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We investigate the problem of constructing solvable models of nonrelativistic spin- —interacting

fermions on an infinite lattice. The extended Hubbard model, which includes the direct and ex-
change intersite interaction, is considered. The hopping term in the Hamiltonian is not restricted to
nearest-neighbor sites {the "overjumping" model), but the short-range character of the standard
Hubbard model is retained. The solutions in one- and two-particle sectors are obtained in an expli-
cit form by using the theory of Weierstrass elliptic functions. The possibilities of further develop-
ment of models of that type are also considered.

I. INTRODUCTION

In the very rich branch of theoretical physics con-
cerned with the investigation of various exactly solvable
models, the problems of interacting many-fermion sys-
tems are both the most interesting and the source of the
most difficulties. ' Historically these problems were
first posed by Thirring and Schwinger' in a relativistic
field theory of massless fermions in one space dimension.
The nontrivial interaction was taken to be bilinear in the
densities having essentially bosonic properties. After the
proper modification of the vacuum and transition to the
particle-hole picture these models were reduced to a
free-boson problem, but the description of global proper-
ties of the system in all charge sectors was not trivial be-
cause of the difficulties inherent in local quantum field
theory. By the correct procedure of bosonization the
more general Luttinger model" was also diagonalized.
In each charge sector the excitations were represented as
collective fluctuations of the bosonic nature. ' The origin
of solvability of the massive generalization of all these
models also lies in the possibility of bosonization' and
reduction to the well-known integrable sine-Gordon mod-
el. '4

The progress in the investigation of solvable nonrela-
tivistic fermion systems was also almost completely based
on the results obtained earlier in the boson models. For
example, the eigenvalue problem for a finite number of
fermions interacting via a 5-function potential was solved
by McGuire, ' Gaudin, ' Yang, and Takahashi' only
after the complete investigation of the analogous bosonic
system by the Bethe ansatz. ' The description of the
latter in the second quantization scheme can be reduced
to the problem of solution of the quantum nonlinear
Schrodinger equation directly connected with the general
quantum inverse scattering method. ' For the corre-
sponding fermion problem such a connection seems to be
much less transparent.

For the purposes of solid-state physics the most impor-
tant problem of that kind is the search for nontrivial solv-
able models of interacting electrons in the periodic field

of an ionic lattice. In the first quantization picture one
must consider the usual nonrelativistic many-particle
Hamiltonian

N p. NH'"= g +W(x ) + g V(x. —x„),
j=i j)k

W(x +a)=W(x ) .

The fermionic nature of interacting objects lies in the
symmetry properties of H'" eigenvectors. It would be
natural to conclude that the search for solvable models
must be based on the investigation of the internal sym-
metries of (l) for various potentials W and V. However,
in this way, one finds only very strange, highly singular
potentials having no clear physical interpretation. If 8'
and V are not reduced to singularities at some isolated
points, the single known example of integrable models of
the type (l) is the Sutherland ' system

[ V(x) =A, sin cox] in the three-parametric periodic
external field

W(x) = A, cos(2cox +5)+ A2cos4cox .

The transition to the second quantization by the standard
procedure is questionable in that case because of the
strong V singularity.

On the other hand, the use of the second-quantized
Hamiltonians historically was much more fruitful.
Stimulated by the famous Lieb-Wu solution of the one-
band Hubbard model based on the slight modification
of the Bethe ansatz, a number of fundamental studies of
one-dimensional fermionic models have been per-
formed. ' ' The Lieb-Wu results were also extended
to the more preferable cases of arbitrary electron densi-
ty and two degenerated bands. '

All extensions of that type of the Hubbard model con-
tain a typical shortage. The hopping term describing the
process of electron transition from one localized state to
another is supposed, except for the trivial case of con-
stant infinite-range hopping, ' to be restricted to
nearest-neighbor states. The approximations correspond-
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ing to this regime become much more clear after the in-
verse transition from the original Hubbard Hamiltonian
to the first-quantized model of type (1). One finds that
the nearest-neighbor hopping may be obtained only if
8'(x) in (1) is chosen as an attractive Kronig-Penney po-
tential 8'= —A +„5(x a—n) in the limit of the infinite
strength A of 5 functions. The interaction in the Hub-
bard model corresponds to the McGuire-Yang pair 6 po-
tential with a strength inversely proportional to A (cf.
Ref. 34). So the first quantized description of the Hub-
bard Hamiltonian is highly singular and seems to be far
from the real physical situation.

The aim of this paper is the investigation of the possi-
bilities of constructing the second-quantized solvable
models with a more general type of nontrivial hopping
than the nearest-neighbor one ("overjumping" model).
The full lattice fermionic Hamiltonian can be obtained
from (1) by introducing the second-quantized operators
on the base of orthonormal Wannier functions. In the
one-band approximation that reads

tors. in view of all the difficulties and shortcomings
of various approximate solutions of the Hubbard model
and its extended versions any rigorous information is of
particular importance. The complementary study of the
exact and approximate solutions of those models cer-
tainly can provide an insight into the real nature of the
relevant general solution.

The paper is organized as follows. In Sec. II we derive
the algebraic equations for states of two interacting elec-
trons. In Secs. III and IV we find the solutions to these
equations for some tensors t, V, l with the use of the
Weierstrass theory of elliptic functions. Section V is de-
voted to the discussion of some hypotheses and ways of
further development.

II. EQUATIQNS FQR TWQ-EI.ECTRQN STATES
ON AN INFINITE LATTICE

Let us write the basic Hamiltonian (2) and (3) in a more
convenient form,

(2)—H =gt a, a,
l, J) (7

+ g g C,,p, a, a, .a„~.a,~, t j,k, l&Z.
ij, k, l o, o'

(2)

H' '=h i+h2+h3,

h, =gt; (a, &a &+ ,alai),
(4)

Here a are the annihilation operators for the elec-
trons of spin projection o. in the Wannier state at site j,[a,ak, J

=5 k5 ., and t; is the re.al symmetric hopping
tensor. The structure of N jk( is specified as follows:

(1 —5; )

@,,kt
=—5 5 „5,,5, +— ( V;,5,k5, , +I,,5;„5,; ) .

(3)

The first term in (3) coincides with the usual Hubbard
term and the two others correspond to direct and ex-
change intersite interactions. The main question posed
here consists in the following: Is it possible to find any
combination of three second-rank symmetric tensor s
t, V,I such that the model becomes solvable?

In this paper we present only the partial solution of
that problem. There are at least two motivations which
forced us to present this stage of investigation. First, we
believe that it will be stimulating for searching the gen-
eral solution since nobody (to our knowledge) has been
able to propose any systematic method of constructing
solvable fermionic models with nontrivial non-nearest-
neighbor hopping. Even for the standard one-
dimensional Hubbard model the relatively complicated
extra integrals of motion and connection to Lax and
Yang-Baxter regular procedures have been established
only very recently. Second, mathematical problems
of constructing the exact solutions in the nonlocal case
seem to require a much more sophisticated technique for
fermionic systems. Even for bosons (for example, mag-
nons in quasi-Heisenberg spin chains) this problem is still
open. These reasons inspire us to describe here the non-
trivial exact eigenvectors of the extended version [(2) and
(3)] of the Hubbard Hamiltonian. Various cases of the
extended Hubbard model have been of great interest in
recent years in describing quasi-one-dimensional conduc-

h2=U gN;tN;i+ —,
' g V~(N;t+N i)(N t+N i),

hi = —
—,
' g I, (N, (N t+N, iN (

lXJ

+a;&a;ia ta &+a,.&a, &a &a.&),

where 1' and 1 denote up and down electron spins and

XJ $ aJ )aJ &
~ We sha 11 consider in detai 1 the case of an

infinite lattice, i.e., —~ &i,j & ~. The modifications to
periodic boundary conditions will be discussed in Sec. V.
We shall also suppose that all three tensors t, V,I depend
on their indices only through the distance between the
sites ~i

—j~.
The simplest eigenvector of H' ' is the pure vacuum

~0) having zero eigenvalue (such a vacuum state without
any particles is taken for convenience):

aJ&~0) =ai&~0) =0 for all j&Z .

It is evident that in this case one-electron states are de-
scribed by quasifree or plane-wave-like states with quasi-
momenta p H (0,2ir):

v/i t
= g exp(ikp)at,

&
/0),

k

P i
= g

exp(ikp)akim

~0) .
k

The dependence of the eigenvalues on p is completely
determined by the Fourier transform of the hopping ten-
sor

s, = y t, , +„exp(ikp) .
k

The eigenvalue problem for two-electron states is much
less trivial. Let us introduce the relevant "elementary"
states
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=a/&a t ~0), P/m =a/ta t ~0), f/m =a&&a
& ~0) .

By this definition we immediately find

hi4/'= X(t,/fj" t, 4j'/'»

h i (I//m
= g ( t, / it/, m + t,m it//j ),

J

h~g/m = V/mQ/m, h2$/m =(U5/m+ V/m )it//m

h3 01m /m 0/m & 3 elm I/m Wml

(7)

Let us now construct two-electron eigenvectors as fol-
lows:

—2

Imp=0, Re/~&0, (13)

and investigate the solutions of "bosonic" equations (10)
and (9) of the "pure fermionic" nature.

tensor: It must be taken from some integrable spin model
of the type (12). Recently possible candidates for this
role have been proposed. ' In the remaining part of
this paper we shall consider the most general case"

0, j=k,
to sinh —(j —k), jWk,

K K

it't t
= Q Z/m 4/m ~

l, m III. SYMMETRIC SQLUTIQNS

(t,,Z,"—t, Z,' )+(V, —I, —s)Z,"=0,
J= oo

(9)

l, m

Pti= QZ/m0/m ~

Tl

l, m

where the tensors Z" and Z must be determined from
the eigenvalue equation H' 'it/=Eg Note. that according
to the Pauli principle Z" is antisymmetric while Z has
no definite symmetry properties.

By using (7) and (8) one can obtain the equations forZ" and Z in the explicit form:

/Imp/ ( (14)

may be obtained by the methods of Weierstrass elliptic
function theory. Let us construct the function of the
complex variable x,

Let us start with the calculation of the energy of one-
electron state (6) with the hopping (13) brielly discussed
also in Ref. 43.

The closed form of the trigonometric sum
—2

e(p) = to g 2 exp(ikp) sinh —k
K K

(t /Z +t Z/ . )

+( V, + U5/ —e)Z/ +I, Z, =O . (10)

F(x)= to g exp(ikp) sinh —(k +x)7T

K K

' —2

The tensor Z/ in (10) can always be represented as a sum
of its symmetric and antisymmetric components,

where each of them must obey (10). It is easy to see that
the resulting equation for Z I' coincides with (9) and for
the symmetric Z /' (10) reduces to

which has the following quasiperiodicity properties:

F(x+ l)=exp( ip)F(x), F(x—+co)=F(x), co=is. .

(16)

This function has a pole singularity at the point x =0.
The expansion of I' in the vicinity of this point contains
the term with E(p),

J — oo

+ ( U5/ + V/ +I/ —s)z /' =0 . (11)
F(x)=to 1

X

~2
+E(p)+O(x) .

3K
(17)

If the U term is omitted here, (11) is just the equation for
two-magnon wave functions in a quasi-Heisenberg XXZ
ferromagnetic with the Hamiltonian

H= g [t k(o J&k+oj~ok )+T.( Vjk+I)k )ojok ] . .

j,k = —oo

(12)

So even in the general case of non-nearest-neighbor
hopping we obtain a certain correspondence between fer-
mionic and bosonic models despite the absence of the
Jordan-Wigner —type diffeomorphism. This correspon-
dence may serve as the key to the choice of the hopping

Note that it is the only singularity of F(x) on the torus
C/I obtained by factorization of the complex plane (t by
the lattice of quasiperiods I =m, +m2~, m&, m2&Z.
Now we construct the function G(x) with the same
quasiperiodicity (16) and singular term as in (17) by using
Weierstrass functions P(x ), g(x ),cr(x ) defined on the
same torus C/I:

G (x)= —A exp(5x)
o (x +r)
o (x —r)

X [P(x)—P(r)

+b, [g(x +r) g(x) g(2r)+g(r)]—I . —

The constants A, r, 5,6 are determined from the relations
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5+/( ,')—r= —ip, 5co+g —r =0, E(p) =to —P(r) —[2$(r)+5][g(2r)+5]
3K

A =to, Ab, =[2/(r)+5]t, ,
[2$(r)+5]

2
(19)

which can be simply obtained by using the standard
properties of Weierstrass functions. The result is

with r and 5 given by (18).
The next step is the calculation of a slightly more com-

plicated sum,
—2

A =to, r= —,5=—g
pcs p

7T
'

7l 2

S(p, l)= exp(ikp) sinh —k
K /C

k&0, —1

b, =sr ' pg ——2g
2 4m

The difference R (x)=F(x)—G(x) is, by construction,
an analytic function of x without any singularities in the
full complex plane C. According to the Liou ville
theorem R (x) would be equal to a constant and due to
the relation R (x + 1)=exp( —ip)R (x) this constant must
be exactly zero. By comparing the terms independent of
x in the decompositions of F(x) and G (x) near x =0, we
finally have

Xcoth —(k+1), l &Z . (20)

The appropriate function which may be constructed by
Weierstrass theory is

—2

F, (x)= g exp(ikp) sinh —(k +x)
/C K

Xcoth —(k +l +x),
K

with the quasiperiodicity relations (16) and pole singulari-
ty like (17). Arguments of the type used above lead to the
following closed form of (20):

S (p, l) =—coth E(p)—~I

where

7T2
[1+2exp( ipl)] +— [1—exp( ipl)]f (p)—,

Ir sinh (m.l/ir) x sinh (7rl/v)
(21)

f(p)=
7T 2 2' (22)

Now we are ready to construct the solution of Eq. (11) as follows:

ZI'~ =(1—5I )(cothy{exp[i(p, l +p2m)]+exp[i(pal +p, m)]I

+ {exp[i (p, l +p2m ) ]—exp[i (p2l +p, m ) ] I coth(~/a )( I —m ) ) . (23)

U =0, V& +II =to sinh —(l —m)
2'
K K

—2

(24)

cothy= [f(p, ) —f (p2)] .
2m

(25)

The eigenvalue which corresponds to the solution (23) is

E(pi, p&)=E(p, )+E(p2) . (26)

The type of potentials (24) which is obtained above

The second term describes the distortion of the states of
two free-propagating electrons due to interaction between
them. By substituting (23) into (11) and using (19) and
(21) it is easy to find that (11) is satisfied for all quasimo-
menta p, ~imp ~

(2m'/a, a=1,2, if

leads to the constraint that any site of the lattice accord-
ing to (23) cannot be doubly occupied. The case of real
p„pz corresponds to the scattering states. Let us show
that the bound states are also possible for the complex
quasiinomenta (cf. Ref. 45 for the Hubbard case). If
Imp &0, the only situations in which ZI" vanishes as
l —m ~ ~ are

~
cothy

~

= 1. Taking for definiteness

pi 2=P/2+iQ, ImP =0, and Reg )0 we have from (25)
the equation

277 2 2f —+ig f — ig =1 .— —P . P

Let Pco/4~=i A, , iQco/2m=v w—here A, i.s real and
0 & Re~ & 1. The above equation reduces to
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yq(r)= g
—+ +g(iA, —r) —g(ii+r)=0 . (27)

4v co 27T

co 2 K

4 co +P(i k, ,'—)+—P(ik+,' )—
d7 &

—i/2 0 2

K
sinh —( i A, + n ——')

K 2

At fixed A,AO the function yi(r) has the following sim-
ple properties: yi, (0)=2'/~, yi(1)= 2—m/~, q&i, ( —,')=0,
dpi /dr(0) &0. The zero at ~= —,

' is trivial because after
its substitution into (23) Z&" vanishes. The nontrivial
zero exists if and only if the derivative of y&(r) on the in-
terval (0, —,

'
) changes sign, i.e.,

can be specified by the requirement of the presence of ex-
act solutions to Eq. (9) for the antisymmetric tensor Z&".
The simplest situation is evidently realized when
V( —I( =—0, i.e., the electrons with the same spin pro-
jection do not interact (note that just the same property is
inherent in the Hubbard model). The solution of (9) in
this case has the form of the antisymmetrized combina-
tion of one-particle solutions,

Z&' ~"=exp[i(p, 1 +p2m)] —exp[i(pal +p, m)], (30)

with the eigenvalue s(p„p2)=s(p, )+e(p2).
One can try to introduce a distortion due to nonzero

interaction Vt I& b—y adding to (30) the term analo-
gous to (23),

Z,"""'-[exp[i (p, 1 +p, m)]

+sinh —(ik+n +—') )0 .
K 2 +exp[i (pz l +p, m ) ] [coth —(1 —m ) .

(28)

The analysis of the behavior of this sum as a function of A,

shows that at least for cot(mA, /~)) coth(ir/2a) the in-
equality (28) holds. So from (27) we conclude that for
some values of real Q there are real total quasimomenta P
defined by the formula

However, the use of the relations (19) and (21) shows that
(9) cannot be satisfied for any V& I& and—combinations
of quasimomenta. One needs to construct the principally
new ansatz to distort (30) by some interaction between
electrons.

For that purpose let us consider the following tri-
gonometric sum similar to (21),

Pco i Qco, EQ co

4~ 2~ 2m

2iQ
7r

lQco

277 S(p, 1)= exp(ipk) sinh —k
K

k&0

—2

tanh —(k +1),
K

(31)

(29)

The possible case of complex ~ needs a more thorough
consideration. It is likely that the bound states (29) have
the smallest possible energy at the fixed total two-electron
quasimomentum but the proof of this statement is not yet
complete.

IV. ANTISYMMETRIC SOLUTIONS

In Secs. II and III we have fixed the hopping tensor
and the combination V& +I& by (13) and (24) in the
Hamiltonian (2) and (3). The remaining term V& I&—

Xtanh —'(k +1+x) (32)

that is quasiperiodic as F(x) (16) but has on the torus
C/I two pole singularities at the points x =0 and
x =co/2 generated by the terms with k =0 and k = —1 in
(32):

and find for that an analytic expression through Weier-
strass functions. As in the previous section, one can con-
struct the function

—2

Fi(x)= g exp(ipk) sinh —(k +x)
K K

~l 1 7TFi(x) =tanh +
x +cosh(vrl /v)sinh(vrl /v)

—2
~lFk(x) = ——exp( ipl) cosh—

K K

1 2 el—+cosh
3 K

near x =~/2 .

+S(p, l)+O(x), near x =0,

(33)

The proper combination G&(x) of Weierstrass functions having the same structure of singularities and quasiperiodici-
ty contains five constants,
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GI(x) = — exp(x5) P(x) P(—r)+b. &[/(x +r) —g(x) —g(2r)+g(r)]
Ao(x+r)
o (x —r)

+b~ g(x +r) gx——— g(—2r)+g r ——
2 2

which must be determined from (16) and pole terms in
(33),

A =tanh ~l
K

b, , =2((r)+5 ——A cosh
7T ] 2 GATI

K K

where

f (p») =
2 2'

g (p) =g(r)+ g ——g(2r) +g r ——
2 2

b, 2
= ——A 'cosh —exp( ipl —),

K K

and r and 5 as in (18).
Comparing the first nonsingular terms in (33) and the

decompostion of G, (x) near x =0 we have

Note that f (p) and g (p) are odd functions of their argu-
ment.

Let us search the solutions of (9) in the form

2 I~ =cothy I exp[i (p, / +pram)] —exp[i (p21+p, m)] I

+ Iexp[i(p, / +p2m)] +exp[i(p21+p, m)][
2

S(p, 1)=tanh +e(p)
x cosh (ml/x)

Xtanh~/~(l —m) . (35)

+—cosh [f(p) —exp( ipl)g (p—)],
K K

(34)
Calculating by (19) and (34) the infinite sums in the left-
hand side we obtain

(r,,z,"—r, z,' )+(v, r, —E)z",—
J= QO

2' 2 0 (a)s(p, )+e(p2) —E+
~ 2

+ V( II Z I'—
cosh ( ~/~ )( i —m )

+ to [f(p i )
—f (p2 )]—cothy

~ cosh (~/1~)(l —m)

X I exp[i (p, l +p2m ) ] exp[i (p—zl +p, m ) ] I

7Tt 0
[g (pi )+g (p»)] I exp[ & (p i+p2)m] exp['(p &+pa)i] I

=o .
~ cosh (vr/~)(l —m)

(36)

The first term in the right-hand side of (36) reduces to
zero if

2'1T t0
Ilm ~1m 7

~ cosh (m/~)(l —m)

E=e(p, )+s(p, ) .
(37)

Most troubles are concerned with the last term having
no analog in the symmetric case. It vanishes if and only

The absence of the second term is, as for symmetric solu-
tions, guaranteed by the proper choice of the parameter
cothy',

cothy =(~/2')[f (p, ) —f (p2)] .

if the electron quasimomenta are not arbitrary but re-
stricted by the transcendental relation

g(pl )+g(p2)=0 .

The simplest possibility is p, = —
p2 which corresponds

to zero total quasimomentum. So the ansatz (35) with
(25) and (38) gives not a general but only a partial one-
parametric solution to (9). At this stage we could not find
any modification of (35) free from the restriction (38).
However, we hope that it will be possible to find it in the
future.

Let us also discuss the problem of antisymmetric
bound states with zeroth total quasimomentum. The de-
crease of Z I' when ~l

—m
~

~ oo can be reached only if
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K 277f—(p)=1, 0& Imp &, pi = —p2=p .
VT K

(39)

dc@ 2l co= —P(r)+ —gd~ K 2
—2

K
sinh —(r—n)

K

which is negative at all real r. So y(r) has the only zero
at 0 & r & 1. By using the well-known properties of the g
function,

g(r+1) =g(r)+2/( —,
' ), g( —,

' )co —
g —=~i,

it is easy to see that this zero is located just at the excep-
tional point ~= —,', so the bound states in this model do
not exist at zeroth total quasimomentum.

V. DISCUSSIQN

Returning to the original Hamiltonian (4) we see that
the simplest two-electron problem on an infinite lattice
has the exact solutions if

In the case of a pure imaginary quasimomentum,
p =2mir/a, lm. r=0, the solution of (39) is equivalent to
the search for the zeros of the function

q(r) =g(r)+ (2i r/tr )g(co/2) ~/—a.

on an interval 0(~(1 with the exception of the point
~= —,

' at which Z &~ identically vanishes. On the left and
right ends of that interval y(r) tends to +~. Its deriva-
tive d y/d ~ can be written as an infinite sum,

in both symmetric and antisymmetric cases. From our
point of view this fact indicates that such models seem to
be solvable. More convincing arguments may be ob-
tained by analyzing the states with three or more elec-
trons. In the complete symmetric sector corresponding
to the Heisenberg-chain-type model one can show that
the wave functions have a Bethe structure, i.e., depend
only on one phase, which is expressed through quasimo-
menta as (25). The states of mixed symmetry with more
than two electrons have not been investigated but our
previous experience shows that exact solutions can also
be obtained.

Note that the short-range hopping in (40) is reduced to
the nearest-neighbor Hubbard one in the limit K~O after
a trivial "renormalization" to ~ to(ir /ir )exp(2ir ll~).
However, the total Hamiltonian does not tend to the
Hubbard one because U =0 and because of the surviving
of the exchange nearest-neighbor intersite interaction
term in (40). To our knowledge modes of that type have
not been considered as candidates for being solvable. It
would be interesting in this case to check for the possibil-
ity of constructing a standard Lax representation as it
was done in Ref. 36 for the Hubbard case.

By analogy with spin chains we can also assume that
models of the type (40) would be solvable if Vi and II
were modified as follows:

2t p7T
Vi = j (j + 1 )sinh —(1 —m )

2K

—k (k + 1)cosh —(1 —m)
K

772
U =0 tI =tp

lr sinh (rr/tc)(l —m)
2

Vi = to z
sinh —(1 —m ) —5 cosh —(1 —m )

K

(40)

2
tp7T

II = j (j + 1)sinh —(1 —m )
2K

+k (k + 1)cosh —(1 —m )
K

(41)

2

Ii = to sinh —(1 —m )
K

+5cosh —(1 —m), 6=0 or 1,

"Discrete" analogs of the well-known Poschl-Teller po-
tentials correspond to the possibility of expressing
through Weierstrass functions the trigonometric sums
which are similar to (21) and (31),

S'"'(p, 1)= g p„ tanh —(k +l), coth —(k +1)
sinh [(ir/tr )k]

where p, is an arbitrary polynomial of nth power. How-
ever, no rigorous proof of the existence of exact solutions
of type (23) and (35) in that case is now yet found.

Another type of interesting problem is the investiga-
tion of excitations on more realistic and complicated
"vacuum" basic states than (5). The picture of particle-
hole and hole-hole interactions in a half-filled (ferromag-
netically ordered ground state) band seems to be very

similar to the case considered above, but the propagation
of excitations on antiferromagnetic-type vacuums needs a
more thorough analysis.

The proper consideration of periodic boundary condi-
tions consists in the change of trigonometric hopping and
interaction terms (40) into elliptic ones,

t, =t,P(l —m),
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Vt =to P(l —m)+5P I —m+—

I =t P(l —m) —5P 1 —m+-
1m G 2

where the real period of double-periodic Weierstrass P
functions must be equal to the number of sites N and the
imaginary period coincides with that of (40). As N tends
to infinity,

2

P(x)~ —+sinh1 . 2+X
K 3 K

67 7T 1 2 &X2

P x+ —~ ——cosh
K K

and the previous structure (40) appears. The two-particle
exact solutions in the symmetric sector were also investi-
gated earlier but had a much more complicated form.

To summarize, at this stage we tried to construct a
solvable nonlocal generalization of the original Hubbard

model without the U term. The case including that term
requires further efforts. It is quite possible that a model
like that, if it exists, needs a more sophisticated form of
interaction in the second-quantized representation than
that in (3). Nevertheless, we hope that the solutions dis-
cussed above give an insight into the more general prob-
lem of introducing solvable lattice models. From the
algebraic point of view the most interesting questions
here arise in constructing analytic integrals of motion
commuting with the Hamiltonian (2). The finding of a
regular procedure for that gives, according to the com-
mon wisdom, the most preferable proof of the solvability.
In a much more simple Hubbard situation this procedure
has been proposed only recently and even the sim-
plest integrals are relatively complicated. In our case of
non-nearest-neighbor hopping the standard routine based
on the search for a local transition matrix seems to be
nonapplicable. For similar quasi-Heisenberg nonlocal
spin chains only few integrals of motion were construct-
ed, but any regular scheme was not found. This line of
research seems to be most intriguing and promising for
future studies.
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