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Spectral function of a single hole in a two-dimensional quantum antiferromagnet
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The spectral function of a single hole moving in a two-dimensional antiferromagnetic background
is calculated, using the self-consistent Born approximation for the self-energy. For small systems,

good agreement is found with the results of exact diagonalization studies. In the thermodynamic
limit, the quasiparticle residue, the eAective mass, and the incoherent multiple spin-wave back-
ground are determined as functions of the ratio of Heisenberg exchange J and hopping amplitude t.
The relevance of the single-hole results to the physical problem of a finite hole concentration is

briefly discussed.

I. INTRODUCTION

In a recent letter, a simple method was proposed to
calculate the spectral function of a single hole in an S=

—,
'

Heisenberg quantum antiferromagnet (QAFM). ' The
method exploited the formal similarity of the QAFM
problem to that of superAuid He and the motion of a
hole in the former to the motion of a defect (a He atom)
in the latter, a problem discussed in a classic paper by
McMillan. The method is also related to the work of
Lee, Low, and Pines and others on the motion of an elec-
tron in a polar crystal.

For illustrative purposes, only the results for the spec-
tral function of a single hole in one dimension (1D) were
presented. ' The results do depend on the dimensionality„
and so we present here detailed numerical studies of the
two-dimensional (2D) case. In particular, we calculate
the "quasiparticle" residue zk and eItective mass I* at
the bottom of the band as functions of the ratio of
Heisenberg exchange J and hopping amplitude t. Kane,
Lee, and Read have made analytical approximations to
the form of the spectral function given in Ref. 1 to evalu-
ate these quantities. Except for extremely small values
of J/t, our results for zk and I * do not agree with theirs.
Recently, the spectral function for small lattices has been
calculated exactly. ' Our results compare very well with
these.

Spurred by the discovery of high-temperature super-
conductivity in CuO2-based materials, which at "half-
filling" are antiferromagnetic insulators well described by
the Heisenberg model, there have been numerous other
papers on the motion of a single hole in a QAFM (see, for
example, Refs. 7-13). We will not comment on these, ex-
cept insofar as they involve the approximate scheme in-
troduced in Ref. 1.

Since the undoped CuO2-based materials are charge

transfer insUlators, we do not believe that the model un-
der consideration is sufficient to describe the metallic
phase of high-temperature superconductors. The ques-
tion which we will brieAy discuss here is the relevance of
the single-hole problem within the doped Heisenberg (or
Hubbard) model to the transition from the insulating an-
tiferromagnetic phase to the metallic nonmagnetic phase.

II. EFFECTIVE HAMILTONIAN FOR A SINGLE HOLE

Consider the Neel state ~X) as the vacuum state, and
define hole operators h; such that h; =c;& on the 1' sublat-
tice and c;i on the J, sublattice. Also define spin-flip
operators b; =c;tc;& on the 1' sublattice and c, &c, &

on the
1 sublattice. Thus, b, ~X) =0 and b; =5; on the $ sub-
lattice and S,+ on the J, sublattice. The h's obey Fermi
statistics and the b's hard-core boson commutation rules.

With these definitions, one can write down the follow-
ing Hamiltonian for the motion of a hole in a QAFM'

H, = t g h,th, [b,t(1 b,tb, ) + (1 b—,tb, )b, ] . —
(i,j )

II, properly describes the change in spin configuration
due to this motion. Consider, for instance,
H, h ~N ) =b h; ~X), which shows the correct alteration
in the spin configuration of the Neel state due to the hop-
ping of a hole from site j to site i. In addition, H, com-
mutes with the number of doubly occupied sites
g, h, h, b, b, and thus preserves the constraint of no dou-
ble occupancy.

The Heisenberg exchange Hamiltonian 0 may simi-
larly be written in terms of b's and projection operators
1 —h; h, . In this paper, we ignore the latter as well as the
factors 1 —b,tb, in Eq. (1), i.e., the hard-core constraints
(see below). Within linear spin-wave theory (i.e., treating
the b's as ideal bosons), H, and HJ then reduce to
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H, =t g h,th, (bjt+b, ),

HJ= —g (2btb;+b;b +b b; )
2 (

~ ~

)

(2a)

(2b)

where yl, =gsexp(ik 5)/z, 5 being a nearest-neighbor
vector.

HJ can be diagonalized by using the Bogoliubov trans-
formation bk =ukak+Uka k, where

Here, z is the coordination number of the lattice. Equa-
tions (2) are rewritten in momentum space as

H, =,i2 +hi, hk q(ykb q+yq qbq),
tz

N' kq

X [2bkbk+3 k(bkb —k+b —kbk)] ~ (3b)
Jz NJz

4

kk, the Fourier transform of A, ,'", can be related to the sus-
ceptibility y(k), just as the analogous quantity in the He
problem was related by Feynman to the structure factor
S(k).' A, l, at long wavelengths is determined by the
spin-wave frequencies, just as A.l, in Eq. (6). Ground- and
excited-state wave functions of Hz in the presence of a
static hole can be similarly defined and, in analogy with
McMillan's work on the motion of He atoms in
superAuid He, matrix elements of H, in this basis set
can be calculated. The evaluation of these quantities en-
tails extensive numerical calculations, which we have not
pursued. We have satisfied ourselves, however, that the
qualitative behavior so obtained is not di6'erent from the
results obtained here ignoring the hard-core constraints.
Wave functions of the form Eq. (7) have been considered,
for example, by Bartkowski' and Sachdev. "

III. SPECTRAL FUNCTION OF A SINGLE HOLE
—[-,'[(1—r'} '"+I]]'",

U~= —sgn(r~)I-, '[(1—r~) '"—I]]'" .

This gives'

tz
i/p y h ghg —q[ (rg uq+yk —qUq )~ —qN' kq

(4a)

(4b)

Cxiven the matrix elements (Sa) for spin-wave absorp-
tion and emission, the self-energy of a hole in the self-
consistent Born ("noncrossing") approximation is'

t z
X(k, co) = g (uqyk q+Uqyk) G(k —q, co —coq),

q

(8)

+ (yl, uq+ yk quq )aq ], (5a) where

3NJz
Hg QCOg(Q) Ql +

2 )
k

(5b)

where col, =Jz ( 1 —
yl, )

' is the spin-wave dispersion.
Identical expressions for H, and HJ have been derived in
Ref. 4 starting from a Schwinger boson representation.

It is worth bearing in mind the physical approximation
underlying the above linear spin-wave theory. The
ground-state wave function of HJ is simply

10) =exp —g a„b'„b' „' lX)
k)0

=exp —g A;, b;tb,~ lN ), ,
1(J

with A, l,
= —

Ul, /ul„and describes the best possible har-
monic approximation to the full QAFM problem. l0) in-
cludes (in an approximate fashion) the zero-point spin de-
viations, but violates the hard-core constraint. The long-
wavelength behavior and therefore the asymptotic
power-law decay of spin deviations are well described,
since they are determined by the linear dispersion of spin
waves cok-k at small k which, itself, follows from sym-
metries alone. An adequate description of the short-
wavelength behavior, however, requires a correct treat-
ment of the hard-core constraint. This can be done as in
Feynman's classic work on He, ' by considering a
Jastrow-like wave function, which is obtained by expand-
ing the exponential in Eq. (6) and keeping only the first
two terms [since the rest are eliminated by the hard-core
condition (b; } =0],

l0) = + (1 A, ,' btb )lN) . —

G(k, co) = [co X(k—, co)+i0] (9)

is the hole Green's function. The spectral function as
usual is

A (k, co)= ——ImG(k, co) .
1

(10)

In two and higher dimensions, A (k, co) displays a nar-
row peak as a function of ~ for a given k, i.e., a "quasi-
particle" part, and a broad incoherent background which
rejects real multiple spin-wave processes accompanying
hole motion. ' The quasiparticle part, which rejects
Bloch-like propagating motion, is absent for hole motion
in an Ising model for which the ground state is the Neel
state. In the QAFM, the ground state is a linear com-
bination of the Neel state and states with multiple zero-
point spin deviations. As the hole hops, it also creates
spin deviations. The spin configuration after a hop has a
finite overlap with the spin configuration prior to the
hop, hence a Bloch-like propagation. The quasiparticle
spectral weight is proportional to this overlap. Below, we
will present an evaluation of this quantity and the quasi-
particle dispersion ej,. Note from Eqs. (8) and (9) that
G(k, co}=G(k+Q,co), where Q=(n, n, ) is the wave
vector of the antiferromagnetic spin-density wave. The
dispersion of ck is thus, like that of next-nearest-neighbor
hopping, as expected for a hypercubic lattice with sublat-
tice magnetization.

The self-energy Eq. (8) ignores vertex corrections. For
J &&t, where perturbation theory in t/J becomes valid,
this approximation is rigorously justified (see below). ' In
the opposite limit, J« t, the vertex has to be of order t,
as in Eq. (8). Vertex corrections, therefore, are unlikely
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to introduce a new energy scale and thus are not expected
to change the results qualitatively. This view is support-
ed by the good agreement of our results with exact diago-
nalization studies.

It is worth noting that the hole wave function within
our simple approximation has the form of a moving parti-
cle dressed by backflow of spin waves. At long distances,
the form of the spin distortion is dipolar. This can be
seen by expanding the scattering matrix element in Eq.
(8) for small q: uqyi, q+uqyi, -ui, .q/q', where
vk=Vkyk is the velocity. Thus, the admixture of a spin
distortion with wave vector q in the wave function has a
coefFicient v&-q/q exhibiting dipolar backflow. This is
exactly as for a moving He atom or a roton' in
superAuid He. In the context of the present problem,
this dipolar distortion has also been discussed by Shrai-
man and Siggia, using more sophisticated arguments.

IV. NUMERICAL RESULTS

Equations (8) and (9) can be solved numerically by
iteration on a discrete mesh of k and co points. ' Due to
the symmetries of G(k, co), the calculation can be limited
to the irreducible part of the Brillouin zone shown in Fig.
1 (shaded wedge). An artificial broadening parameter
b,co ((t is introduced in Eq. (9), to make the iteration
procedure stable. For certain parameters, it is necessary
to step hco down gradually to its final value.

We first solved Eqs. (8) and (9) for a 4X4 lattice, which
has been studied extensively by exact diagonalization. '

This allows us to assess the quality of the approximations
made. Figure 2 shows the hole spectral function A (k, co)
at k=g/2=(m'/2, m/2) for (a) J=0, (b) J =0.2t, and (c)
J=0.7t. This value of k corresponds to the hole ground
state, at least for cases (b) and (c). (For very small values
of J/t, the system ground state is a saturated ferromag-
net. '

) As already mentioned, the spectra display a pro-
nounced low-energy peak which is the quasiparticle peak

0.8 g I
/

I I I I i I I

0.6—
L04'—

0.2,'

0'

(a) J=o

predicted in Refs. 1 and 4. With decreasing J, this peak
moves to lower energies and its weight decreases, as ex-
pected. The missing spectral weight appears in the form
of incoherent real multiple spin-wave excitations at
higher energies. The total spectral weight is of course
conserved and equal to 1.

The spectra shown in Fig. 2 are in good agreement
with the exact diagonalization results of Refs. 5 and 6
(their Figs. 5 and 10, respectively) and qualitatively simi-
lar to those reported in Ref. 1 for one dimension. For
J =0 [Fig. 2(a)], the spectrum is completely incoherent,
extending over almost the full free-hole bandwidth 8t. It
is furthermore symmetric about co=0,with a "gap" in the
middle. (As shown below, this gap is a finite-size effect
and disappears in the thermodynamic limit. ) For J =0.2t
[Fig. 2(b)], there is a pronounced quasiparticle peak cen-
tered just below co= —2t, separated by a gap from an in-
coherent spectrum. Even the fine structure of the in-
coherent part follows the exact results, with two peaks
[peaks II and III in Fig. 5(e) of Ref. 5] appearing just
above the gap, followed by another gap and further in-
coherent excitations. For J =0.7t [Fig. 2(c)], the quasi-
particle peak starts to become the dominant feature, fol-
lowed again by two pronounced incoherent peaks, in
good agreement with the exact diagonalization results.
All features —quasiparticle peaks, gaps, and incoherent
real multiple spin-wave excitations —are closely repro-
duced by our calculation.

As expected, a detailed quantitative comparison with
the exact results reveals some discrepancies. For exam-
ple, Fig. 3 displays the hole ground-state energy

V3

3

1.0,—

0.5 —,

0

(b ) J =0.2t

{m, 0)
2.0 I—

1.5

I.O—
I—0.5—

0-6

(c) J=0.7t

-4 0
u) (UNITS OF t)

FIR. 1. Brillouin zone for a 2D square lattice. The shaded
wedge marks the irreducible part which can be extended to the
rest of the zone by using symmetry operations.

FIG. 2. Hole spectral function at k=(~/2, ~/2) for a 4X4
lattice: (a) J=0, (b) J=0.2t, and (c) J=0.7t. The spectra are in

excellent agreement with the exact diagonalization results of
Refs. 5 and 6 (their Figs. 5 and 10, respectively).
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spectral weight of the quasiparticle peak decreases as one
approaches the I point k = (0,0), where it is less than
1%o.

From the energetic position of the quasiparticle peak
we obtain the quasiparticle dispersion ck shown in Fig. 6
for various values of J. We have plotted (sz —E;„)/w,
where w =s(0,0) —E;„ is the quasiparticle bandwidth.
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FIG. 3. Hole ground-state energy c;„=c(~/2,~/2) for a
4X4 lattice vs J (solid circles). Open circles show the exact di-
agonalization results of Ref. 5.

0-6 4 -2 0
m (UNITS OF t)

] I I I

s;„=E(m/2, ~/2) versus J (solid circles). The open cir-
cles show the exact diagonalization results of Dagotto
et al. which deviate somewhat from ours. Bandwidths
and quasiparticle spectral weights have also been extract-
ed from the exact diagonalization studies. We will dis-
cuss these issues below, but note in passing that for the
4 X 4 lattice k = ( n/2, vr/2), and J( t, we find a quasipar-
ticle residue varying approximately like (J/t) ' ~, in
agreement with Dagotto et al. [see also Fig. 9(b)].

The inhuence of finite-size e6'ects can be easily studied
within our formalism, by simply increasing the system
size to 20X20 which we found to give an adequate
description of the thermodynamic limit. (In certain
cases, we performed checks on sizes up to 64X64.) Fig-
ure 4 shows the same spectra as Fig. 2 (dashed lines), to-
gether with the corresponding hole spectral functions in
the thermodynamic limit (solid lines). For J =0 [Fig.
4(a)], the gap in the spectrum has disappeared and the to-
tal bandwidth is somewhat larger. For J=0.2t [Fig.
4(b)], the gap following the quasiparticle peak has also
filled in and the two incoherent peaks just below co=0
have merged into one. In addition, there has been an
overall smoothing, particularly at higher energies. The
merging of the two incoherent peaks is a general finite-
size effect and is more readily seen for J =0.7t [Fig. 4(c)].
Simple iteration of Eq. (8) shows that these peaks derive
from renormalized single spin-wave final states, with un-
perturbed discrete spin-wave energies 2&3J and 4J in the
4 X4 system and a peak in the spin-wave density of states
4J in the thermodynamic limit.

The central questions in the thermodynamic limit are
the dispersion and Jdependence of the quasiparticle ener-
gy ck and residue zk. Figure 5 shows the hole spectral
function for J =O. lt at (a) k=(m/2, n/2), (b) k=(0, m),
(c) k = (0,0), and (d) k = ( vr /5, m/5 ). The spectra display
quasiparticle peaks at all momenta and incoherent struc-
ture due to multiple spin-wave excitations. The lowest
and highest energy quasiparticle states have mornenta
k=(vr/2, vr/2) and k=(0, 0), respectively, and the spec-
tral functions along k =m —k are all very similar. The
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I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

0-6 -4 -2 0 2

u) (UNITS OF t)
4 6

FIG. 4. Hole spectral function at k=(m/2, m/2) for a 4X4
lattice (dashed lines) and in the thermodynamic limit (solid
lines): (a) J=0, (b) J=0.2t, and (c) J=0.7t.
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FIG. 5. Hole spectral function for J =0. 1t: (a)
k = (m/2, m. /2), (b) k = (0,~), (c) k = (0,0), and (d)
k=(m/S, m/5). The spectra in cases (a) and (b) are very similar,
as are all spectra for k~=+ —k„. At k=(0, 0), the spectral
weight of the quasiparticle peak is less than 1%. It increases as
one moves away from the I point.

the minimum near k=(0, 7m. /10) are reproduced by Eq.
(11).

The quasiparticle energies in Fig. 6 have been directly
obtained by solving the self-consistent equation

e&=ReX(k, e„) . (12)

BReX(k, E&)
z = 1—

k ack
(13)

Simultaneously, —ImX(k, Ez) must vanish. Figure 7
shows the real (solid line) and imaginary (dashed line)
parts of the hole self-energy for J =0.2t at
k=(rr/2, m. /2). The intersection of the straight line co

with ReX(k, co) yields the location of the quasiparticle
pose near co=—1 = —2.2t where —ImX(k, co) is infinitesimal.
Immediately following this pole, —ImX(k, co) is quadratic
in co and then becomes of order t. Considerable struc-
ture remains, however, and additional peaks in the spec-
trum [Fig. 4(b)] arise from the crossing of co and
ReX(k, co) at higher energies, when —ImX(k, co) is small.

Figure 8 shows ez, —ImX(k, E&), and the quasipartic e
spectral weight

As already noted by many authors, the effective mass
along k„=k is much smaller than that along k =m. —k
Isee also Fig. 9(c)]. Von Szczepanski et al. have suggest-
ed the relation

ez =E;„+(J/2 )(cosk„+cosk )

consistent with next-nearest-neighbor hopping. We find
empirically that inclusion of further neighbors on the
same sublattice through

(14)

versus the artificial broadening boo required in the calcu-
lation. The parameters are the same as in Fig. 7. Al
quantities extrapolate in a linear fashion with Aco towards
th "intrinsic" values. The changes in c& and zi, are less
than 1%, those in the effective mass

1 ~~k
ak, ak,

V

are even smaller (not shown).

e&=E;„+—[(cosk„+cosk )

+ —,'[cos(k +k )+cos(k, —k )]

gives a reasonaa reasonably good fit to the data (solid line in Fig.
ed b6). For example, the maximum at k = (0, m ) followe y
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0.2

-0.2
M

I & I & I & I & I & I I

r S

FIG. 6. Qnasiparticle dispersion along the symmetry direc-
t' for various values of J. We have plotted (Ei, Emjn)/Nptions or va i

where w is the quasiparticle bandwidth. The solid line is a o
the data according to Eq. (11).

2 O

(u (UNlTS OF t)

FIG. 7. Real (solid line) and imaginary (dashed line) parts of
the hole self-energy for J=0.2t and k=(m/2, m/2). The inter-
section near co= —2.2t of ReX(k, co) with the straight line co

yields the quasiparticle energy c&. The intersections at higher
energies give rise to incoherent peaks in the spectral function,
when —ImX(k, co) is small [see Fig. 4(b)].
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Figure 9 shows (a) the hole ground-state energy E;„,
(b) the quasiparticle residue z(n /2, ~/2), (c) the quasipar-
ticle inverse effective masses m

&

' and m2 ', and (d) the
quasiparticle bandwidth m as functions of J. m, is the
effective mass at the S point k=(m/2, vr/2) in the direc-
tion towards the I point k=(0,0), m2 that in the direc-
tion towards the M point k = (0, vr) (see Fig. 6). We have
tried to fit power laws to all these quantities without
much success, except for c;„,where we found that

E,„/t =3.35+2.5(J/t)'"

gives a very good fit between J =0 011 (.our lowest value)
and J-0.6t Th. is behavior is indicated in Fig. 9(a)
(dashed line). An interesting possibility for the J depen-
dence of the quasiparticle spectral weight z(rr/2, rr/2) is
shown in Fig. 9(b), where we have plotted this quantity
versus J (solid circles) and J' (asterisks). There is a
very good proportionality to (J/t)' up to J-0 7t, bu.t
with negative intercept indicating a diferent J depen-
dence for very small J. In the inset to Fig. 9(b), we show
a highly magnified view of the results for very small
values of J. Here, the quasiparticle residue appears to ap-
proach a linear J dependence, as suggested by Kane, Lee,
and Read. For large J, the quasiparticle residue ap-
proaches unity. This can be readily understood by
evaluating Eq. (8) perturbatively, using t/J as an expan-
sion parameter. ' Replacing 6 in Eq. (8) by the unper-
turbed hole Cireen's function G, one obtains

zk

Hence, for J )& t, zk = 1 —O(t /J ). '

For small J, the quasiparticle inverse effective massesI
&

' and m& [Fig. 9(c)] and bandwidth tU [Fig. 9(d)]
display behavior similar to that of zk, i.e., a sublinear rise
with J. They subsequently go through a maximum at in-
termediate values of J (between 0.4 and 0.7t) and decrease
again as J increases further. For J ))t (not shown), one
obtains similarly to Eq. (15),

(+qVk —q+Uql k)

Q)q
(16)

i.e., all quantities vanish as t /J. ' The maximum band-
width occurs near J =0.4t and is of order t. The mass
anisotropy m 2 /m

&
varies from 5 to 7 for

0.025t &J & 0.9t, with the maximum occurring near
J=0.15t.

Kane, Lee, and Read have given arguments that within
the noncrossing approximation and for small J, the quasi-
particle reside zk and bandwidth m are of order J/t and
J, respectively. The numerical solution of Eqs. (8) and
(9) reveals this behavior to be limited to extremely small
values of J. For J)0.025t, our numerical results for the
quasiparticle spectral weight and bandwidth vary sub-
linearly with J.

V. CONCLUSIQNS

-2.200
O

-2.205

~ -2.250
u3

-2.2't 5
4
C)
M 0.05
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N
E 0
I

0.342

0.34 1

(a)

I

(c)

0.340—

P PP9
0 0002 0.004 0.006 0.008 0.0 I0

Ecu (UNITS OF t)

FKr. 8. (a) Quasiparticle energy c.„, (b) broadening
—ImX(k, ck), and (c) residue zk vs artificial broadening Ace, for
J=0.2t and k=(m. /2, ~/2). All quantities extrapolate in a
linear fashion towards their intrinsic values.

We have studied the spectral function of a single hole
in a 2D quantum antiferromagnet, using the noncrossing
approximation for the hole self-energy proposed earlier in
Ref. 1. We have critically examined the validity of this
approximation by comparing the results to those of exact
diagonalization studies of small systems. ' The agree-
ment is surprisingly good. There are some quantitative
discrepancies which presumably arise from our neglect of
vertex corrections and the hard-core constraints in the
problem. By studying larger systems, we have observed a
number of finite-size eAects which should also be present
in the exact diagonalization results.

The hole spectral function consists of a quasiparticle
peak followed by a broad incoherent part. The in-
coherent part in turn shows some structure, due to multi-
ple spin-wave excitations. With increasing J, the quasi-
particle residue first increases linearly and then sublinear-
ly from 0 to 1, while the quasiparticle bandwidth first in-
creases and then decreases again, reaching a maximum
for Jof order t.

While the problem of the motion of a single hole in a
quantum antiferromagnet is interesting, it is doubtful
that it has relevance to the problem of a small, but finite
concentration of holes in the thermodynamic limit. As
we have seen, for nonzero J, the spectral function of a
single hole always has a quasiparticle or propagating
part, which has led some people to conjecture that for an
arbitrarily small concentration of holes, the Heisenberg
or large-U/t Hubbard model is a metal, with a Fermi
surface determined by filling up the single-hole quasipar-
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FICx. 9. (a) Hole ground-state energy c;„vsJ (solid circles) and J' (asterisks). The dashed line c;„/t = —3.35+2.5(J/t)'l fits
the data up to J-0.6t. (b) Quasiparticle residue z(m/2, ir/2) vs J (solid circles) and J'~ (asterisks). The dashed line fits the data up
to J-0.7t, but has a negative intercept. For very small values of J, the dependence appears to be linear, as shown in the inset. (c)
Quasiparticle inverse effective masses m, (solid circles, left-hand scale) and mi (open circles, right-hand scale) vs J. m, is the
effective mass at k=(m/2, m/2) in the direction towards k=(0,0), m2 that in the direction towards k=(0,~). There is a minimum
efFective mass at intermediate J, and m2 is 5—7 times the value of mi for J (t. (d) Quasiparticle bandwidth w vs J. The behavior as a
function of J follows that of the inverse effective masses. Results for J &0.1t are not plotted, because the top of the quasiparticle
band becomes ill-defined due to its small spectral weight.

ticle states. In spite of the interesting consequences of
this Ansatz, ' we find this point of view questionable. In
fact, recent exact diagonalization studies of the doped
Heisenberg model claim that the Fermi surface is always
noninteracting-electronlike [i.e., with the minimum in the
single-particle dispersion at k=(0, 0)].' In addition,
mean-field studies for U/t « 1, where well-controlled ap-
proximations exist, suggest that for small hole concentra-
tions the ground state might not be a metal at all rath-
er, the holes generate incommensurate vertical domain
walls, the separation of which is determined by the hole
concentration. For larger values of the Coulomb repul-
sion, diagonal domain walls are favored. There have also
been speculations that for small hole concentrations the
dipolar patterns of spin distortions around a hole will ar-
range themselves into a metallic spiral order. However,

variational states with such spiral order have been shown
to be unstable, at least for small and intermediate cou-
pling. '

We have learned that identical results for a hole spec-
tral function have also been obtained by Martinez and
Horsch. '
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