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We study the problem of soliton generation by an external pulse force in the framework of the
sine-Gordon system. The problem is applied to the creation of Auxons in long Josephson junctions
or magnetic solitons in one-dimensional magnetic systems with an easy-plane anisotropy. In case of
a small duration of driving pulse T, we find the connection between parameters of the pulse force
and the wave field created after the pulse. To define the parameters of the generated soliton we use
an approach based on the inverse scattering transform. The analytical results are presented in two
cases when the spatial length L of the pulse is either much larger or much smaller than the value

Vg T Vg being the maximum value of the group velocity in the system. The threshold conditions ad-
mitting generation of either breathers or kink-antikink pairs are found. Numerical simulations are
performed for arbitrary values of the ratio L/Vg T but for small T. In two limiting cases the results
are in good comparison with the obtained analytical formulas. The influence of dissipative losses on
the soliton creation is also studied by analytical and numerical methods. It is demonstrated that
dissipation leads to an increasing of the threshold conditions to generate solitons by the pulse force.

I. INTRODUCTION

The concept of the soliton plays an important role in
modern solid-state physics. Well-known examples are
long Josephson junctions (LJJ's) and magnetic systems in-
cluding ferromagnets and antiferromagnets. Theoretical
models of both these systems reduce to the sine-Gordon
(SG) equation. ' As is well known, this equation admits
solitons of two distinct types: topological solitons (kinks)
and nontopological ones (breathers). In the theory of
LJJ's, a kink represents a Auxon, i.e., magnetic fIux quan-
tum. ' In the theory of one-dimensional magnetic sys-
tems, a kink corresponds to a domain wall.

An important physical problem is the generation of
solitonic excitations in these systems. In LJJ s of the in-
line type, Auxons are created by application of a bias
current pulse to an edge of the junction. ' In LJJ's of the
overlap type, they are created by application of the
magnetic-field pulse.

A spatially localized pulse of the magnetic field can
also be employed to generate pairs of domain walls
(DW's) and/or magnetic solitons (MS's) (breathers) in
easy-plane ferromagnets. ' Unlike DW's, MS's are
sufficiently dynamical excitations, and the problems of
their nonthermal creation and stabilization are very im-
portant from the viewpoint of recent experimental at-
tempts to create and study the properties of the dynami-
cal solitons in a few magnetic systems.

The problem of soliton generation arises in any physi-
cal system admitting existence of solitonic excitations,

and it is not easy to solve. The exact analytical results
may be obtained only for the Cauchy problem when the
equation of motion can be solved by the inverse scatter-
ing transform (IST). The IST method allows us to predict
asymptotic evolution of an initial wave-field distribution
defined at t =0, and, in particular, to calculate parame-
ters of created solitary waves. In this connection it
should be noted that a detailed analysis of some of the
simplest initial SG wave-field configurations was carried
out from the viewpoint of the IST in Refs. 11 and 12.

Experimental conditions are associated with another
situation, when an intense and generally localized pulse
force drives a system from equilibrium, and the external
pulse force results in a wave-field distribution from which
solitons may be created. This clearly indicates that the
parameters of the excited solitons are, in the final
analysis, determined by the characteristics of the pulse
force, i.e., its intensity and duration.

The way to solve such a problem was brieAy described
by Kivshar and Malomed, ' ' and the method is based
on the IST. In view of the fact that the formulation of
the soliton generation problem most adequately corre-
sponds to an experimental situation, we brieAy outline
the general solution scheme. The problem of the linear
response of a system to an external pulse acting during
the time 0 & t & T is examined at the first stage, assuming
that the system was in equilibrium [$=$,=0, where
P(x, t) is the wave field] prior to the action of the external
pulse force (t (0), and the spatial wave-field distribution
at time t = T is also calculated. It is obvious that such a
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calculation will be valid only if the force acts for a time T
short enough so that the excited pulse cannot "creep
away" due to dispersion. It is important that the analysis
of the response to the external action can be carried out
in the linear approximation.

' ' Then, using the derived
field configuration as the initial condition for the Cauchy
problem for t & T, we can solve the direct scattering
problem within the framework of IST (the second stage).
This makes it possible to obtain a set of so-called scatter-
ing data of the discrete and continuous spectra, which de-
scribes the further evolution of the pulses. Specifically, if
we know the discrete spectrum, it is possible to determine
completely the parameters of excited solitons. Since the
IST is strictly valid for exactly integrable systems only,
the auxiliary factors (responsible for the break of the ex-
act integrability conditions) can be investigated in the
framework of perturbation theory for solitons' taking
the solution of the Cauchy problem as a zeroth-order ap-
proximation. This represents the third stage in solving
the soliton generation problem.

The above-mentioned papers ' dealt with two limiting
cases in the soliton generation problem when the spatial
length of the pulse L is either larger or smaller than the
value V T, V being the maximum value of the group ve-
locity in the system, In both cases the results may be ob-
tained using some approximations. This paper aims to
consider the soliton generation problem in a general form
for arbitrary values of the ratio L/V T using analytical
and numerical approaches. Our idea is to compare
analytical results and numerical simulations and predict
the dynamics of the system in more general cases when it
cannot be solved analytically. This treatment and the ob-
tained results have, in our view, a much broader applica-
bility than to nonlinear wave generation in LJJ's and
magnetic systems described by the SG equation. Indeed,
any physical system that allows nonlinear soliton excita-
tions to exist must deal with the problem of their genera-
tion. The situation where an intense and localized pulse
drives a nonlinear system from equilibrium corresponds
to experimental conditions. The force generates a wave-
field distribution that can be considered as the initial data
at t = T. If the system is described (after the end of exter-
nal pulse action) by an exactly integrable equation, such
as the SG equation, IST makes it possible, in principle, to
calculate exactly the spectrum of the resulting excitations
based on the wave-field configuration established by the
pulse action. This approach may be applied to a number
of other nonlinear systems.

The paper is organized as follows. In Sec. II we
present the physical models that correspond to the soli-
ton creation in LJJ's and an easy-plane ferromagnet
(EPF). Section III is devoted to analytical analysis. Sec-
tion IV describes the numerical simulations of the model
and provides a comparison with the analytical formulas.
Finally, the conclusions are presented in Sec. V.

II. PHYSICAL MODELS

A. Long Josephson junctions

A significant number of experimental and theoretical
studies' ' have been devoted to investigation of the

dynamics of Josephson vortices (magnetic fiux quanta or
fiuxons) in LJJ's. Several methods can be used experi-
mentally to excite Auxons in a long junction. One such
method involves injecting an external current through
the junction's edge; as a rule the injection current con-
tains dc and pulsed components. The resulting excita-
tion of Josephson Auxons exhibits a threshold. The pulse
area must exceed a certain critical value in order to gen-
erate a Auxon. This dynamical process was investigated
numerically by Sakai and Samuelsen in the framework of
the semi-infinite LJJ model based on the SG equation
(with a dissipative term) for the dimensionless magnetic
fiux u (x, t),

u„—u +sinu +yu, =0, x & 0,
which is supplemented by the boundary condition

(2)

The coordinate x, directed along the junction, and time t
are measured in units of the Josephson penetration depth
kJ and the inverse Josephson frequency coJ. The parame-
ter y phenomenologically accounts for dissipative losses
stipulated by tunneling of normal quasiparticles through
the junction; the term —h (t) is the external bias current
injected through the junctions' edge (x =0). The same
model describes the action of external variable magnetic
field on the junction.

The current (or magnetic field) h ( t) may be represent-
ed as the sum of two terms,

h(t)=h, +h, (t), (3)

Taking the parameter ho in (3) to be small, we will first
consider the case ho=0.

B. Easy-plane ferromagnets

Let us consider a ferromagnet with an easy-plane an-
isotropy (EPFM) in the presence of the external constant
magnetic-field H lying in the basic plane. In an equilibri-
um state, the magnetization vector is directed along the
field H. The deviation of the magnetization vector in the
easy-plane from the field direction is characterized by the
angle u, and its one-dimensional dynamics may be de-

where ho is the dc component of the current, while h, is
the pulsed component. ' Sakai and Samuelsen carried
out numerical and semianalytical investigations of the
pulsed component with a triangular wave form. We will
provide a consistent analytical solution of the problem as-
suming a short duration T of the pulse injection current
h, (t) as well as a dc current ho. In the considered case
the amplitudes of the pulsed injection current may reach
substantial levels of the order of T

Bearing in mind the use of IST, we will continue Eq. (I)
into the semiaxis x (0 by the relation

u( x, t)=u(x, —t) .

Then the following equation will correspond to Eq. (I)
with the boundary condition (2):

u„—u + isnu +yu, = 2h(t)5(x) .
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scribed by the SG equation, ' '
u„—u „+sinu =0 .

The coordinate x and the time t are measured in units of
(a/H)' and coo '=(yMD'1/~PIH ) ', respectively. Here
a and P (P &0, IPI )&1) are the exchange and anisotropy
constants, and Mo is the maximum magnetization.
Small-amplitude deviations of u from the state u —=0 are
spin waves with the dispersion law co =1+k and the
group velocity

v am k
g gk (1+k2)1/2

To generate nonlinear excitations, one needs to apply
an additional (pulsed) magnetic field h (x, t) localized in
the x direction. The direction of the field may be charac-
terized by the angle y between the fields H and h (x, t).
Then, according to Refs. 2 and 7, the equation of motion
(6) takes the form

u(x, T)

AT /2

u, (x,T) (b)

h(x, t) . h(x, t) .
u tt u + 1 + ' cosy sinu = ' sing

As we can see from further analysis, the term
[h (x, t)/H jcosg may be neglected, provided that either
tang » T/L in case L )&T, or tang )& 1 in case L « T.

FIG. 1. (a) Function u (x, T) defined by Eq. (14). (b) Function
u, (x, T) defined by Eq. (15).

u„—u„„+sinu +yu, =f(x, t),
where

I
x I

& L /2, 0 & t & T
f(x, t)= 0 lxl&L/2, 0&t &T

0, t)T.

(9)

(10a)

In case of EPFM, the parameter A takes the form
A =(h /H)sing, h being the amplitude of the pulsed
magnetic field. For LJJ's we have to consider the limit
L~0, with AL & 00, so that f (x, t) tends to a 5-like
force,

C. Formulation of the problem

To consider both soliton generation problems (5) and
(8) in a general form, we study the equation

III. ANALYTICAL APPROACH
TO THE SOLITON CREATION PROBLEM

u„—u„„+yu, =f(x, t) . (13)

A. Initial pulse wave form and solution
of the direct scattering problem

1. "Wide" pulse

If the duration T of the pulse is small ( T « 1), the re-
sults may be obtained analytically. In this case, for t (T
the terms P«and P„„are large, the wave field P(x, t)
changes sufficiently only at the points x = kL/2 in a vi-
cinity b.x —T « 1, and the term sinu in (9) remains of or-
der unity over the time T during which the pulsed force
(10) acts. Consequently, during the action of the force,
Eq. (9) can be replaced by the linear equation

f (x, t) =f (t)6(x),
where

AL, :—C, 0&t (T
f(t)=2h(t)= '0

C has the sense of the field at the junction's edge.

(12a)

(12b)

The linear equation (13) can be solved exactly at the ini-
tial conditions u (x, O) =u, (x,O) =0 and the pulsed force
(10). Subsequent calculations by means of IST may be
carried out only in two limiting cases, a "wide" pulse
L ))T, and a "narrow" pulse L « T, (or L~0 in case of
LJJ's). First of all, we will consider the case of y=O.
The solution of Eq. (13) with the force (10) when y =0
and at the moment t = T has the form [see also Figs. 1(a)
and 1(b)]

u (x, T)= —( A /8) I2(L /2+x) sgn(L/2+x)+2(L /2 —x) sgn(L/2 —x)

(L /2+ x + T) sgn—(L /2+ x +T) (L /2+ x —T) sgn(L /2+ x——T)
—(L/2 —x + T) sgn(L/2 —x + T)—(L/2 —x —T) sgn(L/2 —x —T)],

u, (x, T) =( A /4) I IL/2+x + Tl —IL/2+x —T)l+ IL/2 —x + Tl —IL/2 —x —Tl I,
(14)

(15)
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where

+1, x &0
sgn(x) = .0, x =0

—1, x(0.

imaginary zeros, A, i 2= —,'iv'(1+v)/(I+u), corresponds
to a kink-antikink solution that describes a scattering of a
kink and antikink with opposite velocities +v. The SCi
kink is related to one zero i(i= —,'i&(1+u)/(I —v) and
has the form

E(u, u, ; A, )(II(x, t; A, ) =0

for the auxiliary two-component Jost function

V)(x, t;I, )

P(x t'A):

(16)

where k is the spectral parameter, which takes real posi-
tive values. The operator L has the form

To calculate the soliton parameters for t & T, we must
employ the inverse scattering method where the func-
tions u (x, t) and u, (x, t) defined by Eqs. (14) and (15) are
the initial "potentials. " The IST allows us to solve the
Cauchy problem. ' In the inverse scattering technique,
the SG equation is related to the linear scattering prob-
lem

u), (x, t) =4o tan ' exp
X

(1 u2)l/2 (22)

where o is the kink polarity (o =+1 corresponds to a
kink and o.= —1 to an antikink), and g=ut+xo is its
coordinate.

Therefore, to find which type of initial function gen-
erates solitons and to determine their parameters, we
have to investigate the direct scattering problem (16) with
the initial functions (14) and (15). When the conditions

T ((1 and ATL —1

hold, the direct scattering problem (16) and (17) can be
solved using the perturbation theory, provided L »T.
Indeed, taking into account (23), we may estimate our
functions as follows:

gL=I
Bx 2

1 &2
cosu &3

—sinu u, —1, u —T «1, u„-u/L —T!L«1 . (24)

&]+ (u„—u, ) (17)

The estimations mean that, for L »T, we may use the
following initial conditions as a "zeroth-order approxi-
mation:"

)Ii(x;i(,)~% (x, g;A, )—:
e

—( i/2) k ( A, )x (18)

where

k(A, )—:A,
— 1

4k

At x ~+ ~ the function may be presented as follows:

b ( g )
(i/2)k(A. )x

0'(x;A, )- 0'+(x;g;A, ) —= (20)

where & (a =1,2, 3) are the Pauli matrices, and I is the
unit matrix.

The so-called amplitudes (Jost coefficients) play an im-
portant role in the inverse scattering technique. To
define the amplitudes, let us consider the eigenfunction
0'(x, g; A. ) with the asymptotic at x ~—oo,

lxl &L/2
' '(x, T) =O, u,' '(x, ) = '0

b (A, ) = — sin(~L),EAT
4x

(27)

ere i( = ) k (A)+,~, ~ . The additional term to a
may be calculated according to the formula of the pertur-
bation theory,

and a departure of (14) and (15) from (25) may be taken
into account as a perturbation. The approach is very
fruitful because the direct scattering problem with the in-
itial pulse (25) has been solved analytically. "' Accord-
ing to Ref. 11, the initial conditions (25) lead to the fol-
lowing jost coeKcients:

a'o'(g) =e' ~ ~ cos(~L )
— sin(i(L), (26)

ik (I, )

2K

The functions b (A, and a(A, ) are the Jost coefficients, and
they describe properties of the solutions at t & 0.

According to IST, soliton excitations of the nonlinear
system correspond to solutions of the equation a (A,„)=0
with Imk, „)0 [zeros of a (A, ) lying in the upper half-plane
of A]. If the initial pulse u (x, t) is an even function in x,
the solutions A.„may appear only by pairs (see details in
Refs. 11—14). The conjugate pair of the solutions,
A, , 2=+—,'exp(+i@), corresponds to a quiescent breather
with an amplitude 0 (p (m/2 and the frequency cosp:

a("=f "dx 5a 5a5u+
p

where

5u —=u(x, T)—u' '(x, T),
5u =—u, (x, T) —u,' '(x, T),

and the variational derivatives,

5u, (28)

sin(t cos(M+ Po)
ub, =4 tan tanp

cosh x sin(M
(21)

5a i= ——[V,(x, g; P~)@,(x, g, I, )
5u, (x) 4

$0 being a constant initial phase. The pair of purely
—%2(x, g; A, )4'2(x, g; A. )], (29)
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=+ [%,(x, g;A, )@,(x, g;A, )5ux 4 @(x,l)~N (x, A, )—:
ik(A, )x/2

as x —+ —(x), (31)

+ (Ii2(x, g A, )@2(x,g; A, )], (30) ( g )
ik ( A. )x /2

@(x,i(, )~4+(x,A, ) —= ~;k(k)„/2 as x ~+ oo,b*e

must be calculated in the zeroth approximation corre-
sponding to (25). In (29) and (30), the functions @) 2 are
the components of the second Jost function de6ned by its
asymptotic at x ~+ 00,

(32)

where the asterisk denotes complex conjugation. The
Jost functions %(x, t) and @(x,t) corresponding to the in-
itial conditions (25) were calculated in"

%'(x, A, )= .

'0 (x, A, )=% (x, A, ), x ( L/2—,

( g i( e'~~ —g ir
A

1 + 2

e IKx+ A e IKx
2

(I/+ (x, A ), x )L /2,

A (L/2

(33)

(34)

(35)

4(x, A, ) =

4 (x, A), x ( L/2—
e IKx+ A2 1

lxl «/2

(36)

(37)

4&+ (x, A, ), x )L /2,

where

i~+L/2 &+ i~ L/2 — k (k)
A) =— e +, A~ =— e, K+ =K+

2K 2K 2

(39)

Substituting (33)—(39) into (28) we can calculate the total
Jost coe%cient,

axis is easily solved, and at the moment T, when the pulse
ends, configuration of the wave fields u (x, t) and u, takes
the form

u (x, T)=——~x~+ —'~x + T~ 1+~(x —T)C
2 2 4

a(A, )=a (A, )+a'(A, )

ik(k)L/2 cos(~L )

+—' ix —Ti 1 — (x +T)2 4.

u, ( x, T)=—( 1 —
—,
' y T)[sgn(x + T)—sgn(x —T)],C

(41)

(42)

t'k(A) 1+ 8
2K

(40)

The result (40) allows us to analyze the parameter of the
created solitons (breathers or kink-antikink pairs).

2. 2 "narrow" pulse

where C= AL. The functions are represented in Figs.
2(a) and 2(b) for y =0 and yXO. In order to describe the
later evolution of the pulse we will examine, as in the case
L » T, the functions (41) and (42) as initial conditions for
the direct scattering problem (16) and (17).

If the conditions (23) hold, the direct scattering prob-
lem for the initial conditions (41) and (42) can be solved
approximately. To this end, we write Eqs. (16) and (17)
as follows:

Let us consider another limit case, L ((T. In this case
the pulse force may take the form (11), i.e., as a point
force.

The linear wave equation (13) defined on the entire x

'(Ii, =a (x, A )%', +p(x, A )(Ii2,

a %2= —a(x, A, )%2—P*(x,A, )%),

(43)

(44)
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u(x, T) Fy + (cosy —1),
8KB

iF 1
0'2 =F— A.y — siny

2D 4A,
(48)

The constant F is determined from the matching condi-
tions at x = —T. (y =0) for the function (48) with the
function 4 (x, A, ) defined in Eq. (18):

lF =exp —k(A, )T
2

(49)

ut(x, T) (b)
b. The interval 0&x& T. We introduce the notation

z =D(x——T) and represent the initial conditions (41) and
(42) as

u = —z+ (z+2DT), u —u =2D — (z+2DT) .yz
4D x t

(50)

We note that by virtue of condition (23) z —1, since
D &&1 and DT-1, as before, an approximate solution of
Eqs. (43) and (44) at this interval takes the form

%, =[C,+ A, (z)]e" +[C~+ A~(z)]e (51)

%~= —[C, +A)(z)]e"~ +[C2+A2(z)]e "~, (52)
FIG. 2. (a) Function u(x, T) defined by Eq. (41). The dashed

line corresponds to y=0 and the solid line to @&0. (b) Func-
tion u, (x, T) defined by Eq. (42). The solid line corresponds to
y =0 and the dashed line to y&0.

where

2 —iz lZ
A, (z) = — Ae "+

2D 4A,

T

z' +2DTz
8D 2

where

l 1a(x, A, ) —=—A, — cosu
2 4A.

(45)

+G],

2+

(53)

(54)

P(x, k) =——(u„—u, ) — (sinu )
l I

(46)

u =y+ y(y 2DT), u„—u,—=

In order to find the scattering data, we will specify the
asymptotic values of the function 4' for x~+~ as in
Eqs. (18) and (20). After this normalization has been
chosen, the solution of Eqs. (43) and (44) for x & —T (see
Fig. 2) obviously has the form (18).

As the subsequent analysis will demonstrate, it is
sufficient to know the behavior of the amplitude a(A, ) for
k —1, i.e., near the point k=+ —,', in order to investigate
the soliton creation. For k (A, ) « T ' the direct scatter-
ing problem can be solved approximately in each of the
following intervals specified by the initial conditions (41)
and (42).

a. The interval —T &x & 0. Introducing the notation
y =D(x +T), where —D—:C(x —

—,'yT), we will represent
the initial conditions (41) and (42) as

iDT!2F
1

F —iDTi2C =—e"2
2

(55)

In order to simplify the process of calculating final results
we will express the Jost coefficient a (A. ) directly through
the constants G, and G~ determined in Eqs. (53). We
find from matching the functions (51) and (52) to 4+ at
x =T(z=0):

a(A, )e '"' ' ~ =qI
~

=F cos
DT

2 x=O 2

iAF . DT +(G
2D 2 2 1

while the constants C, , C2, G„and G2 must be deter-
mined from the matching conditions for the Jost func-
tions in each order in the small parameter D ' —T. At
the lowest order we have

where y —1. Taking into account that D —T '))1 [see
Eq. (23)], we will find the solution of Eqs. (43) and (44) as
the first term of a series in powers of D ' —T:

We have used Eq. (55) in writing (56). By matching the
functions (51) and (52) to the functions (48) at x =0, it is
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a (A ) =a(k(A, ))=e'" (1—ikT/2)cos DT
2

yDT . DT+ . sin

ik . DT
sm

D 2
(57)

possible to find G2 —
G& to the first order in D ', which

finally yields
case of LJJ s, it is in fact obvious that only a kink travel-
ing at a positive velocity [having the polarity cr = sgn( A )]
is physically meaningful (its partner traveling with nega-
tive velocity is its "mirror image" with respect to the
junction's edge x =0). Similarly, for x )0, the breather
solution in fact describes a single kink (fiuxon) oscillating
in the effective potential we11 near the junction's edge.
Substituting expressions (40) or (57) into the equation
a (A, ) =0, we can define parameters of the created soli-
tons. Let us consider the parameters separately for both
cases.

k—:k (A, ) is defined in (19). It is possible to find another
Jost coefficient b (X) analogously:

~) . ,kr ikT . DT

1. The case L &)T

Equations (40) and a (A, ) =0 lead to the equation

cot(aL)= (1+B T /24),ik
2K

(62)

iyDT2 DT
cos (58)

We point out that the results (57) and (58) are valid under
conditions (23) and also for k ((T

B. Analysis of the scattering data

According to the IST results, the zeros of the Jost
coefficient a(A, ) correspond to solitons; these lie in the
upper half plane of the complex spectral parameter A, (see
Fig. 3). A breather, the kink-antikink bound state oscil-
lating with the frequency cosy [see Eq. (21)], corresponds
to the complex-conjugate pairs of the roots

' =+exp(+i p)
2

and has the form (21). A pair of purely imaginary roots,

( ALT),q, =2m . (63)

Similarly, from Eq. (62) we can obtain the threshold con-
dition for generation of N breathers,

ALT) (ALT),q, '=2~(2N —1) . (64)

The search for the threshold conditions for the
creation of free kinks, i.e., kink-antikink pairs (61), and
determination of their initial velocities are of fundamen-
tal interest. The zeros A, will be purely imaginary when
k(A, ) =iko. In this case the velocities of the created kink
and antikink may be presented as

where Ir =1/4k +1/16B, and k =k(A, ) is defined in
Eq. (19). The analysis of solutions lying in the upper half
plane of A, is similar to that performed in Refs. 11 and 12.
The results are the following: A breather will be generat-
ed in the system by the pulsed force if the pulse "volume"
BT= Al T exceeds the threshold

A ]

,'i&(1+—v)/(1+u),
2

corresponds to the solution
r

sinh[vt/(1 —u )' +$0]
uxor (x, t) =4 tan

v cosh[x/(1 —v )'~ ]

(60)

(61)

(k2 1)1/2
v =+v =+

1,2
0

The parameter ko is defined by the equation

zcotz = —[(LB/4) —z ]' (1+B T /24),

where

(65)

(66)

which describes a collision of a kink and an antikink with
the velocities +u. The symmetry of the solution (61) and
(21) is related to the condition u ( x, t)= u (x, t—). In the

I mh.

z= ,'L(B /4 ko)'i—— (67)

At the threshold of the kink-antikink creation, the rela-
tions v =0 and ko =1 hold. Analysis of solutions of Eq.
(66) leads to the condition

i1 I=—1/2

1/2 Rek

ALT) ( ALT),„,=F(L),
where the function F(L) is defined by the transcendental
equation

(F —4L )' 2cot[(F —4L )' ~/4]

= —2L(1+B T /24) . (69)

FICx. 3. The eigenvalues of the discrete spectrum A, . The
solid circles correspond to a breather and the white ones to a
kink-antikink pair. F(L)=2L +4' /L . (70)

The function F(L) is monotone increasing, at L =0 its
value is F(0)=2m, and for L ))1 it has the asymptotic
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In connection with Eqs. (69) and (70) it is necessary to
note that the above results are obtained in the region

T«L ((T (71)

In this region the function F (L) has the property
F(L))2L. As we can see from Eq. (69), the corrections
of the order of T shift, in a general case, the threshold
for a kink-antikink pair creation, but these do not affect
the breather's threshold (63).

2. The easel « T

ikT DT yDT2 ik
2 2 4 D

(72)

where D=C(1 yT/2—)=AL(1 yT/2)—. Let y=O as
in the above case; then a simple analysis shows that the
breather is generated by the pulse if the "pulse area"
exceeds the threshold (D =C at y =0),

(CT),h,
—( ALT),q, =2' . (73)

Similarly, from Eq. (72) we obtain the threshold condi-
tion for generation of X breathers, which is exactly the
sane as Eq. (64).

The threshold condition corresponding to a kink-
antikink pair creation takes the form a(k =i)=0, i.e.,
free kinks are generated when

ALT ) ( ALT)th, =2m +4T/vr . (74)

The threshold conditions for generation of N free pairs
can be found analogously:

ALT) ( ALT),q„=2m(2N —1)+4T/vr(2N —1) . (75)

Substituting expression (57) into a(A, )=0 yields the
equation

trum in terms of the IST method. The primary charac-
teristic of the continuous spectrum is the scattering am-
plitude b(A, ) defined in Eqs. (27) or (58). Specifically, at
the generation threshold for a kink-antikink pair, i.e.,
when the equality in relation (74) holds, we have for (58)
(k ((T ')

b (1,) = i c—os( Tlrr) . (76)

The fundamental physical characteristic of these waves is
the spectral density E(k)=dE, /dk of their energy E,
According to IST (see Ref. 17),

e(k) =~ »(1 lb(k)l') (77)

2

f dx ln 1 — sin [(x +m )/2]
nL 0 X +&

and

const
) L))T

L
(78)

00 1E, = J e(k)dk =—f E(x /T)dx -const —,L ((T .
0 T 0 T'

(79)

It is interesting to compare the values of (78) and (79)
with the input energy generated by the pulsed force.
Multiplying Eq. (9) at y=O and integrating by part, we
obtain

Using relation (77), it is possible to estimate the energy
contained in the nonsoliton part of the pulse-generated
wave field at the threshold (63) as

E, —= f E(k)dk
0

The polarities of all generated kinks (in the physical
domain x )0) are equal to the sign of the amplitude A.

=f" f (x, t)u, dx, (80)

C. Radiative losses

In addition to the breathers and kink-antikink pairs,
the applied pulse also generates nonsoliton excitations
(linear wave packets) described by the continuous spec-

I

where E is the total energy of the SG system,

E = f dx[ ,'u, + ,'u—„+(1——cosu)] . (81)

Considering u(x, O)=0, u, (x,O)=0, and E(t =0)=0, we
can obtain from Eq. (80) the total input energy:

E;„„,=E(t =T)= f dt f f (x, t)u, dx

= A f dt f dx [8(t) 0(t —T)][8(x—+L/2) —8(x L/2)]u, (x,t)—
=A f u(x, T)dx .—L/2

(82)

—,'A LT, if L))T
'tnp+t 1 g 2L 2T if L &( T

2 )
(83)

Using the results (14) and (41), we can represent (82) as
follows:

At the threshold of breather generation defined by the re-
lation ( A LT),„,=2~, we have the simple relations

2n /L, if L))T
111PUt 2~2 / T jf L ((

Comparing (84) to the energy E, of the created radia-



1106 KIVSHAR, MALOMED, ZHANG, AND VAZQUEZ 43

tion, we find that the values are of the same order, and
only a small fraction of the input energy is expended on
the creation of the kink near the threshold (in our nota-
tion, the kink's energy is Ek =8). All the remaining ener-

gy is expended on creation of the relatively "useless"
nonsoliton wave field. We note that the case L &&T is
more effective because in this case we can obtain

E;„„,=—,'A LT —,'F (L—)/L—Ek+Ek —1 .

That is not possible in the other case because T «1. As
a result, the radiation part of the generated wave field is
much greater than the soliton part in the case I.« T.

I—
&C

10=

I I I
f

I I I
]

I I I
(

I

0.0 2.0 4.0 6.0
I I l ( I I

8.0 10.0 12.0

D. Dissipative losses and stabilization of the created solitons

In the framework of the approach developed above, we
can take into account dissipative losses during the action
of the pulsed force. The calculations of the generated
wave field at yAO is similar to those presented, and, in
fact, they have been done in the case L ((T [see Eqs.
(41), (42), (57), (58), and (72)]. The dissipative losses lead
to increasing of all thresholds of soliton creation. In par-
ticular, at y&0 the breather threshold for both of the
cases has the form

ALT~2m(l+yT) . (85)

It is clear from (85) that the presence of dissipation in the
system requires an increase of the input power in order to
generate the same number of Auxons. The evolution of
an initial pulse in a dissipative SG system was studied nu-
merically in Ref. 18, which also noted the same trend.

In analyzing the dynamics of the initial pulse for times
&' )T we have so far neglected the inhuence of dissipation
on the nature of the kink motion. In fact, oscillations of
the breather will experience a slow damping due to dissi-
pation, and this bound state vanishes at t~ ~, i.e., the
kink is annihilated with the antikink. They decay of the
breather amplitude for p«1 is described by the ex-
ponential law ' p, =p(0)exp( 2yt ). T—o stabilize the
breather oscillations, one needs to apply an additional ac
field to the system. In the case of LJJ's the force is the ac
magnetic fields, h, = h cos(cot ), applied to the junction's
edge and acting after the pulse has ended, i.e, at t ) T.
In the case of EPFM, one can use the parametrical
pumping directed along the magnetic field H,
H~H+H cos(ruT), the frequency co of the pumping
must be near the double frequency cop. Taking into ac-
count the results of Ref. 21, which is devoted to the
analytical study of the stabilization by the parametrical
pumping, we can conclude that in the region

FIG. 4. The threshold for creating kink-antikink pair [solid
line, defined by Eq. (69)], and that for creating breather [dashed
line, defined by Eq. (63)]. Stars and bars are corresponding nu-
merical results.

point located at a distance of go=v/y. As a result, the
distance between the kink and antikink will be 2' (here
uo is the initial velocity of the kinks). If the weak attrac-
tive force F,«, of the partner in the pair is ignored,
I'p = (x) ~ In fact I'p is finite, and under the action of F,«,
the kink will eventually travel backward and enter a
bound state with the antikink in the form of a breather,
which will be damped because of the dissipation. The ex-
pression for the force F,«„ for g'&) I (g is the effective
kink's coordinate measured from the point x =0) is well
known

E„=4ohpe ~, ohp) 0 . (89)

(88)

If, in addition to the dissipation, we take account of a
small dc component hp of the applied current injected
through the junctions edge (the case of LJJ's), the result-
ing kink may go to infinity because the field leads to an
auxiliary force

y(H ([y +(coo—co/2) ]' (86)

the breather is stabilized on the frequency cu/2 and its
amplitude is

] [( /2) + (H2 2)1/2]1/2 (87)

Regarding the free kinks generated by the pulse when
the conditions (68) or (74) hold, the motion of the kink is
decelerated by dissipation according to the equation
du/dt = —yv and by a certain time to it ends up at a

FIG. 5. Creation of kink-antikink pair, with parameters
T=0.1, L =5, and 3 =30.
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FIG. 8. Creation of radiati
L==5, and A =7.

radiation, with parameters T =0.1,

FIG. 6. u(0 t(O, t) vs time for diferent A. The solid line is for
A =28, the line is for dashed A =30 and hA = ' ' —,an t e dotted line is for

e pulse time is T =0. 1 with length L =5.

As a result , we can conclude that when th d'

p nt a kink will escape from the bound state if iresent
en e issipation is

tial velocity U exceed ths e critical value.

(90)

z. principle, when T-1 we could haveA&&A &A . In rin
'

A, greater than A2. If A & A & A
kin-

„i.e., U & U,', the
'

k-antikink pairs will annihilate du
losses.

i i a e ue to the dissipation

In actual experiments LJJ's or EPFM w'

eng „„hence all preceding results will b
valid when L, , » . If L ( swi e( 0, which could occur with
very ow dissipation, the condition for a k'

er e ge of the system appears as ~ho ~
) exp( L—

and is independent of the
' 't' l k'ini ia in velocity.

The analo ous resg suit is valid in the case of EPFM in
which the additional magnetic field Hz directed er en-

The condition V & V su„suggests that in addition to the
t reshold values A =A ' A =A at fixed L1

and T [see Eqs. (63), (68), (73), and (74)], t ere is a certain
auxiliary threshold value A & A for th

ni y. y in~ho~ &1, then A, lies in the range

IV. NUMERICAL SIMULATION

We have inte regrated the model equation (9) usin the
following scheme (see Refs. 23 and 24):

I I I I I I I I I I I I I I

1.5

0.5

CO

—0.5

—P.5
0

I I I I I I I I I I i

10 20 30 40 50 60 70 80

FIG. 7. Creation of br
and A =18.

breather, with parameters T =0.1, I.=br = . , =5, FIG. 9. u(0, t) vs time. The arP 7 7
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n+1 n —1
QIQI + I

—2uI" +ui

hx

cosQI cosQ I

n+1 n —1
l Ql

QI 2QI +QI

ht
+fn 0

cosQ( +cosQn+1
I

2

u Q
n
1+1 I ++Ax 1—

I j.

+ —,'g bx

2ht

For the SG e uationq
'

n without perturbations (a=0, f =0) there is at ere is a discrete energy that is constant:

——~ Lxx
Q

~+~
Q

~~+
1+1 l

Ax

(91)

(92)

The stability and convergence of th h, '
case

have been studied in Ref. 24.
e sc erne, in this case 7

In our nurnencal simulations, we always take the mesh
size Ax =2ht, with either Ax =0.02 0 04or . . The spatial

egration mterval is taken as ( —4040) Two kinds of
boundary conditions are used: For the s

For the
res o ds, we simply take u( —40)= (40)=0.

e search of the breather thresholds d

—Q

dam in term
o swea dalarge

ping erm yu, to the left-hand side of Eq. (9) in the
spatial intervals ( —40, —35) and (35 40) b

we ave to perform the simulation in a rather ion
temporal interval; by adding th d

e spatial interval, we can avoid reA
'

ff
the theoretical results

re ection e ects. Since
resu ts are obtained in the case T ((1 (T

is the duration off the pulse force), we always take T =0. 1

in the numerical simulation.
First, we investigate the threshold for generatin a

kink-antikink pair. In the f, ee case o a narrow pulse, we
choose two values of I narn 1 L, =0.0
take Ax =0.02 and b,x =0.04 r

ey, = . 2and0. 04, and

I, =0.0=0.02, we found out that the threshold for generatin
, while the theoretical formu-

a gives A,h„=2mlTL+4I~L. =3205; for L =0.04, the
numerical threshold is found to be around A =161
while the theoretical formula predicts that 3

0,

In the case of wide
a,h, =1603.

wi e pulse (L » T), we also found that the
numerical results are

'
s are in very good agreement with those

given by explicit equations (68) and (69).

w ile our numerical simulation shows that

A ar
,h, =330. For L, =10 thee t eoretical and numerical

,h, are 22.6 and 23.0 res ectivel .
men s ave een performed for many other values of I.
ranging from 0.2 to 10.0.o . . e results are presented in

Second, we have investigated th th h 1

ing breather, in the case I. =5. The tern
e res o d for generat-

intervals are
e temporal integration

s are chosen to be (0.,80) and (0,200). The t
old for enerating ing a breather is found to be 14 & A 1

e thresh-

while the the oretical formula gives 3"' =2~/TI. =
8,

See Figs. 7—12.
= 13.

Third, all the a&ove simulations are made with no dis-
sipation in the model (9 . If instead we take cx &0 when
t T, and +=0 when t) T, all the threshold values will
mere

'

y eoretical analysis.increase, as has been predicted b th
ma y we point out that the energy input formula [Eq.

83)] is very accurate as checked by the discrete ener

=3210, Eq. (83) gives E =206 )g
T=01, I =5 anf . , —,and A =28, we have

lzpUt 6 while the numerical ener i
Obviousl t

energy is =19.8.

is II10
y, t ese results also indicate th t tha e case L &&T

ore effective than the case L &( T f
tons.

or generating soli-

1.0 3.0 I I I

0.5

0.0

Z 1.0

—1.0
100 120 140

I

160 180 200
0.0—30 -20 -10 10 20 30

FIG. 10. u(0, t) vs time
and A =14.

, ) time. The parameters are T=0.1, I.==5, FICi. 11. EnEnergy density at t =80. Th
T=0.1, L=5, d 3 =, an =18.

e parameters are
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0.4

+ 0.2

0.0—40 —20 20 40

smaller than T, the inverse scattering transform method
is employed to estimate the thresholds for generating ei-
ther breather or kink-antikink pairs. The analysis shows
that, in order to generate a soliton, the pulse area must
exceed a certain threshold value. The thresholds are ob-
tained analytically and checked by numerical simulation.
We find that the theoretical and the numerical results are
in good agreement.

We notice that the case I. &&T is more effective than
the case L « T for generation of solitons, because in the
latter case (I. «T) most of the input energy is wasted
for generating useless radiation, and only a small part of
the input energy is contributed to the generation of soli-
tons.

Our results are directly related to physical applica-
tions. The problem is applied to the creation of fluxons
in long Josephson junctions and magnetic solitons in a
one-dimensional magnetic system with an easy-plane an-
isotropy.

FIG. 12. Energy density at t =200. The parameters are
T=0.1, L =5, and A =14.

V. CONCLUSIONS

In the preceding sections we have studied the soliton
generation problem of SG equation excited by a pulse
force with a short duration (T-0.1). In two cases, the
spatial length L of the pulse force being either larger or
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