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Using an analytic method involving continued fractions, we calculate the site-site, two-time
Green's functions for a general one-dimensional crystal. These Green's functions give the elec-
tron correlations for a tight-binding model in the noninteracting-electron approximation, or the
displacement correlations of a vibrating system with harmonic interatomic forces. The Green's
functions can be summed in closed form to give the density of states for either model. The
resulting expression depends only on the trace of a "transfer matrix, " and on its derivative with
respect to energy. We use this formula to determine the densities of states of a large class of
quasiperiodic models, and we check our results against perturbation-theory calculations of the
band structure of our models. From the Green's functions, we also derive an expression for
the dynamic structure factor of our vibrating-lattice model, and we derive a class of iteration
relations which allow us to evaluate it very rapidly for quasiperiodic chains. We give results for
two diferent quasicrystals, and compare them against known general restrictions on the form
of the dynamic structure factor.

I. INTRODUCTION

In recent years considerable effort has been expended
in the theoretical investigation of the physical properties
of quasiperiodic systems, particularly since the discovery
of real physical examples —the so-called quasicrystals. ~

Naturally occurring quasicrystals are all built upon
quasiperiodic lattices in two or three dimensions. Un-
fortunately however, analytical work on these lattices
has proved extremely difBcult, and most of the impor-
tant results have come from numerical studies. s s One-
dimensional quasilattices, on the other hand, have proved
amenable to analytical methods and have yielded many
interesting results. There are known to be some quali-
tative differences between one-dimensional quasicrystals
and higher-dimensional ones (see, for example, AshraÃ,
Luck, and Stinchcombe ), but there are also many simi-
larities and it is hoped that the study of these systems will

give us some feeling for the properties we should expect in
more than one dimension. And lest we convey the impres-
sion that one-dimensional quasicrystals are unphysical,
we should also point out that at least one such structure
has been created in the laboratory —the Fibonacci-chain
superlattice of Merlin et al.

The greater part of the work so far performed on
one-dimensional quasicrystals has been on systems built
around the Fibonacci chain. 11 This is a one-dimensional
equivalent of the Penrose tiling given by the repetition,
ad infinitum, of the (concurrent) "inflation rules"

A —+AB and B ~A,
starting from a single letter A. For a tight-binding

model built on this lattice, with hopping coefBcients vary-
ing with the pattern of A's and B's along the chain,
a transfer-matrix method was devised by Kohmoto,
KadanofF, and Tang, and independently also by
Ostlund and Pandit, ~4 which yields the allowed electron
energies. The results of these and other calculations
show that the spectrum of the model is a Cantor set
of measure zero, and by making use of the inflation
symmetry of the lattice, scaling laws for the spectra
near the band edges have been derived. Similar results
have been derived for spin and phonon models built on
quasiperiodic lattices. (An important difference between
one-dimensional, and higher-dimensional quasicrystals is
evident here; it has been shown that many models of
a two-dimensional quasicrystal have spectra of nonzero
measure. s) One way to progress further on this ques-
tion of the dynamic properties of quasiperiodic systems
would be to try to calculate the Green's functions for
some appropriate model. Given a method for calculat-
ing one- and two-particle Green's functions, many quan-
tities of great physical interest would become accessi-
ble: the density of states (DOS), the static and dy-
namic structure factors for phonon models, the conduc-
tivity of electronic models, and so on. For the particu-
lar case of the Fibonacci lattice, much progress has al-
ready been made in this direction by renormalization-
group techniques.

The point of this article then is threefold:
(i) To calculate the one-particle Green's functions an-

alytically for a one-dimensional quasi-periodic model.
(ii) To analyze a model more general than the Fi-

bonacci chain. While there is some evidence to suggest
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that the Fibonacci chain displays many generic properties
of one-dimensional quasiperiodic systems, it is clearly
important to study a variety of these models, if we wish
to draw general conclusions about real quasicrystals from
our results. The results derived in this article apply to a
large class of two-tile quasilattices generated by inflation
rules.

(iii) To show how we can derive analytic expressions
for the densities of states and dynamic structure factors
of our models from our expressions for the Green's func-
tions. The dynamic structure factor is one of the most in-
teresting, nontrivial functions derivable from the Green's
functions, yielding as it does, much information about;
the nature of the normal modes of vibration of the qua-
sicrystal, without our ever actually having to solve the
eigenvalue problem. And, of course, it can also describe
inelastic neutron scattering from our crystal.

In Sec. II we describe our quasilattices, and the meth-
ods for their generation. In Sec. III we summarize the
principal results of the continued-fraction method for cal-
culating the Green's functions and density of states for
a general one-dimensional lattice. In Sec. IV we apply
t, hese results to the calculation of the densities of states
of quasiperiodic systems. In Sec. V we derive a gen-
eral formula for the dynamic structure function of a one-
dirnensional system and in Sec. VI we apply this to the
quasiperiodic system. In Sec. VII we present some anal-
ysis and discussion of our results, and our conclusions.

II. CONSTRUCTION OF ONE-DIMENSIONAL
QUASILATTICES

(
0 rn21 rn22 )

then the transfer-matrix method is exactly equivalent to
the repeated application of the inflation rules

A + m~~A+ m~2B and B ~ m2&A+ m22B,

ln I ) r'I n —I & t' n

ql 0)' ql n )' qn —1 1 (4)

All three classes include forms of the Fibonacci chain as
a special case when n = 1. The first matrix gives the so-
called precious-mean (PM) class of quasilattices, which
are generated by projection from a square lattice with
a projection line elevated at an angle tan 7.„ to the
horizontal, where 7„ is the larger root of the quadratic
equation

starting from a single letter A. It is upon inflation rules
of exactly this kind that the real-space renormalization-
group methods of Ashraff, Luck, and Stinchcombeg ~s ~7

are based, which have yielded many interesting results
concerning the Fibonacci chain. We, however, will not
be exploiting these methods here.

guasiperiodic lattices can also be generated by projec-
tion from higher-dimensional periodic lattices, and many
two-tile one-dimensional ones can be produced by pro-
jection from a two-dimensional rectangular lattice, as
described, for example, by Elser. The majority of the
lattices generated by the. matrix method cannot also be
produced by projection in this manner, but three classes
of lattices which can be given by Holzer. These are the
ones produced by the matrices

The quasilattices which we will be studying are all one-
dimensional, two-tile lattices generated by inflation rules.
A simple and general method for producing such lattices
has been proposed by t.u, Odagaki, and Birman. In the
case of a two-tile lattice, their method may be summa-
rized as follows. The tiles are represented by the letters A
and B and lattices by strings of letters. The "addition" of
two strings of letters, S~ + S2 (which is noncommutative)
is equivalent to their concatenation S~ ~S2, with S~ given
first. The "multiplication" of a string 5 by an integer n
means the repetition n times of the string S. To create a
lattice, we take the vector x = (A, B), and operate upon
it repeatedly with a 2 x 2 matrix of integers, M:

7-„—n7-„—1 = 0.2

If the length of the longer (A-type) tile is t~ and that of
the shorter one l~, then the positions of the sites on the
PM lattices are given by

m
t = mn+ (l~ —t~)

where

l~7.„+ l~
7n+1

is the mean lattice parameter, and (z) means the frac-
tional part of z. The length of the mth link is then given
by

AVe then take either one of the elements of the result-
ing vector as our lattice, or the concatenation of both of
them. In this article we will take the first element of the
vector. As shown by I.u, Odagaki, and Birman, when the
matrix M is nonsingular, this produces a lattice which is
in general quasiperiodic in the limit where the matrix is
applied an infinite number of times. Furthermore, it is a
simple matter to show that, if the matrix M is given as

d = n+ (la —lx)f 1+
where the periodic function f(z) is given by

A similar expression can be constructed for any other set
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III. THE GREEN'S FUNCTIONS
FOR A ONE-DIMENSIONAL MODEL

The retarded site-site Green's functions

G-(t) =,.„o-(t) ((a-(t) a.'(o) }) (10'

for a tight-binding model in one-dimension satisfying the
Hamiltonian

II = ) s;a, a;+ ) Vza, az,
igj

obey the equation of motion

ih " = 2irb(t)b „+) (b, s, + V, )G,„. (12)

of variables (e.g. , hopping coe%cients) which vary along
the lattice with the pattern of A's and B's in the chain.

In this paper we will use the PM lattices to illustrate
many of our results about general quasiperiodic systems,
since we can obtain results about these lattices by other
analytic methods, as demonstrated in Sec. VII, and these
then give us a check on the Green's-function method.

2 r ~k;; ~+i;;+~, U~ —k

(18)

Throughout much of what follows, we will use the no-
tation and nomenclature of Eq. (14) and the electronic
problem, but our results are equally applicable to the
problem of phonon dynamics.

In order to study the solutions of the equations of
motion for a quasiperiodic system, we use the approach
favored by most workers —that of "periodic approxima-
tion. " That is, we study the infinite chain consisting of
the periodic repetition of an arbitrarily high-order ap-
proximant to the true quasilattice. This approximant is
formed by iteration of Eq. (1) a finite number of times
rn. The quasiperiodic chain itself is regarded as the limit
of this chain as I~ oo.

The method we use to find the Green's functions,
which is due to Iovesey, i is in fact very general, be-
ing applicable to any system in which the coeKcients are
periodic along the lattice. First, to simplify the equa-
tions a little, let us introduce the notation 0„=E —c„
(or 0» ——mw —k», » i —k», »+i for the phonon case).
Then our equations of motion look like this:

Vj is, in general, a Hermitian matrix but we can, without
loss of generality, assume it to be real. Fourier transform-
ing and taking the case of a model with nearest-neighbor
hopping interactions only,

0 G „=b „+V iG i„+V G

We define the two sets of quantities

m+1, n rn&n, (20)

V;, ;+i ——V+q, ——V;,

we find

(E —s )G „(E)= b „+V iG i „+V G

(21)
t»»

which, as it turns out, are independent of n and periodic
in their indices, with the same period as the coeKcients in
the equations of motion. If we can find the values of these
ratios, then we can calculate all the Green's functions for,
as is easily shown,

Similarly, we can show that the displacement-
displacement Green's functions

=V (p —A ). (22)

p' 12=) ., ' + -2).+' ' (16)

satisfy the equation of motion

d2G
m " = —2irb(t)b „—) 4,G~„(t)

G „(t)= O(t)([u (t), u„(0)]).

for a harmonic phonon model in one dimension obeying
the Hamiltonian

2

pN~0 + (PN+1 VN)~0 (tN+1 —0t (23)

where the sets of numbers (p },(q }both satisfy the
same three-term recurrence relation:

V p +&+0 p +V cp~ z ——0,
(24)

Once we have the diagonal Green's functions, we can
get all the others by using the defining equations (20)
and (21). Thus these ratios neatly parametrize the whole
infinite set of functions G „in only 2N quantities, where
N is the periodicity of the lattice.

The ratios are evaluated by a procedure involving con-
tinued fractions. In brief, we can show that Ao and po
are the two solutions of the quadratic equation

Specializing again to systems with nearest-neighbor in-
teractions only and Fourier transforming, we arrive at an
equation of motion exactly the same as Eq. (14), except
for the replacements

V q +g+0 q +U gq g
—0,

with the initial conditions

pg
—

qo
—1, po = qi =0. (25)
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PN
Gpp ——6—

Vo g~z —4
(29)

The meaning of the + in this formula is considered below.
The argument which leads to Eq. (23) can be applied

to any pair of variables A, p, to derive a quadratic
equation of which they are the two solutions. However,
this turns out to be unnecessary since we can show that

A useful alternative definition of (p ), (q ), familiar
from the transfer-matrix method of Aubry and Andre,
1s

t'p

( pm Vm

with

i —Qg/Vg —V; i/V; )i
1 0

Setting m = 0 in Eq. (22), we get

1 = Vp(yo —Ao)
00

= +V0 J(PN+1 'VÃ) + 4PN IN+1
PN

= +Vo
~2 —4Drv (»)

PN

where (~ and D~ are the trace and the determinant
respectively, of the matrix S~. As it turns out, however,
DN ——1 on account of the periodicity of the coefficients
V,', and so this formula further simplifies to read

all real, the density of states (per site), given by

=1 "-
p(E) = —) ImG (E)

m=1

and the structure factor, given by Eq. (46), are zero.
So, as far as these quantities are concerned, the only
interesting case is that of imaginary Gpp. For this case
("within the allowed energy bands" ) since every pair of
numbers Am, pm are complex, and are solutions to the
same quadratic equation, we know that

(32)

Thus the density of states and the structure factor, in
fact, only depend on N (complex) quantities.

For a particular energy to fall within the allowed bands,
we require that the square root appearing in Eq. (29)
have a negative argument. That is, we require that

I&I&2
This criterion was first deduced by other means by
I&ohmoto, Kadanoff, and Tang, is and by Ostlund and
Pandit;. '4

Our next goal is the calculation of the density of states
for our model. For this we require all the diagonal
Green's functions G~~. As we have argued, we need
only find their values within the allowed bands, where
Eq. (32) applies, since the density of states is (by defini-
tion) zero outside them. From Eqs. (22), (23), and (30),
we get

P +1%0 —q
m ——

). A. — (30) 1 P~'l~+i + P~Q~(Q~ —p~+, ) —q~prv
Vo V'&~ -4

with a similar expression holding for p, and this imme-
diately gives us all the other Green's functions. We will
see below how these results lead to expressions for the
density of states-and the dynamic structure factor, but
first there are a number of observations that we should
make about the Green's functions.

First, there is the question of the ambiguous sign in
Eq. (29). This arises because I ovesey's method does not
distinguish between the advanced and retarded Green's
functions for the problem. In order to identify the re-
tarded Green's function, we must introduce a small pos-
itive imaginary part into the energy —E ~ z = E+ i@-
and then solve for G „. If we use this procedure, the
continued-fraction method converges to a unique limit
which is always one or other of the solutions to our
quadratic equation when g ~ 0+, and this gives us a
procedure for choosing the sign. The other solution to
the quadratic gives the advanced Green's function for
the problem. A formal procedure based on these princi-
ples for choosing the sign in Eq. (29) has been given by
Lovesey and 7Vesthead.

Second, note that when Ap, pp (and therefore Gpp) are
real, all the other A, p are also real [by Eq. (30)], and
so therefore are all the G „.And when Ap, pp are com-
plex, so are all the other A's and p's. When the 0 „are

Vp dg~/dE
N gg (35)

IV. DENSITY OF STATES
FOR A QUASIPERIODIC CHAIN

We now wish to evaluate Eq. (35) for periodic ap-
proximations to the quasiperiodic system. In the past,
researchers have investigated systems (principally Fi-
bonacci lattices) which are characterized by transfer ma-
trices of the form

(36)

where z; takes on one of two values z~, z~ according to

Now we substitute this into Eq. (31) and perform the
sum. As demonstrated by Lovesey, this can be done in
closed form using the Christoffel-Darboux formula, which
is proved in any text covering the general properties of
orthogonal polynomials (see, for example, Rainville ~).
The result is
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the sequence of A's and B's in the quasiperiodic chain.
For systems of this kind, one can use the matrix formula,
Eq. (1), directly to give the transfer matrix S» of the kth
periodic approximation to the quasicrystal. S» is given
recursively by

S»+i = T» "S» ",

+»+i —~» S»

with the initial conditions

(38)

However, for systems characterized by more complicated
matrices of the form (27), this method breaks down, be-
cause each matrix depends on variables V; and V~+i on
two consecutive links of the chain, so that one cannot
associate one particular matrix with an A-type link, and
one with a B-type link. And in general one must also
assume that the coefFicient 0; =- I' —z; depends on the
types of the links to either side of the ith site, because
the phonon problem requires it [see Eq. (18)]. For the
Fibonacci chain, even this is not a problem, since every
periodic approximant starts with an A-type link. It takes
only a moment to convince oneself that if this is the case,
then one can still define matrices Sp, Tp so that Eq. (37)
is correct. For the more complicated chains, however,
we must go through some maneuvers first to convert the
problem into one for which the matrices obey Eq. (37).

Consider the chain generated by repeated application
of the matrix

qm2i m2qp
' (39)

to the primitive vector (A, B). It is clear that, as long as
rn~~ and rn2~ are both nonzero, every periodic approxi-
mant to this chain will start with an A-type link, and so
Eq. (37) will be applicable. Also, if two or more elements
of the matrix are zero, the chain generated will be a pe-
riodic one, in which case its Green's functions are easily
calculated directly from the equation of motion, and we
do not need all this apparatus of quadratics and trans-
fer matrices. Thus the only cases requiring more careful
consideration are ones in which one or the other of rnqq

and my~ is zero and all the other matrix elements are
nonzero. For such a case, consider the chain generated
by repeated application of the matrix

I, mi2 mii p
' (40)

to the primitive vector (B,A). The reader should con-
vince him or herself that this produces exactly the same
chain as we had before, except that it is inverted. This
chain must, of course, have exactly the same physical
properties as the original. So we may, if we wish, calcu-
late the density of states for this chain instead, knowing

40
NN

~.~ 30
N P. 200 ~
~~10

0

I I I I I I

(o)

—2 0 2
energy E (m. l.„/sec )

N
(g M

N

0 ~

Q'e

I I I
'

I I

4' —— (b I

30—
20 —'

10—
0

—
i II I)ill i ll. . ll i IiLI ~l

—2
8energy E (rnl„/sec )

N

t
N

0 ~

(D

10—

(c)

I I I
' '

I I I

—2 0 2
energy 2 (vnL~/sec )

FIG. 1. Densities of states (DOS) for the one-dimensional
tight-binding model on a Fibonacci chain, calculated from
Eq. (35) with e; = 0 for all i, VA = 1, and (a) Va = 1.2, (b)
Vii = 1.6, and (c) V~ = 2.0.

that it will be the same as that of our original chain.
However, since mzz and miz are both nonzero by hy-
pothesis, every periodic approximation to this chain be-
gins with a B-type link, and therefore Eq. (37) is valid
once more (except for the obvious modifications which
have to be made in rearranging the rn's and swapping
the initial conditions).

In what follows, we study only chains in which every
periodic approximation starts with an A-type link. We
lose no generality by doing this since the A's and B's are
after all only labels for certain values of the coefIicients,
and we are free to swap these labels around as we choose.
For these chains, the relations (37) hold, and the only
question is what the appropriate initial conditions are
Our assumption that each periodic approximant starts
with an A-type link is not correct for the very first stage
in the process where the second element of our vector is
just the letter B. So we must do one iteration of the
infIation rules by hand to get to an appropriate starting
point.
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the appropriate initial conditions are

K

Q

a5

4Q
Q

—2 0
energy E (mL„/sec )

Sg —M~MpM"

where

( —g./V~

(42)

FIG. 2. Integrated density of states for the one-
dimensional tight-binding model on a Fibonacci chain with
r; = 0 for all i, VA ——1, and V~ ——2.0. Calculated by numer-
ically integrating the data from Fig. 1(c).

( —Qp /V~ —pA /p@
p {43)

Let us illustrate the principle with the example of the
PM chains. For these chains one iteration of the inQation
rules gives us

f) /V/t —&a/&~—
1 0

(Al t'A" Bl
iAr (41)

Let us denote by 0 the value of 0; for a site with A-type
links to either side of it, by Op that for a site with a B-
type link following it, and by 0& that for a site preceded
by a B-type link. (In this particular example there are
no sites sandwiched between two B-type links. ) Then

0 ~

Q)

20—

o
0 1
m~ in

ilI IL+I al jlLILIILILLLI I @@LING iLL Ii

2 3 4
units of m / sec )

30

N ~
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~ M

Q)

— (b)

40—
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0 ~LJII1~ i i JaJJI Uu IIII I i i i ikl I, i
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R~~20
Q5

N

~~ 10

0

(b)

—2 0, 2
energy E (mL„/sec )

M

tN

0

(D

I

(c)

40—

20—

0 ikLllllLIUl i

0
'rn. (d ln

I I I I I

2 4
units of m/sec )

FIG. 3. Densities of states for the one-dimensional tight-
binding model on an n = 3 PM lattice, calculated from
Eq. (35) with e; = 0 for all i, VA ——1 and (a) Vjy ——1.2
and (b) Vjy = 1.6.

FIG. 4. Densities of states for the one-dimensional har-
monic phonon model on a Fibonacci chain, calculated from
Eq. (35) with k& = 1, and (a) k& = 1.2, (b) k& = 1.6, and

(c) kg = 2.0.
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In order to evaluate the density of states we need both
the trace of the transfer matrix for the entire system, and
the derivative of that trace with respect to energy. The
simplest way to get the derivative exactly is just to de'er-
entiate both Eq. (37) and the initial conditions, to give a
recursion relation for the derivatives of the transfer matri-
ces. We then simply substitute the results into Eq. (35).
(This is to be contrasted with the trace recursion meth-
ods of Kohmoto, KadanoK, and Tang, ~ in which the
entire transfer matrix is never calculated; only the trace
is.) We have done this for the examples of the PM lat-
tices with n = 1 and n = 3 for both the electron and the
phonon problems. The results are shown in Figs. I—6.
The n = 1 case is just the Fibonacci chain, for which
both the density of stateside p(E) (albeit for a slightly

Co

g
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CL)

Q

~ m Q

0 1 2 3 4
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FIG. 5. Integrated densities of states for the one-
dimensional harmonic phonon model on a Fibonacci chain
with k~ = 1, and (a) kn = 1.2, (b) kgb = 1.6, and (c)
k~ = 2.0. Calculated by numerically integrating the data
from Fig. 4. Compare with curves appearing in Fig. 7.

FIG. 6. Densities of states and integrated densities of
states for the one-dimensional harmonic phonon model on an
a = 3 PM lattice, calculated fram Eq. (35) with k~ = 1. (a)
DOS with ks = 1.2) (b) DOS with kz =- 1.6, (c) IDOS with

kn =- 1.2 and (d) IDOS with k~ = 1.6. Compare curves of
IDOS vrith curves appearing in Fig. 8.
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diff'erent model) and the integrated density of states~s

(DOS) K(E) have been calculated by other means. A nu-
merical integration of our data is included for comparison
with the published plots. The agreement is excellent.

Expression (35) can be integrated explicitly. The result
ls

S(q, u)) = lim —Im) e''~" ""~G „(cu) . (45)
)

where the sums run over L sites. Given that G „ is

symmetric [which we can see by taking Eqs. (13) and (14)
together], this is also equal to

z(E) = p(E')dE' = —cos [-(~(E)],
o N

to within a constant. Unfortunately, this expression is
useless in the limit as N ~ oo because the multivalued
nature of the inverse cosine function means that r(E) be-
comes completely arbitrary. Nonetheless, it is comforting
to see it here because in the periodic case at least, the
curve of r(E) against E should be the same as the disper-
sion curve of k against E for excitations varying harmon-
ically in space. And it has been argued elsewhere that
the integrated density of states should take the place of
the wave vector k in the calculation of the dynamic prop-
erties of a quasiperiodic system where the wave vector
itself is no longer a good quantum number for labeling
the states. We will see in Sec. VII how this replace-
ment appears in the calculation of the dynamic structure
factor.

G „=p p„'Goo, rn& &,

where

(47)

~ 4 ls

i=l
m&0

(48)

1
S(q, u) = lim l

—) cosq(r —r„)ImG „(~)cotl, " "
)

(46)

and so S(q, ~) vanishes when the G „are all real,
i.e. , outside the allowed bands. Within the bands, we
evaluate the sum in Eq. (45) as follows.

Consider first the G~„(u) for rn & n. Given that we

already know Goo from Eq. (29), we can write

V. DYNAMIC STRUCTURE FACTOR

~ 4 la

i=-1

Similarly, if m ( n, then

m & 0.

We now turn to the calculation of the dynamic struc-
ture factor for our phonon model. This is given in terms
of the displacement-displacement Green's functions by

G =P P Gop, m&n.
Substituting these expressions into (45), we get

(49)

Im) e' ~" ""lG „=Re ) e'~" ""lP P„"+) ~P ~
+ ) e'~&" ""lP' P„ I ImGoo,

=): "~"--"-l(P P +P'P )I G-

) e"""P g ) e'~""P' 1m GOO, (50)

where we have made use of the fact that Goo is purely
imaginary within the allowed bands. The sums appearing
here can be simplified by making use of the relations

) e' = 2s ) 6(z —2+k), (53)

ppN+rn = cpm rpH+m: prN + rm&
p (51)

which derive, once again, from the periodicity of the vari-
ables (A ). We get

giving 6 functions at a sparse set of points along the q
axis, and zero elsewhere. If we write P~ —e'&, 2 then
the positions of these b functions are given by

1V—1
Ogpu'~ p +$gf (52)

2z.l —Pq= (54)

The first of the sums on the right-hand side can be eval-
uated exactly, using the result that

where l is an integer, and D = r~ —ro, which is the repeat
length of the lattice. At these points we can calculate the
"heights" of the b functions and get



43 GREEN's FUNCTIONS, DENSITY OF STATES, AND. . . 10 923

2

S(q, ~) =
z ) e"""P ImGpp.

2s b(0)

m=o
(55)

(For convenience, we have divided by an extra factor of N
here to give the structure factor per site which converges
to a well-defined limit as N ~ oo.) Similar manipula-
tions demonstrate that the other term in Eq. (50) is zero
everywhere except at the points

man, we consider two different finite approximants to our
quasiperiodic lattice —those given by the top and bottom
components of the vector x' defined in E'q. (1). Quan-
tities defined on the second of these will be denoted by
primed variables, e.g. , (p' ), (q' ), N' (p.

' }, (q' ) are
components of the transfer matrices Ty introduced in
Eq. (37). Now we define four quantities, Ez, Ez, Z„',
Z' by

2xl~g
)

where it is

2

S(q, ~) = ) e'~" P' Im Gpp.
2mb'(0)

m=O

(56)

(57)

N —1

Z„= ) (—1) e""-p

E„' = ) (—1) e''i"-p',

N-1
E, = ) (—1) e""-q

(60)

Z', = ) (—1) e""-q' .

&- =(—1) (q —p-Ap) (58)

The values of the P are easily found by substituting
Eq. (30) into Eq. (48). For m ) 0 we get Note that N', the period of the second approximation,

is not necessarily the same as N, the period of the first.
The structure factor is nonzero at the points

where Ap is given by Eq. (23). Since the (p ), (q ) are
all real, P' is simply

2n. l + P
) (61)

~' =(—1) (q- —p-Ap) (59) where it takes the values

The finite sums in Eqs. (55) and (57) can be evaluated
by a computer for any given set of coefFicients e;, V, , and
are sufFiciently easily calculated that lattices with large
periods can be investigated without squandering large
amounts of computer time. However, for lattices gener-
ated by infiation rules of the type given in Eq. (3) there
is a more efFicient way to perform these sums.

VI. DYNAMIC STRUCTURE FACTOR
FOR A QUASICRYSTAL

To evaluate Eqs. (55) and (57) for a quasicrystal gen-
erated by the matrix method of Lu, Odagaki, and Bir-

' 2mb(0)
(Zq —Zp Ap

~

Im Gpp,)=' 2bo
)Zq —ZpAQ ImGpp,N2

+ sign

—sign.

(62)

We can now develop recursion relations for the Z vari-
ables which mirror the recursion used to build up the
chain. Consider Zz. We denote by Ez the value of(a)

this variable for the kth periodic approximation to the
quasiperiodic chain, and by Nk the number of sites in

(a+1)one period of this approximation. We can write E&
as

Na+I-1
g(k+1) g ( yam iver ~ (@+1)

mph' —1 N), —1

) ) (—1) "+ exp(iqi. .~„+ )p(~++)
j=0 m=o

Imug-1 Ng —1

+ ) ) (—1) " "+' ~+ exp(iqr~„~„+, pr„'+~)p
j=o

Because Eqs. (24) are homogeneous we can write p ~ + as a hnear combination ap + bq . Setting m equal to 0(a+1) (~) (~)

and 1 successively and applying Eqs. (25), we can find a and b The result i.s that

(0+1) {&+1) (k) {@+i) (k)IjN&+m IjN), +1J m + ~AN),

Similarly,
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(k+ 1) (k+ 1) 1(y) (&+1) 1(k)
~my1N&+j N&+m ~m1& Np, +j 1V&+1~~ ~m1 zNa+j N& ~~

Substituting these into Eq. (63) we find

fAQQ 1

) (@+I) ) ( )))N (. ~

) (
("+ ) ) (I) i (&+1)) (i))

j=O
mph' —1

+ ) (—1) " " » exp[iq(miiqN„+jrN )] p N, N, ,Z + p
(k+i) I(k) (k+i)

j=O
(66)

And similar relations can be derived for E(q + ) and
the primed variables. This expression may appear at
first diFicult, and far more trouble than the simple sum
appearing in Eqs. (60). Note, however, that it requires
a knowledge of the variables (p ), (q j only at certain
special points. In fact these p's and q's are the very ones
that appear as the elements of the matrices calculated at
successive stages in the iteration of Eq. (37). These ma-
trix elements have only to be calculated once at any given
energy, and then from Eq. (66) and those like it we can
calculate the dynamic structure factor at any wave vector
we please. Thus we can use these formulas to calculate
the E variables iteratively, much faster than it is possible
to calculate the sums appearing in their definition, and
in this way we can study very large lattices.

As a simple example of this procedure, let us exam-
ine the Fibonacci chain once more. For this case, the
iterative equations for Ep, Eq simplify to just two:

In these plots all points at which the heights of the 6
functions are over a certain threshold are marked with
black dots. (Surface plots of these functions turn out to
yield almost no information to the eye because the func-
tions are so spiky. ) All the plots are of generically the
same form. They consist of sets of identical curves, dis-
placed from one another along the q axis, with intensities
varying from curve to curve and also within each curve
with wave vector. This kind of behavior was first seen in
the calculations of Ashraff and Stinchcombe. iv As q —+ 0
all the plots display the so-called "e6'ective-medium" be-
havior; i.e. , the intensities of all the curves tend to zero,
except for one, the curve which passes through the origin.
In the limit of small wave vector, this curve tends to the
periodic-crystal result mu q . The results for the Fi-
bonacci chain agree favorably with previous calculations
of the same quantity by a decimation method.

g(k+1) g(k)+ ( 1)N), iqr~„
p p

~(a —1) + +(X—1)

g(k+i) g(k)+ ( 1)N), iq) ~~

X QNI, +1~p + gNg ~q )

where the numbers N~ are now the Fibonacci numbers.
The values of Np and rN„need only be evaluated once
ever. Thus the calculation of the structure factor at a
range of different wave vectors for a particular energy
essentially only involves the iteration of the two equations
above.

The initial conditions come from Eq. (42). They are

g(1) iq/& y(2) iq/A + iq(l~+l ~) P0
p ) p k

'

g(1) O g(2) iq (1~+ 1 gy )

The results from the evaluation of the dynamic struc-
ture factor for the Fibonacci chain and the n = 3 PM
lattice are shown in Figs. 7 and 8. In both cases the
results are for lattices with a repeat length of 500 links.

VII. DISCUSSION

Let us turn first to the results for the spectra of the
electron and phonon systems. These show a complicated
system of bands of varying sizes up to a certain maximum
energy (or frequency). The larger the band gaps grow,
the more V~ diA'ers from V~. If we denote by m the
order of the finite approximant which is repeated to build
up our lattice (see Sec. III), then from our results it
appears that each time we increase I, the bands in our
spectra develop additional band gaps within them, in the
manner of a Cantor-set construction. In the case of the
Fibonacci chain, we already know this to be exactly the
case, with the spectrum of the true quasicrystal having
zero measure.

For the case of the PM lattices, much light can be shed
on these observations by treating the density-of-states
problem using degenerate perturbation theory. This
gives us, to first order in the small quantity (V~ —V~)/V,
the sizes and positions of the band gaps. A full account
of this calculation is given elsewhere, 2 but for compari-
son with the results given in this paper, we will reiterate
our results brieQy here.

We work as usual with the electron model, since we
know that by the replacements (18) we can convert the
results into results for the phonon model. We then write
the Hamiltonian, Eq. (11), as H = Ho+ Hi, where
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Hp —— ca; a; + V(a, a;+g + a,.+~ a;),
5

H1 —g ~i &' &j + +'(&' &'+& + u;+, u, ),
~-. t ~ . t. t

(69)

b;=s; —7', 6;=V; —V. (70)

4— I I I I IW~-+™'j-k. l---):.HA-. 4-:k-W~+i' W~~
W 4 ~l '.' WQ ' g g ' ' VQ

4X-:5 . .%:"'.i A -K,'x Vv'i'.
'V. P V A. O' V—

V ~.. ' Xl XI .. 'LAMXI V*.A/

0
0 1 2 3 4, 5

wave vector (units of l„)

~l
Et ——+2V cos

I &, / integer,
&1+ r„ (71)

where 7 and V are the site-averaged values of s and V.
6; and b; are given in closed form by equations similar to
Eq. (8). The eigenstates of Ho are easily written down,
and treating II~ as a perturbation on these, we find that
for the electron model band gaps appear at all energies
satisfying

V" V'~ I—
P K ('!' Vv' V:

X f
v" k &

' 'tI' /'~-

whose size, to a first approximation, is given by

2(V~ —V~) . f ~l
sin

xl (72)

And for the phonon model we have gaps at

0
0 1 2 3 4, 5

wave vector (units of l„) (a)
J

I I I I j

:(c)
3

VI

A V

' "./X A. .IX ZW'/"'/X /E-
P X

'
/ I I X X

'i' V /' V
XI'. . k . .V . . V, .'J~'.

. .

, K,~ 4~,kwiY a
0 1 2 3 4, 5

wave vect, or (units of l„)

4"; ~". SA' iA ii'S -"S I'ii' ~Z
I 'v'4'NN V 'XV I,'% I %V 'xV 'Vf' 'iV

1A' ' 'L 4/V . , 'L/V'V, Vlv L, ., 'L/'L/, XI'L% . el'L; I /%/ ./

2— 'i '''w. v' '. &i

V'V' V'. \ IV'L I.IRIVb. I .~h ' l3 VII IV't

/

'g". X"i~ IV'. . 'IX .'VV'. 'VV '. IVY VX,'V .s. i ' t in, wx 'i t'/. A .~. X r i
V"I ' !4'V .NV! W I'

'ii IV. VlI X/'Lj I'v'l ' / X/~vl V

0 .5 1 1.5 , 2
wave vector (unit. s of l„)

4 —(cI)

'V

/v /' '4 'L ' 'o'I/ '4'

. /X . .W . . .. :. ~, . /Y. :.M
V' X I' k I 'Vi V' I" V

M 'i/„/ '

0 I I L I I I I
'L

0 1 2 3 4, 5
wave vect. or (units of l„)

FIG. 7. Dynamic structure function for the harmonic
phonon model on the Fibonacci chain, calculated from
Eqs. (62) and (67) with dz = rz, dz = 1, kz = 1, and (a)
k~ = 1.0, (b) k~ = 1.2, (c) k~ = 1.6, and (d) k~ = 2.0.

2:
1: V ~ ~ V I ~ i / i V ~ i V I I'V ~ 'VV ~ i VV/

.rl'.

0 (. I I I
.

I
-I" I. :l 3":I'.I"'I."l:.I'. 'f .I-::I 'I '-I

0 , 5 1 1.5
wave vector (units of l„)

FIG. 8. Dynamic structure function for the harmonic
phonon model on the n = 3 PM lattice, calculated from
Eqs. (62) and (67) with d& ——r3, d& = 1, k& —1, and (a)
k~ = 1.2 and (b) k~ = 1.6.
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(
mu& ——2k 1 + (—1) cos !&I+ ra ).

1, rn integers, (73)

whose size is

2(kgb —kg)~~ . farl
sin i+1k 1+r„) (74)

S(q, ~) = 2~~(o) ).Ig., (q) I'b(~ —~(~))

where

2'jv= —qo, + +2+k,
+ +f4

(77)

and the numbers g„z (q) are the coefficients in the Fourier
expansion of the periodic function

g„(z, q) = g„(z)exp [—iq(1~ —in)(z}].
This gives a set of curves, all copies of the curve u(z) at

These results agree well with Figs. 1(a), 3(a), 4(a), and
6(a), but, predictably, less well with the other results, for
which our so-called small parameter is actually 1.

Notice that the last expression, for the size of the band
gaps in the phonon model, depends on co~ so that the
sizes of the gaps become smaller as w —+ 0. In this limit
then, we would expect the integrated density-of-states
curve to tend to the inverse cosine of the unperturbed
system, behavior which is evident in Figs. 5, 6(c), and
6(d). Notice also that the maximum frequency at which
a band gap can appear is 4k, which is also the maxi-
mum frequency of any propagating mode in the unper-
turbed system, and that at this frequency the size of the
gap is zero. This means that the maximum allowed fre-
quency for the perturbed system should also be 4k. This
behavior is also evident in Figs. 4—6.

Turning now to the analysis of the results for the dy-
namic structure function, we can learn something of the
reason for the characteristic "satellite curves" form of
Figs. 7 and 8, by a direct evaluation of Eq. (45) from first
principles. In the case of a periodic lattice this can be
done simply by Fourier transforming the site annihilation
operators and writing them in terms of the phonon oper-
ators ap. By analogy, we can label each phonon mode in

the quasicrystal by some label K and then expand the a
as linear combinations of the annihilation operators for
these phonons. As it turns out, the appropriate label for
the states in this case is the integrated density of states.
For the particular case of the PM lattices, we can write
the expansion in terms of the function y„(z) defined by

( m=e'" X (1+r„
(75)

y„(z+ 1) = y„(z), for all z.

It can now be shown~8 that the dynamic structure func-
tion takes the form

a dense set of positions along the q axis, with intensities
given by the coefficients g„i(q) in the Fourier expansion
of y„(z) exp [ iq(—l~ —l~)(z]]. Note that, since g„i (q) is

dependent on q as well as on j, the intensity of each curve
varies with q, as well as each curve having a diA'erent

intensity from its neighbors.
The positions of the curves relative to one another are

dependent solely on the geometry of the quasicrystal, and
the. shape of each curve is dependent solely on the phonon
dynamics. Apart from providing an explanation of the
appearance of the plots of S(q, u) we can also see that
if we are interested in investigating particular detailed
properties of the structure functions, then we need only
look at the curve u(lc), which saves us from worrying
about the complication of the geometry. As an exam-

ple, since we have already shown that the IDOS curve
becomes cosinusoidal as u —+ 0, the apparent eR'ective-

medium behavior of S(q, ur) near the origin is in fact gen-

uine, and traveling waves of very small wave vector will

propagate in a quasiperiodic system exactly as if in a
classical elastic medium.

The coefficients g„z(q) are, in general, not easy to cal-
culate, but there is one case in which they can be worked
out exactly, and that is when k~ —kz. In this case,

y„(z) is a constant, independent of both z and z, which

for convenience we will set equal to one. Then

g„(z, q) = exp —iq(l& —l~)(z) .

Fourier transforming, we find that

lg ~(q)l'= I

1'sin [xj —-'q(l~ —
lpga )])

!
x2 —

2 q(lx —1~)

(79)

For the particular case of the Fibonacci chain, this re-

sult is equivalent to the previous direct evaluation of
the dynamic structure factor for k~ ——k~ by Ashram

and Stinchcombe, i and gives us a useful check on the
Green's-function method Elsew.here, we show how it
can be extended to the k~ j k~ case by perturbation
theory. ~s

To conclude, we have calculated the site-site one-

particle Green's functions for a large class of one-

dimensional quasiperiodic systems, and using them, the
densities of states and dynamic structure factors of these
systems also. The densities of states all show a dense

set of band gaps, - whose size and position is in agree-

ment with the perturbation-theory calculation of the
same quantities. The structure factors take the form of
repeated copies of the integrated density-of-states curve
at a dense set of positions along the wave-vector axis.
We have outlined arguments which explain why S(q, u)
should take this form, and to give the positions of the
curves. Also, from the perturbation-theory treatment we

can show that in the limit of small wave vector the struc-
ture factor tends to that of a classical elastic medium

(the so-called effective-medium behavior).
There are many extensions to this work that irrunedi-

ately suggest themselves. Perhaps two of the most inter-
esting are (i) the calculation of the conductivity for the
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electronic system using the Green's functions and {ii) the
calculation of the spectra of slightly disordered quasiperi-
odic systems.

In the longer term we would hope to see more calcu-
lations of the dynamic properties of higher-dimensional

quasicrystals being performed. For comparison with ex-
periment, a calculation of the dynamic structure factor
for a three-dimensional quasicrystal, possibly taking ac-
count of the effects of slight disorder in the lattice, is an
important goal.
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