16) and (4.17)] based on the exact single-defect susceptibility and the defect average thereof.

We split the Hamiltonian for a single-defect system [compare (3.1), for instance] into a "free" part Ho and the single-
defect potential V(xL, ) according to

H =Ho+ V(xD), (8 la)

and define its eigenfunctions and eigenvalues by the equation

Hf (k)e =E f (k)e (8 lb)

The "full" defect-dependent dynamical response function is then given by standard formula

q(k) q
(k') —;(k—k').„

G(k, k';xD)= g
q CO E

q

whereas the free propagator is translationally invariant and reads

1
Go(k, k') =5„„z

67 COk

where cok denote the eigenvalues of Ho.
We now turn to the case of XD widely separated defects. The response function can be represented by

ND

G(k, k', xD, . . . , xD )=Go(k, k')+ g [G(k, k', xD ) —Go(k, k')]+bG(k, k';xD, . . . , xD ),
1 ND

iD =1 lD 1 ND

where the remaining terms

(82a)

(82b)

b, G(k, k';xD, . . . , xD )
=-=1

D 2
D, JD N

(iDW jD )

[G(k, k';xD, xD )
—G(k, k';xD )

—G(k, k';xn )+Go(k, k')]+
'D JD jD JD

(83b)

can be expressed by two-, three-, . . . , -defect susceptibilities.
The configurational average

ND

D.

(4.12')

of b, G is of order n (see, e.g. , Appendix 8 of Ref. 46). Consequently, the multidefect response function can be found up
to order n from the single-defect susceptibility by averaging the first two terms of Eq. (8.3a):

((G(k, k'; [xD ] ))) =Go(k, k')+n' f d "xD[G(k, k';xD) —Go(k, k')]+O(n' ), (84a)
jD

with n
'
=ND /V= n lao. At the end of this section, we shall use (84a) for the explicit computation in a one-dimensional

model.
Now we show how the average of (83a) is related to the single-site approximation used in the bulk of this paper. Use

of (82a), (82b), and (83a) yields, for the defect-averaged phonon response function,

1 f (k)f*(k)
, +n y

CO @Ok q CO F
q

+O(n )
CO COk

(84b)

which is translationally invariant, of course. Using the completeness relation for the eigenfunctions f the q sum on
the right-hand side of (84b) can be rearranged into

= X (f Ik)(k, f =(k k) .
cO Eq q

(85)

Thus we find
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« G(k, k ) » =~„ +n k
1

CO COk

1 1

67 H co Hp
k +On (B4')

+n k
1

CO COk

+ V V
1 1 1

co Hp co Hp co Hp
+. . k +On', B4"

where in the second line we have expanded the resolvent (co H)—' into a Born series.
If the defect potential is separable in momentum space,

&k~V~k &=~p(k)p (k),
the Born series (B4")can be summed explicitly by using the geometric sum formula

(B6)

« G(k, k') » =Bi,„.

1 nkip(k) i

co —
coi, (co —

coi, ) 1 (k/N—) g Ip(q)l /(~ —a~ )

q

(B7)

which exactly corresponds to the summation in (4.17). At last, Eq. (B7) is readily interpreted as the first-order term of
the expansion of a Dyson equation. Thus we find the final result:

« G(k, k') » =6i, i, CO 6)k
2 2 naacp(k) ~'

1 ——g ~p(q)~ /(a) —co )
N

(B8)

x, k= q, c'= rn

which in the special case p(k) =1, applying to the local defect potential used in Sec. IV and after identifying co —
cubi,

with [Go(k, co)] ', is of the form (4.16).
Now we rederive Eqs. (4.16) and (4.17) for the one-dimensional model, i.e., with the special form of the self-energy

given by Eq. (4.24c), where the single-defect correlation function can be explicitly computed. Introducing dimension-
less quantities for convenience according to

1/2 1/2 1/2
C C

' 1/2 1/2 (B9)

fa

the equation of motion for the single-defect system (3.10) in one dimension and for T )T, obtains the simple form

vguq(z)= 1 —U05(z) — ui(z) .
dz2

(B10)

Its solutions read

+ k cos(kz ) —ir sin(k ~z
~

)

[~(k +~ )]'
sin(kz )

ug z (Bl lb)

uo(z)=v'xe Up
(B1 lc)

The scattering states (Blla) and (Bllb) belonging to the eigenvalue vi, =1+0 fulfill the following orthogonality rela-
tions:

J ul,
—(z )ul,

—(z )dz =6(k —k'),

while the bound state (Bl lc) with vo= 1 —~ is normalized according to

(B12a)

J
+ "[u0(z ) ]'dz = 1 .

One can easily confirm the completeness relation

(B12b)
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f Iu„+(z)u„+(z')+u„(z )u, (z')]dk+ up(z )up(z') =Biz —z') . (813)

oo Qg Z QI Z +Ok Z Qg Z up(z )up(z )
G (z, z';0) = dk+

p v„v(—v+iD ) 1 k —v(v—+iD )

Now, placing the defect at position zD, the integration can be readily performed:

G(z, z;z )= e-~~ — '~—= 1

2p

—p( I z —
zD I + ~

z' —z~ j )
e (815a)

2p(I~ —p )

with the abbreviation p= v'1 —v(v+iD ). Of course, the one-defect phonon response function is not translationally in-
variant. Only the first term, which is identical to the phonon response function of a pure system,

The one-defect response function can now be exactly represented by a summation over the normalized eigenfunctions
divided by an "energy denominator" [see Eq. (82a)]:

Gp(z —z')= e
1

2p

is translationally invariant.
Using now Eq. (84a), we obtain, for the defect-averaged response function,

(815b)

« G(z —z') » = e " ' ''
1 — —+ ~z

—z'~ +O(c' )= 1 C K 1 I I2

2p 2p(i~ —p) p
(816)

which is translationally invariant. Its Fourier transform reads

«G(k)»=, „,
r

, , +O(c') .
(i~ —p)(p +k )

(817)

If again we interpret this as the first-order expansion of a self-energy correction, we end up with

p +k —2c'~p/(p —1~)

Inserting the definitions of Ir, p and rescaling to the original variables according to Eq. (89) shows that the result (818) is
identical to those of Sec. IV obtained for the one-dimensional case in single-site approximation. We remark that in the
case of elastic phase transitions this procedure has already been employed.
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