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Enhanced temperature-dependent magnetoresistivity of Fe/Cr superlattices
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The temperature dependence of the magnetoresistivity is found to be much larger in Fe/Cr super-
lattices with rough interfaces (high magnetoresistance) than those with sharp ones (small magne-
toresistance). We discuss the mechanisms which produce this temperature dependence and point
out that symmetry conditions restrict the putative mechanisms in superlattices. We show that the
enhanced temperature dependence of the magnetoresistance can be explained by the existence of lo-
cal spin excitations at the roughened Fe/Cr interfaces.

I. INTRODUCTION

The resistivities of several iron-chromium (Fe/Cr) su-
perlattices were measured as a function of temperature
between 4.2 and 300 K in the ferromagnetic (H )H„, )

and antiferromagnetic (H=O) configurations. ' The
salient observation was that superlattices with low resis-
tivity (sharper interfaces) have very small magnetoresis-
tance and weak temperature dependence of the resistivi-
ty; superlattices with larger magnetoresistance (rougher
interfaces) have a large temperature dependence of their
resistivity and magnetoresistance. The ineluctable con-
clusion to be drawn is that the enhanced temperature
dependence of the resistivity comes from the increased in-
terface roughness scattering due to rougher interfaces.
While this increased resistivity due to interface scattering
has been recognized at T=0 K, its role in enhancing the
temperature dependence of the resistivity and magne-
toresistance has only now been established by Petrol'
et al. '

Here we discuss the possible mechanisms that produce
temperature dependence of the resistivity of magnetic su-
perlattices, and we indicate which one is the probable
cause for the enhanced temperature dependence. We
conclude that the dominant mechanism responsible for
the temperature-dependent resistivity of ferromagnetic
transition-metal-based alloys is not responsible for the
enhancement observed in Fe/Cr superlattices. Rather we
show that the enhanced temperature dependence of the
magnetoresistance can be explained by the existence of
local spin excitations at the roughened Fe/Cr superlat-
tices. By using a simplified model of spin-dependent in-
terface scattering, we calculate the temperature depen-
dence of the resistivity and compare our results to exist-
ing data on Fe/Cr superlattices.

II. TWO-CURRENT MODEL

The temperature dependence of the resistivity of fer-
romagnets has traditionally been analyzed in terms of the
two-current model developed by Fert. In the tempera-
ture range where the residual resistivities po are much
larger than p, (T) [ =—p (T)—po ] and the spin-fiip term
pt t( T), the resistivity is given as

p(T)=po+ 1+ p, (T)+ ptg(T),
(a —p)' (a —1)'
(1+a) p (a+1)

where

p, '(T)= gp, '(T),

and

~=pot/pop ~

p—:p;t(T)/p;~(T) .

While both phonons and magnons contribute to the
temperature-dependent resistivities p; ( T), only magnons
give rise to spin-Aip scattering and contribute to the
spin-mixing term pt~(T). From extensive comparisons
of Eq. (1) to resistivity data of nickel-, iron, - and cobalt-
based alloys, ' it was found that the spin-mixing term is
crucial in explaining the temperature dependence of the
resistivity.

For those Fe/Cr superlattices which have sharper in-
terfaces, as evidenced by lower resistivities and smaller
magnetoresistances, Petrol' et al. ' found that the resis-
tivity is weakly dependent on temperature. In fact, the
temperature dependence is comparable to that found in
bulk ferromagnetic iron alloys. However, for those su-
perlattices with large magnetoresistance, the temperature
dependence of the resistivity is enhanced. The larger
magnetoresistance and resistivity are associated with
rougher interfaces between iron and chromium layers.
We surmise that the increased roughness scattering at in-
terfaces is responsible for the enhanced temperature
dependence of the resistivity. This can come from in-
creasing the spin-conserving contribution proportional to
p, ( T) or the spin-mixing term p& &( T).

The spin-conserving term comes from. self-energy
corrections to the conduction-electron propagators that
are temperature dependent, e.g. , phonons, magnons, and
electron-electron scattering, as well as vertex corrections
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that do not involve spin Aips. However, the spin-mixing
term comes from Vertex corrections to the conductivity,
which comes from spin-flip scattering events in which
momentum is transferred from one spin channel to the
other, but in which dissipation is not necessarily in-
volved. This term is proportional to

ptt(T) —fd k f d k'(k u)(k' u)J (kf, k'l, )n (T)

X5(Ekt Ek t+ht0 )

where q—=k' —k, u is a unit vector in the direction of the
electric field, J(ko, k'cr') is the matrix element of the spin
Hip scattering, and co and n are the frequency and occu-
pancy of the magnons.

The spin-mixing term [Eq. (2)] has been evaluated for
scattering in bulk materials in which extended excitation
(magnons) with well defin-ed energy mom-entum relations
exist. ' This term exists in Fe/Cr superlattices to the ex-
tent that scattering by the iron layers is from extended
magnon modes co(q), and it inevitably contributes to the
temperature dependence of the resistivity observed in su-
perlattices with small magnetoresistances (and therefore
sharp interfaces). However, we believe this cannot ac-

BO—

count for the enhanced temperature dependence of the
resistivity seen in superlattices with rough interfaces. In
Fig. 1 we show the temperature-dependent resistivity of
the superlattices with large magnetoresistance after re-
moving the small temperature-dependent part of the
resistivity of superlattices with small magnetoresistance.
In the terminology of Petroff et ah. ,

' this is the sum of
the residual resistivity and bp( T) [see Fig. 3(a) of Ref. 1].
This difference in the temperature-dependent resistivities
indubitably arises from the same mechanism that pro-
duces the large magnetoresistance. We note that the
differences bp(T) for H=O and H )Hs are nearly in
dependent of temperature for T&50 K. We conclude
that the energy of the modes that give rise to this
temperature-dependent scattering cannot extend down to
zero. Rather the excitation spectrum which give rise to
the temperature-dependent resistivity aboue that found in
samples with small magnetoresistances probably has a gap
near m =0 and has higher-energy modes which start to be
populated only for T) 50 K. In contrast, superlattices
with small magnetoresistance have a temperature-
dependent resistivity which is reminiscent of that coming
from extended excitations which have a energy spectrum
going down to co=0.

From the above observations we conclude —and, in the
next section, we justify by an explicit calculation —that
the scattering of conduction electrons at rough interfaces
comes from localized magnon (impurity) modes which do
not have well-defined co(q) relations. When a conduction
electron scatters off a localized magnon, momentum is
not conserved. In this case, the spin-mixing term Eq. (2)
is proportional to

60—
ptt(T) —f dk fdk'(k u)(k' u)J(kf, k'J, ) (3)

C

D

40 ~

where the carets denote unit vectors; i.e., we are averag-
ing over solid angles Qk and Qk, . It should be noted that
the magnon momentum does not enter Eq. (3) as it is not
conserved. We expand the momentum dependence of the
scattering in terms of spherical waves of angular momen-
tum l,

J(k, k')= g Jt(k, k')Yt(k)Yt(k') . (4)

p I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 50 100 150 200 250 300
T(K)

FIG. 1. Square points are the resistivity for H=O (upper
curve) and H )Hs (lower curve) for [Fe(16 A)/Cr(12 A) ]„(see
Ref. 1), after the temperature dependent resistiuity o-f the "back
ground" [taken to be the temperature-dependent resistivity
shown in Fig. 3(b) of Ref. 1] has been subtracted Aside from.
the residual resistivities at T=O K, these curves correspond to
the quantity hp(T) (H=O) and ApH(T) (H &H&) shown in Fig.
3(a) of Ref. 1. The solid lines are our calculated fits.

For local modes to contribute to spin mixing, it is neces-
sary that scattering occurs in angular momentum chan-
nels with opposite parities. In Fe/Cr superlattices, the
dominant spin-dependent scattering of conduction elec-
trons comes from the s-d-mixing interaction; therefore,
it acts primary in the I=2 channel of the conduction elec-
trons. Coulomb scattering occurs in all channels; in par-
ticular, l=1 and 3, but for it to be effective the conduc-
tion electrons being scattered at the Fe/Cr interface must
have an l=1 or 3 partial density of states near the Fermi
surface. Therefore, we find contributions to the spin-
mixing term p&t(T) from the temperature-dependent
spin-fiip scattering of localized excitations (as distinct
from extended modes) is limited to situations where the
density of states of conduction electrons near the Fermi
surface has angular momentum components with oppo-
site parities.
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The spin-conserving temperature-dependent resistivity
term from localized excitations, which is proportional to

p (T)-f dk Jdk'k J(k, k')

does not have this restriction. Therefore, unless there is
some proof that the conduction electrons near the Fermi
surface in Fe/Cr superlattices have appreciable p-wave
character (or f-wave character, which is less likely), one
should ascribe the enhancement of the temperature
dependence of the resistivity in Fe/Cr superlattices with
rough interfaces to the spin-conserving term, e.g. , the
conduction-electron self-energy corrections, rather than
the spin-mixing term, which is a vertex correction.

III. MODEL CALCULATION
GF TEMPERATURE DEPENDENCE

To calculate the temperature-dependent resistivity
coming from the spin-conserving terms for a magnetic su-
perlattice, we rely on the formalism developed to explain,
inter alia, the giant magnetoresistance of Fe/Cr superlat-
tices. As this has been formulated by using the Kubo
formalism rather than the Boltzmann approach, we have
derived in Appendix A the relationship between the two-
current model of Fert and the spin-dependent resistivity
based on the Kubo formalism.

We have argued in Sec. II that vertex corrections (spin
fiip) are not the primary cause for the enhanced tempera-
ture dependence of the magnetoresistance for superlat-
tices with rough interfaces. The same parity arguments

apply to vertex corrections which do not involve spin
Hips, i.e., due to phonons and the longitudinal part of the
spin scattering, jSI,O, Vertex corrections (spin fiip and

spin conserving) do exist from scattering within the layers
as these can come from extended modes. From the data
of Petroff' et al. ' the temperature-dependent resistivity
resulting from these excitations, as well as other sources,
is quite small compared with that coming from
roughened interfaces. For this reason and because we
have not yet developed the formalism for calculating the
vertex corrections for multilayered structures, we focus
our attention on calculating the temperature-dependent
magnetoresistivity arising from the localized interfacial
modes that contribute to the conduction-electron self-

energy term. To account for the entire temperature
dependence of the resistivity seen in Fe/Cr superlattices

I

Here zI represents the position of the interface,

Mo=—g S,. =S g l,
iEI

if all spins are equal in magnitude, S, is the spin of an im-
purity atom at an interface, e.g., iron where chromium
should be or vice versa, cr is a Pauli matrix which
represents the spin of a conduction electron, and fI(p) is
a random function representing the surface roughness
(p=x,y). As we will use the spin-wave approximation,
we must refer the spin operator SI to the axis MI, which
represents the direction of the iron magnetization adja-
cent to the Ith interface. On the contrary the
conduction-electron spin operator & should be quantized
along the direction of resultant magnetization of the su-
perlattice, i.e., along the externally applied field when
there is no anisotropy, so that the self-energy 6 is diag-
onal in spin space.

Here we first consider the case that the magnetization
axis M„, is parallel to the axis of quantization for cr; the
extension to general angles is straightforward. Therefore,
the scalar product o'SI is written as

a S&= g [o.,S +o S;++cr+S; ] .
1

Mo
(7)

By combining Eqs. (6) and (7) and replacing the local spin
operators by Bose annihilation and creation operators'
(this is correct only when a single excitation is present,
i.e., at low temperatures; otherwise, it is an approxima-
tion), we find that the second quantized form of Eq. (6) is

with roughened interfaces, we will supplement our result
with the small variation of resistivity with temperature
observed in superlattices with sharp interfaces.

The enhanced temperature-dependent resistivity due to
localized magnon scattering at interfaces (induced by
their roughness) is calculated by considering only the
simple bubble diagrams in the Kubo formalism (see Ap-
pendix A). The spin-dependent scattering at an Fe/Cr in-
terface is modeled by the potential

V, (r, o ) = g (v +j o -SI )f&(p)5(z —z&),
I

where

SI= QS; .
1

iCI

V, = g pe e' fI(p) g (v+j oSI, )ck ck + g (a;ck &ck&+a; cj,, &cz&)
—i vzl t (k' —k)p j 2S

k, v, k', v' I 0 ill

where k=(k, v), k =k„,k, v:—v —v', and we have represented the local spin operator as

S,.+ =&2Sa;,

S,. =&2Sa,.

and



43 ENHANCED TEMPERATURE-DEPENDENT. . . 11 051

where a,. (a; ) is the annihilation (creation) operator of a local magnon at the interface. To calculate the self-energy or r

matrix for the potential Eq. (8), we use the unperturbed Hamiltonian

Ho= gsgcg cg + +co;a;a;
k, cr i GI

(10)

where co; is the energy for a local excitation at site i. Also, we note that the t matrix is diagonal in momentum space
parallel to the layer plane (k =k'), because the multilayered structures we consider are homogeneous in the planes
parallel to the layers.

As we see from Eq. (8), the first term involves non-spin-fhp (NSF) scattering, while the second has spin-Sip (SF)
scattering. The t matrix due to NSF is obtained by second-order perturbation, which gives

(u+j os&, )
rNSF( T) y '

l(f2&
I cF —ck. +)5

i~y—e '"'&f,'&p(EF)((u+J~s„)'
I th

where the angular brackets ( &,h denote a thermal average, and (ft & represents the average over interface roughness in
a plane at zI,' we have neglected the real part of the sum over k' because it does not contribute to the conductivity. The
thermal average for SI, is

=1— g &a,ta, &,„1
l i th

and

(o), ) =(e ' —1)

where co, is the energy of a local magnon at site i. In the approximation that each local magnon has the same energy mo,

i.e., co; =coo, Eq. (12) becomes

(Si, &=1— n(ro—o) .1
(13)

By placing Eq. (13) into Eq. (11),we find the t matrix for the non-spin-Rip scattering is

B
l VZi n (coo)

t "(cr)= i~ + e —'( fi &p(E~) u+j cr 1—
I

2

where in our local spin-wave approximation (SWA) we set (S&, & = (Si, & .
The t matrix for spin-flip scattering, i.e., second term in Eq. (8), may be obtained by performing a Matsubara summa-

tion over the internal degree of freedom. " If we consider the one-magnon correction to the t matrix for the conduction
electron, we have, for example, for the spin-down t matrix,

t, "(Ez, o'= 1, T)= pe '(fi &(&2sj) g g —g Gk(o = 1, EJ;+ip)D;(ip),
1 i&1 k ip

where 6 and D, are the propagators for conduction electrons and magnons,

1
Gi, (o = T, ~u) =

co Ek+l 5

and

1D;(ip)= .
Lp co; +15

By performing the sum over frequency, we find

1 n (ru;)+n (eq)—g Gz(cr = t, EF+ip)D, (ip) =
EF +co Ek+ l 5

(15)

(16)

where n (sz) is the Fermi function. By placing Eq. (16) into (15) and integrating over k, we find that the imaginary part
of the SF contribution is
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t "(s~, o = 4, T)= —i~+ e '(fI )P(E~+roo) X2j [n (duo) +n (coo)],
l

(17)

where we have used n(ru;)=n (coo). In the same manner, we have calculated the conduction-electron spin-up t matrix
and find

t "(EF, o. = $, T) =t "(EF, o =l, T), (18)

t ( o, T) = . i ~ g—e
l

where

h&(T)=p(E&)(,f& ) [u +j [1 n—(duo)/S] +2ujo [1—n (ruo)/S]+2j [n ( cu)o+n (coo)]] .

We have extended the calculation to arbitrary angles Ol, i.e., not restricted to Ol=0. With the spin operator Sl re-
ferred to a local axis Ml making an angle Ol with respect to the external field and cr referred to the field, the scalar
product [Eq. (7)] is written as

cT'Si =SI [cos01 o~ ~s1110( (0'++0 )]+2Si [slI10I oz sin (0I/2)o'++cos (01/2)o' ]

where we assumed a fiat density of state for'the conduction electrons, i.e. , p(Ed+coo)=p(EF). In the Appendix B, we
show how Eq. (18) is arrived at by another route. The total t matrix is then found by adding Eqs. (14) and (17),

lycee(

T) (19)

+ —,'S1 [sin0I o., +cos (01/2)o. + —sin (01/2)o ] .

By repeating our calculation [Eqs. (8)—(18)],we find that for arbitrary 0&, Eq. (20) is replaced by

6&(T)=p(EF)(f& ) Iu +j [1 n(coo)/S] —+2ujo cos0&[1—n (co )/oS]+2j [n (coo)+n (coo)]J .

(21)

(22)

The calculation of the resistivity for the t matrix in Eq.
(19) is identical to our previous one. Because of the in-
homogeneous nature of scattering in layered structures,
we introduce a position-dependent conductivity o(z); this
has been explicitly obtained for zero temperature, i.e.,
n (coo)=n (coo)=0 in Eqs. (20) and (22). For finite tem-
peratures we replace b

&
( T=O) in Ref. 2 by b, I (T) of Eq.

(22). Aside from the parameters for the T=O K resistivi-
ty, only one additional parameter co0, the local magnon
energy, is required for finite, nonzero temperatures in our
simplified model of the interfacial scattering. We now de-
scribe our results.

80—

IV. DISCUSSION OF RKSUI.TS

The parameters to describe the magnetoresistance of
the present [Fe(16 A)/Cr(12 A)],s sample' at T=O K are
very similar to those we used to fit a previous series of
Fe/Cr samples, i.e., p =j/U=0. 55 for the ratio of spin-
dependent to spin-independent scattering,
k, = (1.I /2)(a +b) = 15.4 A for the spin-independent
mean free path due to interfacial scattering, and A, b =23
0
A for the spin-independent mean free path due to bulk
scattering (within the layers). Only the latter value is
diIterent from our previous one; for the previous series of
Fe/Cr superlattices, we used A, &

=19 A. These values Ax

the resistivities of the present sample at T=O K for both
H=O and R )II&.

The only new parameter co0 is fixed so as to reproduce
the observed resistivity increase at T=300 K for 0 & II&
(see Fig. 1, lower curve), which represents the difference
in temperature-dependent resistivities between the [Fe(16
A)/Cr(12 A)]» sample with large magnetoresistance and

40—Q
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0 50 100 150 200 250 300
T(K)

F1G. 2. Squares are the experimental data on the resistivity
for H=O (upper curve) and H )Hs (lower curve) for [Fe(16
A)/Cr(12 A)]» taken from Ref. 1. The solid lines represent our
calculated fits that have been augmented by the temperature-
dependent resistivity of the "background, " i.e., the
temperature-dependent resistivity for a superlattice with small
magnetoresistance (sharp interfaces) [see Fig. 3(b) of Ref. 1].



43 ENHANCED TEMPERATURE-DEPENDENT. . . 11 053

30
V

(D
V

N
N
S 20—
Q)

hG
65

10—

0 I I I I I I I I I I I I I I I I ) I ) I I I I I I I I I

0 50 100 150 200 250 300
T{K)

FIG. 3. Temperature dependence of the magnetoresistance
R (T) =[p(H =0, T) p(H =Hs, T)—]/p(H =0, T). The squares
are the experimental data on [Fe(16 A)/Cr(12 A)]» taken from
Ref. 1, and the solid line is our fit.

ty for sample b (small magnetoresistance). In our model
we have attributed bp(T) to scattering from local mag-
non modes that exist at rough interfaces.

By comparing our calculated temperature-dependent
resistivity to the data' on [Fe(16 A)/Cr(12 A)],s, we find
that the agreement is excellent. We conclude that it is
plausible to model the large increase in the temperature-
dependent scattering observed in sample with putatively
rough interfaces (large magnetoresistance) as arising from
thermally activated localized spin flips (magnons). The
excitation energy of these modes coo=435 K is reason-
able. The Curie temperature of iron is T~ =1043 K; if we
assume that there are one-half as many iron neighbors to
an iron atom at a rough Fe/Cr interface, coo=435 K is
tenable.

In summary, we have modeled the large increase in the
temperature dependence of the resistivity of Fe/Cr super-
lattices with large magnetoresistance, as arising from lo-
calized magnon modes at the rough Fe/Cr interfaces.
With one new parameter this model is able to reproduce
the enhanced temperature dependence of the magne-
toresistance that has been observed. We have also con-
sidered localized phonon modes and find we are unable to
fit the enhanced temperature-dependent magnetoresis-
tance in Fig. 3.

We have not discussed the weak temperature depen-
dence of the resistivity and magnetoresistance found in
samples with small magnetoresistance. Presumably, this
comes from magnon and phonon modes that extend over
entire Fe or Cr layers or the entire Fe/Cr superlattice in
the case of phonons.
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APPENDIX A

The dc conductivity can be calculated by using the
standard Kubo formalism"

0 = lim
co~0

where

1m[II„„(in')]„
i CO

—CO+15
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New York University.

2

[II„,(in')] „=
~ g —g Gk (ip)k„I (k, ip, ip +in')Gk (ip +i'm),

m k~ ip

where I is the vertex function which satisfies the integral equation

I (k, ip, ip +iso) =k+ g f —g M (k, k')F (k, k', iq)
dk' 1

(2~);q
XGk, , (ip +iq)Gi, (ip +iq +i')l (k', ip +iq, ip +iq +ice),

(A2)

(A3)

where G& (ip) =1/[ip —
Ek

—
X& (ip) ], M ~ is the matrix

element of the interaction between conduction electrons
and scattering sources, and F is the propagator for the
scattering. For example, F is a magnon propagator for

I

electron-magnon scattering, and F = 1 for electron-
impurity scattering with no internal degrees of freedom
for the impurities. As pointed out in Sec. II, the correc-
tions to the vertex I vanish in some cases, e.g. , if the
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(a)

FIG. 4. Self-energies of conduction electrons due to {a) im-
purity scattering and (b) one-magnon scattering.

scattering takes place in one angular momentum channel
and does not conserve momentum k.

Before tackling the integral Eq. (A3), we express the dc
conductivity in terms of I by summing over frequency ip
in Eq. (A2), yielding"

conductivity is determined by the imaginary parts of the
self-energy. The diagrams for the self-energies for impur-
ity and magnon scattering are represented by the dia-
grams shown in Fig. 4. For impurity scattering, the
lowest-order contribution to the self-energy is
V; „(k=0), which is real, so that to first order in V; „ it
does not contribute to the conductivity Eq. (A5). For
magnon scattering as shown in Fig. 4(b), the lowest-order
self-energy is V, . We conclude that the lowest order of
the scattering potential V to enter the calculation of the
conductivity without vertex corrections is V . This is the
reason that we express our lowest-order t matrix [Eq.
(20)] in terms of V . It should be pointed out that
neglecting vertex corrections does not exclude the spin-
flip contribution to the conductivity.

(2) When vertex corrections are important, we must
solve the integral equation (A3); generally, this is difficult.
However, if we assume that both 6 and A are indepen-
dent of energy, we may introduce non-spin-flip and spin-
flip vertex corrections as shown in Fig. 5. The conduc-
tivity from a non-spin-fiip (NSF) process Fig. 5(a) is
defined as

2noe ooyf2fPl —oo

d A (E)
nF(e)

2b, (E)
(A4) noe 2

~NSF(
4Iri Q((y )

(A6)

noe A (EF)
4m Q~(EF )

(A5)

We now consider the following two cases.
(1) By neglecting vertex corrections, i.e., A =1, the

where 6 is the imaginary part of the conduction-
electron self-energy 5 = —Im gI, (ip =EF + i 5), and
A —= I k/~k~ is the magnitude of the vertex function.
For temperatures much lower than the Fermi energy,

dnF(—E)ldE may be replaced by 5(E —eF ) and Eq. (A4)
reduces to

where 1/b, =A "/b„while that from a spin-fiip (SF)
process Fig. 5(b) is defined as

noe l p2

o "(o)=
4In Q(o ) Q( —o. )

(A7)

where I' denotes the spin-flip scattering matrix. The con-
ductivity is obtained by summing the ladder diagrams
shown in Fig. 5(c), which consist of repeated use of the
basic vertices [Figs. 5(a) and 5(b)j, and we find

~ ~ ~ ~ ~ ~

FIG. 5. Contributions to the conductivity from (a) a non-spin-Aip ladder diagram, {b) a spin-Aip ladder diagram (the zigzag line),
and (c) all possible ladder diagrams for non-spin-Aip and spin-Aip processes.
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o(o )=
4m &(o) &( —o)

p2
X 1+ +

b, (o )b( —o )

noe b( —o )+p
4m Q(g )Q( —o )—p~

(AS)

By defining the resistivity p and "spin-mixing" p & &
as

and

noe 2

4m Q(o ) —p

2
—1

noe I'
4m

(A9)

we-find

pg+ pg+4pg go.(o )=
s t~i+s t i(~t+~i)

(A10)

This is exactly the two-current model derived by Fert by
using the Boltzmann equation. By comparing the two ex-
pressions p and p "=(o ") ', we note that they are
different: p

" contains only vertices of type Fig. 5(a),
while p contains both types of vertices, Figs. 5(a) and
5(b), and has the final spin direction, after all successive
scattering events, the same as the initial, i.e., no spin mix-
ing.

where V(cr ) is the scattering potential [Eq. (6)], E is the
energy of the local state, f (E) is the Fermi function, and
the expression in curly brackets accounts for the inelasti-
city in the collisions. By evaluating the matrix elements
of the scattering potential Eq. (6) and limiting ourselves
to the spin-Aip terms, we find the conventional result'

p(Ei, +co)[S(S+1)+(S, ) —(S2) ]
(B2)

&+(k) 1 f (E—k)(1 —e ~ )

(S+S—
) =S(S+1)+(S, ) —(S2)

=2S [1+n (co) ] (B3a)

(S S+ ) =S(S+1)—(S, ) —(S2)

where co—=E
&

—E, and the angular brackets denote a
thermal average over the energy of the local state.

While this expression for the spin Aip looks quite
different from Eq. (17), interalia, the spin dependence (+)
in Eq. (B2), while Eq. (18) states they are independent of
spin in the spin-wave approximation (SWA), the two are
identical. To establish this set f (ek ) = —,'; while this is not
done in the conventional treatments of the magnetoresis-
tance, it is permissible in our calculation, because in our
case it appears in the denominator of the expressions over
which we eventually integrate with the factor Bf(e)/Be,
whereas in the magnetoresistance calculation it appears
in the numerator. In the SWA,

APPENDIX B
=2Sn (co) . (B3b)

1 —PE—(k, o') = g co e
mm '0. ' f (ek)[1—e

' -' -']

X I )(k'cr'm'~ V(o )~kom ) )

(2m )

XQ(E„.—E„+E . E), —(B1)

The conventional approach to calculating the
conduction-electron lifetime due to spin-Aip processes fol-
lows the method developed by Van Peski-Tinbergen and
Dekker. ' The relaxation time can be cast into the
form'

By placing Eqs. (B3) in (B2) and setting f (E)=—,', we find

4Sp( 8~+co )

(1+e ~")(e~"—1)

=2Sp(sF+co)[n (co)+n (co)] . (B4)

Thus we see that seemingly different relaxation rates due
to spin-Aip scattering are in fact the same in the SWA, if
we make the reasonable assumption that the conduction-
electron density of states is rather Aat near the Fermi sur-
face, i.e., p(EF+co) =p(EF) for co &&EF.
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