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Nonlinear o model for localization in superconductors: Role of order-parameter phase Auctuations
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The phenomenon of Anderson localization of normal excitations in dirty superconductors is con-
sidered using the functional representation in terms of the nonlinear o. model. The derivation of the
effective functional allows for the slow spatial variations of the superconducting order-parameter
phase. The thermal fluctuations of the order-parameter phase are shown to violate the equivalence
between particle-particle and particle-hole diffusion propagators due to the broken time-reversal

symmetry in the presence of random local supercurrents. As a result, a new characteristic length

lf ~ T ' appears in a system. If the correlation length 1, CC ~n
—n, ~

"connected with the Ander-
son transition is larger than lf, the transport properties of normal excitations are the same as in nor-
mal metals in a weak magnetic field. At 1, «g lg is a superconducting coherence length) they are
the same as in normal metals without magnetic field. The behavior of diffusion propagators in a
crossover region g « l, «lf is disc.ussed, and a crossover exponent is calculated.

I. INTRODUCTION

The formalism of the nonlinear o. model first intro-
duced by Wegner' turned out to be the most powerful
tool for the description of the Anderson local:ization and
related phenomena in disordered normal conductors.
Within the framework of this approach, it was possible to
consider the Anderson transition from metal to insulator
in 2+@ dimensions and to calculate various critical ex-
ponents connected with this transition. Recently, in a
series of works, this formalism was generalized to con-
sider the transport properties of normal excitations in
disordered superconductors, including superconducting
glass limits. In these works it was shown, in particular,
that if a nonrandom superconducting order parameter 6
is assumed, the Anderson localization of normal excita-
tions may occur in superconductors, with the critical be-
havior of the diffusion coefticient being the same as in the
case of a normal metal.

It is well known, however, that the thermal Auctua-
tions of the order-parameter phase are extremely impor-
tant for low-dimensional systems and may even destroy
the long-range superconducting order. In contrast to
numerous works in which the inhuence of order-
parameter phase fluctuations on superconducti[ng proper-
ties has been investigated for clean superconductors, we
consider here the effect of phase fluctuations on the
disorder-generated localization of normal excitations
with energies e )

~
b, ~.

In this paper we shall consider the low-temperature
limit of the problem and put the temperature T=O every-
where, but in the distribution function for slow spatial
fluctuations of the superconducting order-parameter
phase y(r):

f [y]=exp ——J(Vg) d "rl

T

For the same reason we shall not take into account the

exp—
exp—

(1.2)

which give the observable values at a fixed spatial distri-
bution of the order-parameter phase y(r). In Sec. III the
derivation of the effective functional V[Q, y] is carried
out, with special attention paid to the cross terms con-
taining both Vy and Q variables. They are the terms
which describe the inAuence of the order-parameter

configurations of y(r) containing vortices and neglect
thermal Auctuations of the modulus of the superconduct-
ing order parameter. Moreover, the disorder-induced
fluctuations of 5 also will not be considered, so that the
symbol 6 will denote the modulus of the superconducting
order parameter averaged over the ensemble of disor-
dered samples.

In Sec. II we review the derivation of a functional rep-
resentation for the retarded and advanced Gor'kov
Green's functions in terms of the anticommuting
Grassmann variables %(r) and %(r). The averaging over
a random impurity potential is carried out using the re-
plica trick, which is well defined for all the perturbative
calculations. Though such a representation is exact, it
contains an information about small spatial scales of the
order of the inverse Fermi momentum p~, which is
superAuous for our problem. More suitable for the prob-
lem of a long-range diffusion is another functional repre-
sentation analogous to the nonlinear o. model which de-
scribes the Anderson localization in normal metals. ' In
this representation the functional integration is per-
formed over a matrix field Q,. (r) conjugated to the direct
product %'(r)4(r), which varies slowly at scales pF '.
The small spatial scales are taken into account in the
derivation of the effective functional V[Q, y]. This func-
tional is the main object of the theory. It determines the
weight function exp( —P[Q, y] ) in all the functional
averages
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phase fluctuations on the transport properties of normal
excitations. Because the observable values should be
averaged over the thermal Auctuations of the phase y,
one should integrate exp( —9'[Q, q)]) over y(r) with the
distribution function (1.1). As a result, a new effective
functional

(1.3)

1

D, (q +lf) icu— (1.4)

At the same time the ordinary (particle-hole) diffusion
propagators remain divergent at ~=q =0:

D, (q, co)= f ((6,+„&z(r,r')6, &2(r', r))); e')" ')d q

(1.5)

Equation (1.4) and (1.5) show that a new characteristic
length lf ~ T ' appears due to the thermal fluctuations
of the order-parameter phase. For the spatial scales
larger than /f only divergent particle-hole diffusion prop-
agators should be taken into account, or equivalently, one
should consider matrix field Q of the lower symmetry
corresponding to the absence of the "massive" excitations
described by the nondivergent propagators. The critical
behavior of a diffusion coefficient near the Anderson tran-
sition point n =n, (n is a concentration of impurities} is a
consequence of the divergent correlation length
l, ~ ~n

—n, ~
describing the long-range correlations in

the electronic wave functions. In the vicinity of the An-
derson transition, the essential spatial scale is of the order
of I, . That is why the linear in T effect of the order-
parameter phase fluctuations is important in the close vi-

is obtained which contains all the effects of the order-
parameter phase Auctuations.

In fact, the calculations of the functional V[Q] have
been performed in Sec. IV as an expansion in powers of
the temperature T. The zero-order functional 9'0[Q] is
shown to coincide mainly with the functional of the non-
linear o. model describing the Anderson localization in
normal metals. The only difference is a proper
redefinition of the density of states. It means that the
homogeneous superconducting order parameter does not
change both the mobility edge and the critical behavior
of the diffusion constant near it.

However, the linear in T term in (1.3) changes drasti-
cally the internal symmetry of the functional V[Q]. All
the elementary propagators (Q(q)Q(q') )o correspond-
ing to the functional Vo[Q] are diffusionlike and propor-
tional to (Dq ice) ',—where D is a diffusion coefficient
and m is a frequency. The linear in T term makes some of
the propagators nondivergent at co=q =0. They corre-
spond to the particle-particie diffusion propagators,
which can be expressed in terms of the following product
of the retarded and advanced electronic Green's func-
tions 6 and 6 averaged over a random impurity po-
tential:

C, (q, co)= f ((6,+ &2(r, r')6," „&2(r,r'))); e''i" ''d"q

II. FUNCTIONAL REPRESENTATION
OF GOR'KOV GREEN'S FUNCTIONS

We start with the Gor'kov equations for the matrix
retarded and advanced Green's functions written in the
form

gR, ( A) (2.1)

(2.2)

where

cinity of the Anderson transition where l, ) lf. The situ-
ation is quite analogous to one which takes place in nor-
mal metals in the presence of a weak magnetic field or
paramagnetic impurities. In both latter cases the An-
derson localization effects are weaker as a result of the
broken time-reversal symmetry and the critical exponent
P of the diffusion coefficient Dd o- ~n n—, ~~ is 2 times
smaller than in the presence of time-reversal symme-
try. ' In the case of a superconductor with no external
magnetic field, time-reversal symmetry is also broken be-
cause of the local random supercurrents. Therefore, it is
not surprising that in superconductors, in the close vicin-
ity of the Anderson transition, the diffusion coefficient of
normal excitations has the same critical behavior as for
normal metals in a weak magnetic field.

However, even at l, (lf the order-parameter phase
Auctuations are important. Our results outlined in Sec.
IV show that the second order in the T term in the func-
tional 9'[Q] leads to the difFerence in the coefficients D,
and Dd in the diff'usion propagators (1.4) and (1.5). This
difference becomes essential at i, )g, where g=huF/b, is
a coherence length. In a crossover region g ( i, ( lf, the
coefficient D, decreases slower than Dd with increasing

their difference increasing critically
D, D„~T'—)n —n, ~

The physical meanings of the diffusion propagators
(1.4) and (1.5) are quite different. The ordinary (particle-
hole) diffusion propagator D, (q) describes the diffusion of
one-particle excitations with the energy e. In a supercon-
ductor the coefficient Dd determines, for example, the
electronic heat conductance and ultrasonic attenuation.
The particle-particle diffusion propagator is known to de-
scribe the electron interference effects. It determines the
Bohm-Aharonov oscillations of the conductance of nor-
mal metal cylinders or rings with the variation of the
magnetic fiux or the oscillations of the resistance of a
SXS junction with the variation of the order-parameter
phase difference. Both particle-particle and particle-
hole propagators contribute to the mesoscopic Auctua-
tions of the one-electron density of states. As is men-
tioned in the Conclusion, the density-of-states correla-
tions for different energies, measured in an ensemble of
small superconducting particles, can give information
about the difference in the coefficients D, and Dd.



43 NONLINEAR o MODEL FOR LOCALIZATION IN. . . 10 867

QR, (A)

—s++ (p ——A) —E~+ U(r)1 e
2m c

ge q()

e~+ (p+ —A) —e~+ U(r)
2m c

(2.3)

Here c+=c+iO, A is a vector potential of the external
magnetic field (if it is applied to superconductor), and
U(r) is a random impurity potential, which is supposed
to be a Gaussian random variable with zero average and
a correlation function

where

Ht pt+ Vy A1 2e (2.10)

(( U(r) U(r') )); p= 6(r —r),1

KVO1
(2.4)

II„=p„+—V'y — A1 2e (2.11)

Q,(r, r') '"'= —i (~(r)g(r') ),
where the functional average is defined by

K r ey r' exp ~SR'~)
{~(r)y(r')) =

exp jg R ( A )

(2.5)

(2.6)

where vo is the density of states for normal metal at the
Fermi energy eF; r=l/uF and i is an impurity scattering
mean free path. The Hamiltonian (2.3) describes the An-
dreev scattering converting the particlelike electronic ex-
citations with the energies E. into the holelike excitations
with the energy —c. Therefore, the 2X2 matrix space
corresponding to the matrices in Eqs. (2.1)—(2.3) will be
referred to as the "{+E,—c, ) space. " Using the vector
Grassmann fields y=(y„y, ) and a =(I~„a,) and Pauli
matrices ~ (a=x,y, z) as a basis in this space, one can
represent the retarded and advanced Green's functions
9, " in a form of functional integrals:

Now it is seen that the order-parameter phase enters in

the action as part of a guage field:

2eF=Vcp — A. .
C

(2.12)

The next step is to introduce the bi-Grassmann fields

X++
+' v'2 x+,

1
and 4+,= (

—~+~+,),V'2
(2.13)

instead of K+, and g+, . Such an extension makes it possi-
ble to use the quarternionic algebra for the elements of
the matrix Q and to express explicitly the change in its

symmetry due to the lack of time-reversal invariance.
That is why the 2X2 matrix space corresponding to the
definition (2.13) will be referred to as "quarterionic
space. "

Taking into account the anticommutative nature of
Grassmann fields as well as the properties of Pauli ma-
trices ~, =~„~ = —~, and integrating by parts in Eq.
(2.7), one can express the action (2.7) in the following
form:

In Eqs. (2.5) and (2.6), the action S"' ' is given by

i = Jy(r)H+ ~~i~(r)d~p

I+7
y r —c.~~, +i A~ e

S '"'= —f~(r)% ' 'y(r)d r,
where

(2.14)

(2.15)

1

2m
—

pt
——A~,

—EF+U a(r)d r, (2.7)

In Eq. (2.15) the operators II& „can be obtained from
(2.10) and (2.11) by replacing r, —+ 7, . Combining —(2.7)
and (2.15) and using the definition (2.13), we have

—iq7. /2 i cP7 /2
+~pe, K—+8 K (2.8)

Such transformations lead to the replacement of H in
(2.7) by a new operator:

~, +i h~ + II,II„—e +U, (2.9)
1

2m

where the momentum operators pt and p„act to the left
and right, respectively. These operators have different
signs because of the integration by parts.

One can remove the term exp( iy~, ) from the a—ction
(2.7) making the unitary transformation of Grassmann
fields.

S, ' '= + —c+~ +i h~ o. ,

+ HtII„—EF+ U %d "r,
2m

(2.16)

II, = —p, —
—,
' F~, (3o, ,

II„=p,——,'F~, (3)o, .

(2.17)

(2.18)

Here o. are Pauli matrices in the quarternionic space.

where V=(V„V,), %=(+„ql,), and the operators
IIt, are given by
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The expressions (2.16)—(2.18) generalize the functional
representation for electronic Green's functions (see, e.g. ,
Ref. 3) to allow for the superconducting order parameter.
For the calculation of the low-frequency transport prop-
erties of normal excitations, one needs the value of the
product G,+ &2G, /2 averaged over a random impuri-
ty potential. The functional representation for this prod-
uct can be obtained from (2.5) and (2.6). The correspond-
ing action is given by S=S,+ &2+S, „&2, where co&&@.

is a frequency (the Planck constant is omitted throughout
the paper). Such a sum may be expressed in a form
analogous to (2.16) if we label the fields 0' and ql in the
expression for S and S by the superscripts R and 3,
respectively, and enlarge the vector space %' to include
both %' and '0 fields. The difference in energies
s+(co/2+iO) results in the additional [with respect to
(2.16)] term in the action S, which absorbs iO in E+.

CO+
+z, p, ')II d r . (2.19)

S =So+S t+S
where S is given by (2.19),

(2.20)

gg + '
Q @ + ff ff + @add+2'

In (2.19), co+ =co+iO and p, is the Pauli matrix in (R, A)
space.

In averaging the product of Green's functions (2.5), we
meet, as usual, with the problem of averaging the ratio of
two functional integrals, each of them depending on a
random impurity potential. This problem is solved here
by the replica trick, which is known to be correct for the
perturbative calculations made below (see, e.g. , Refs.
1 —4). After replicating, the fields 4 and 4 become 8N-
component vectors, where the number of replica com-
ponents X should be set to zero in the final results. Now
it is possible to average numerator and denominator in
(2.5) separately. The averaging of exp(iS) over a Gauss-
ian random potential U(r) results in some interaction
term S;„,in the action instead of the last term in (2.16):

D, (r —r') and C, (r —r') are the two-point correlation
functions of the matrix

Xa+p XaXp
=%g% =——«««~a P P

(2.25)

3

Oa p X iiP' 'i)i ~

i=0
(2.26)

~here gp=1 and g, 2 3= —io. , 2 3. %ith the definition
(2.25) we have

D, (r —r') = tr((q, , )»(r)(q, ',")»(r') )s,4
(2.27)

C, (r —r') = — tr((q,",' )2&(r)(q+," )&z(r') )&
4

iy(r) —iy(r')Xe (2.28)

where the symbol tr denotes the trace over replica in-
dices. We have symmetrized the expressions (2.27) and
(2.28) with respect to the replica indices using the replica
symmetry of the functional S.

Equation (2.27) and (2.28) show that the particle-hole
diffusion propagator D, is a correlation function of the
diagonal quarternionic components a, —ia3 of the matrix
q. On the contrary, the particle-particle diffusion propa-
gator C, is a correlation function of the off-diagonal
quarternionic components —ia, +a2.

These correlation functions can also be expressed in
terms of the generating functional

exp iS& exp iSz[f]= (2.29)
exp iS

where a and P are all the matrix indices except those of
the quarternionic space which are shown explicitly. One
can confirm, using the rule for the conjugation of
Grassmann variables g*= —a, x =y, ' that the matrix

is a real-quarternionic matrix; i.e. , it can be
represented as a linear combination of quarternions g;
with real coefFicients a,. :

(2.21)
where

S& =f +h%'d"r . (2.30)

S,„,= f (%%)'d'r .
27TVOV

(2.22)

D, (r —r') = ( (g, «', ),(g, «,"), ) (2.23)

In Eqs. (2.21)—(2.22) the 8N X8N matrix operators II&„
are determined by Eqs. (2.17), (2.18), and (2.12) (in all the
expressions the unit matrices are omitted).

Now we show how to calculate the particle-particle
and particle-hole diffusion propagators (1.4) and (1.5) us-
ing the functional representation (2.20) —(2.22). From
Eqs. (2.5) and (2.8), it follows that

The second variational derivative of Z [f]with respect to
the corresponding components of the infinitesimal matrix
6 gives the correlation functions (2.27) and (2.28).

It is important that the sum S=SI, +S determining the
generating functional (2.29) can be entirely expressed in
terms of the matrix q. Using the definition (2.25) and tak-
ing into account the anticommutation of fields 4 and '0,
one obtains, from Eqs. (2.20) —(2.22) and (2.30),

f Trq d "r—fTr(qh )d r
27TVO'T

C (r —r')=((«~«- ) (g~g,"), )st. '("" ~' ) (2 24)

where the symbol ( ) s denotes the functional average
corresponding to the action S. It is seen that both

+ Tf g C7z+l ~7yOz+~F

1-- &+
2fpz 2

OIn„+ ~g p, d "r, (2.31)
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where the symbol Tr denotes the matrix trace. Thus the
integrands of both the functional integrals in Eq. (2.29)
are expressed in terms of q. It is natural, therefore, to re-
place the integration over y and ~ by the integration over
a new variable similar to q.

III. DERIVATION
OF THE NONLINEAR o. MODEL

The proper mathematical procedure of the change in
variables of integration is based on the Hubbard-
Stratonovich transformation. This procedure reduces to
the multiplication of the numerator and the denominator
in (2.29) by the following functional integral over a new
matrix variable P:

fexp —afTrPd r g)P, (3.1)

1P~P
+2vra vo~ 2Q

h, (3.2)

where a is an arbitrary positive constant. (For future
simplifying we choose it to be equal to ~vo/8~. ) Then the
Gaussian integration over y and ~ can be performed to
obtain the effective functional%[P, h ]:

9'[P,h]= fTrP d"r
8r

l 7TVp

2 fTr(Ph )d "r ——TrlnH(P),
2

(3.3)

where P, as well as Q and k, are SN X SN real-
quarternionic matrices,

and to a proper shift of this variable in order to cancel
both the interaction term proportional to q and the term
(if any) proportional to f in the expression (2.31). The ex-
plicit form of this shift is

1/2

V(P) is parametrically justified. In the hydrodynamic
limit of small frequencies co and phase gradients F, one
can consider corresponding terms in (3.4) as perturba-
tions and search for the spatially homogeneous saddle-
point solution Po at co=F=O. In this limit the operator
H in (3.4) is diagonal in the momentum representation.
Replacing the integration over momenta p by the integra-
tion over the energetic variable g=p /2m —sz, we get,
after the differentiation of (3.3) with respect to P,

Po= —f dg g E+— Po (3.6)

where

E=(e+i5p, )~, +i br a, , (3.7)

and 5=+0. In order to find the saddle-point matrix Po
from this equation, we first diagonalize the matrix E:

E= UoE(e)r, UO ',
where

E( e)=[( s+i6p, ) —b, ]'~

1 if' —6 )0,
2 g2 1/2

i p, otherwise .

(3.8)

(3.9)

The matrix Up = —Up
' is given by

Uo=(E+ E) ' (—QE ~, +i (/E+~yo, ), (3.10)

where E+ =e+E(e).
In deriving (3.9) we took into account that the function

(s —b, )'~ should be chosen to be analytical in the com-
plex plane of the variable c., with the cut being along the
real axis from —6 to A.

Multiplying Eq. (3.6) by Uo ' and Uo from the left and
right, respectively, we have

]H(P)= (s~,—+i br, ea, )+ II,II,
2m

CO+
FF+ P vzp~

27
(3.4)

l dA=-
E(s )s w, + (i —/2~)A

where

Po= UOAUO
'

(3.11)

(3.12)

The factor —,
' in the Tr ln term of Eq. (3.3) arises because

of the bi-Grassmann nature (2.13) of the field 4.
It is seen from Eq. (3.3) that the infinitesimal field f

enters in V[P, h ] in the same way as in the functional
S[q, h ] [Eq. (2.31)]. Therefore, the difFerentiation of
Z[h ] with respect to f gives the expressions for the
diffusion propagators (1.4) and (1.5) in a form analogous
to Eqs. (2.27) and (2.28), with the fields P standing for q
in all the functional averages:

r (3 r exp—
(P(r) P(r') ) f exp( —V[P])X)P

(3.5)

A= —z, (3p, . (3.13)

This solution does not depend on the superconducting or-
der parameter. At b, =O (and Uo= 1), it is evident that
this is just the solution which provides the absence of a
singularity in (3.3) and (3.4) in the upper half-plane of the
complex variable co.

Using the diagonal in the (R, A) space structure (3.10)
of the matrix Uo and taking into account Eqs. (3.8) and
(3.9), one has, from (3.12) and (3.13),

For large values of electronic bandwidth J—c~
))A, c,~, we can consider the limits of integration in
(3.6) and (3.11) to be +~. In this limit the diagonal solu-
tion of Eq. (3.11) in all cases is given by

where 9'[P]=V[P,O].
The advantage of the P representation is that the

saddle-point approximation applied to the functional

—p, s if' —6 )0,
—fs otherwise

(3.14)
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where the matrix s is introduced so that s = 1:

( ~E2 —g2~ )'r2 (3.15)

In the normal state b, =0, the second equation [Eq. (3.23)]
is trivial and the diagonal parts %', , and lV, , are in-

dependent. At b,XO only matrices %' with connected di-

agonal elements correspond to a degenerate saddle-point:

It is important that, even at b,AO, the solution (3.14) is
not unique at c. —6 )0. Beyond the gap there is a
whole manifold of solutions of the saddle-point equation
(3.6). Indeed, multiplying Eq. (3.6) by the unitary ma-
trices U and U from the left and right, respectively, one
obtains the same equation for the quantity U POU, if U is
a constant matrix commuting with s:

[U,s]=0 .

Ii means that at c )6 all matrices

(3.16)

P= U POU = —sg,
where

(3.17)

Q=U p, U (3.18)

(3.19)

are also the solutions of the saddle-point equation (3.6).
However, for E (5 the solution Po is unique. The
reason is that in this case the matrix Po commutes with U
and U POU=PD.

In order to find the symmetry of the matrix U obeying
(3.16), we first represent it in a form

Q, ,=O, Q, ,=o,g, ,o, . (3.25)

The meaning of the matrix Q is clear from (3.17). The
variable Q corresponds to the genuine normal excitations
in a superconductor, while the variable P describes the
difFusion of electronlike and holelike excitations which
can be converted into each other as a result of the An-
dreev scattering. That is why the off diagonal in the
(+e, —E) space terms are present in the matrix P, while
they are absent in the matrix Q. The diagonal parts Q, ,
and Q, , of the matrix g describe the diffusion of nor-
mal excitations with the energy E and —E (with respect to
the Fermi energy). We shall see below that in the absence
of the order-parameter phase fluctuations, the difFusion of
both excitations is independent, but the independence
breaks down when one takes into account these fluctua-
tions. Nevertheless, if we consider the effect of phase
fluctuations perturbatively, we need only one component

(3.24)

The conditions (3.23) and (3.24) are valid for any power
of "lV. Therefore, they are also valid for the matrix Q
[Eq. (3.18)] which determines the manifold of the saddle-
point solutions [Eq. (3.17)]:

b.('lV, ,cr, —o,'N, , ) =2HZ,
(3.20)

In the derivation of Eq. (3.20), we have omitted the
infinitesimal term in (3.7) proportional to p, because it is
essential only at c —6 (0 when the saddle-point solu-
tion does not depend on U. The first requirement [Eq.
(3.20)] together with the anti-Hermiticity condition

, , gives

(3.21)

Performing the Hermitian conjugation of the second
equation [Eq. (3.20)], one obtains, with the use of Eq.
(3.21),

where l4 is a 8%X8N anti-Hermitian real-quarternionic
matrix. As usual, ' ' the matrix 'N should be chosen to
be off diagonal in the (R, A ) space in order to exclude the
matrices U which commute with p, and, hence, give
P=PO [see (3.17)]. The new requirements resulting from
(3.16) may be expressed in terms of the components of the
matrix 'N in the (+E, —E) space:

Equations (3.17) and (3.18) together with (3.25) —(3.27) de-
scribe the degenerate saddle-point solution at Vy=m=0.
The small terms in (3.4) proportional to Vy and co as well
as nonzero VU break down the degeneracy. Our goal is
to obtain the explicit expression for the expansion of the
efFective functional (3.3) in powers of these perturbations.

In order to do this we make the identical transforma-
tion by multiplying the operator H in (3.3) by U(r) and
U (r) and take into account the nonzero commutator
[g, U], where g=P /2m —s~. As a result, we obtain, us-
ing (3.17),

H(U)=g —i+ ' P,'P,
27

(3.28)

(3.26)

for the full description. The symmetry of matrix Q in
(3.26) is just the same as in a usual o model for localiza-
tion in normal metals. From (3.18) and (3.25), it follows
that Q is a Hermitian real-quarternionic matrix obeying
the constraints

2 —l
(3.27)

TrQ =0 .

4('lV, ,o, —o.,'N, , ) = —2m*'N, (3.22)
where the perturbation V is given by

For real E considered here, the comparison of Eqs. (3.20)
and (3.22) leads to

V= —U (Fr,o. , +2iVUtU)+ —~, I3Ip, U

,=0,
b, (%', ,o.,—o, 'lV, , ) =0 .

(3.23)
(3.29)

After such a transformation the resolvent
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= [g E—+(i /2')PO] ' becomes independent on coordi-
nates and diagonal in the momentum representation. In
the case of interest c )6, we have

[VU U, Q]=VQ,
which follows from (3.18), we have

2

(3.39)

& = [fi(b)+if 2(k)p. ]
r

X.g+s (E —b, )' + p,2~
(3.30)

where (=2~/, b =2~(E —b, )'~ and

f, (g)+if2(g) =(P+ 1 b —2ib—) (3.31)

Now one can expand the effective functional (3.3) in
powers of V:

7= —
—,'Tr ln(1+% V) . (3.32)

fTr(U p, Up, [s,r, ]+)d"r .
8

(3.33)

Using the definition of Q [Eq. (3.18)] and calculating the
anticommutator [s,r, ]+, we obtain

l 7TV~CO
9'i = ' fTr(Qp, )d "r, (3.34)

This expansion reduces to the calculation of the ordinary
integrals over momenta and combining these integrals
with (3.18) to express the result in terms of Q rather than
U. Such an expansion to the first order in V gives

1 lV
V2= —fTr VQ — s[Fo„Q] d r

tp 2Vp

Ty Fv 2 ddy
4tp

where the coemcient zp is given by

Q2

(1+b )(E —b )

(3.40)

(3.41)

The coe%cient tp does not depend on 6, and it is related
to the diffusion coefficient Dp in a normal state far away
from the Anderson transition:

~voDO
tp

8
(3.42)

Equation (3.34) and (3.40) give the lowest-order expan-
sion of the functional (3.3) in powers of VQ, F, and co. It
is seen from (3.40) that the gradient of phase Vy is
present in the effective functional even if one takes the
forrnal limit 6~0. In a normal metal, such a depen-
dence on Vy is unphysical, because at 5=0 one can per-
form the unitary transformation of the matrix Q which
removes this dependence:

where, as expected, the coefFicient v, coincides with the
well-known expression for the density of states in a super-
conducting state:

4ib

1+6
(3.36)

where

(3.35)
(

2 g2)1 j2

The part of P' proportional to p gives a nonzero result
only in the second-order expansion

2

V2= fTr —[C+,Q] + [C,Q]+
8d 1+b

l lQ~exp —qr(r)i, o, ) Q exp ——y(r)~, o., )

(3.43)
However, at any b,&0 the transformation (3.43) cannot
be performed as it violates the relationships (3.23) and
(3.25) between Q, , and Q, , It means that the effect
of the order-parameter phase Auctuations is present even
if we set 6, =0 in (3.40). The reason is that the gauge in-
variance is broken at b,&0, and the symmetry conditions
(3.23) and (3.25) refiect this breakdown. Of course, one
can restrict oneself to the consideration of massless
modes [given by the constraints (3.23)] only for small mo-
menta k (ko. Therefore, the effective functional (3.42)
describes only very slow spatial variations of Q and y,
with the upper momentum cutoff kp being of the order of
the inverse coherence length:

C+ =i VU U+ (r,o, +sr, —cr,s)
4 z

F c=iVU U+ — so
(s —b, )

FC = (r,o, s~,—o, —s)

F
(

2 g2)1/2

(3.37)

(3.38)

1

(1+48'r')' ' (3.44)

Thus the effect of the phase Auctuations can be seen at
small 6 only very close to the Anderson transition point,
when the correlation length l, is larger than g.

One can take into account the symmetry (3.25) and ob-
tain the explicit expression of the functional 9 in terms of
the field Q defined by (3.26):

and the symbols [, ] and [, ]+ denote a commutator and
an anticommutator, respectively. With the aid of the
commutation properties [s,r„]+=0 and [s, Q]=0, it is
easy to show that Tr(C Q) =0. Using also the expres-
sion

—,
' 2[Q, y] = Vo+ 7

where

l C07TV~
Po= —f Tr( VQ) d "r + fTr(p, Q)d "r, (3.45)
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V fTr[Fo „Q] d "r
4to~o

fTr[Fcr„Q]+d r .
4to

(3.46)

(harv, )
D, (r —r') = tr( Q,", (r)Q» (r') )&, (3.47)

(harv, )
C (r —r') = — tr( Qz& (r)Q &z

(r') )&e'+"

(3.48)

where v, is given by (3.35) and the subindices 1 and 2 cor-
respond to the quarternionic space.

IV. EFFECT OF ORDER-PARAMETER
PHASE FLUCTUATIONS

The particle-hole and particle-particle diffusion propaga-
tors (1.4) and (1.5) can be expressed using Eqs. (2.27),
(2.28), (3.5), and (3.17) in terms of the following correla-
tion functions:

K(r —r') =fexp[i'(r) i—cp(r']f [p]X)qr, (4.3)

which behaves like the spin correlation function in the
classical XY model. Above two dimensions, d —2= c & 0,
this correlation function tends to unity at ~r —r'~ && T' '
and does not change the particle-particle diffusion propa-
gator at scales of interest ~r —r'~ & g. In two dimensions
the function K (r —r') is known to decrease at large dis-
tances, the decrease being changed from power law to ex-
ponential as the temperature is increased. ' In what fol-
lows we concentrate, however, on the behavior of the
correlation functions (QQ ) governed by the functional
&[Ql [Eq. (I »].

The linear in T term in the functional P[Q] [Eq. (1.3)]
is given by

exp(iy —iq&'). In the limit of small temperature T, one
can neglect the correlations between two y-dependent
factors in (3.48) and average them independently over the
thermal phase Auctuations. The result can be expressed
in a form analogous to (3.48), where the ( QQ ) correla-
tion function should be calculated with the functional
9'[Q] and the additional factor is replaced by an averaged
one:

The comparison of the functional (3.45) with that
describing the Anderson localization in normal metals'
shows that in the absence of the order-parameter phase
fluctuations and an external magnetic field the effective
functional is the same as in normal metals, except for the
proper change in the density of states. The last two
terms 7 in V[Q, y] describe the effect of the order-
parameter phase Auctuations. Omitting the inessential
N-proportional constant, we have, from (3.27) and (3.46),

fTr(o, Q) d "r,1

2tp (

where the characteristic length 1f is defined by

=(y z'k~)

Using the expression for the quantity T, ' we have
d —2 —1/d —1/2

Vp
i~ =(

EF7 6 Ep

(4 4)

(4.5)

(4.6)

V = — f (Vcp) Tr(cr, Q) d r,

2
~s 1 2+zo= c. +

c, —5 1+6Vp

where the coefficient yo is given by

(4.1)

(4.2)

To make clear the physical meaning of the term 2&, we
expand Q in (3.45) and (4.4) up to the quadratic terms in
the matrix W ='LV, ,:

Q=e ~p e = 1+W+ + p, . (47)
8'

Two different contributions to yo correspond to two
terms in (3.46). The contribution of the first term in
(3.46) describes the effect of a broken gauge invariance.
As seen from (4.2), this contribution does not depend on
disorder and it remains constant at c.))h. On the con-
trary, the second contribution, proportional to zp, van-
ishes in clean superconductors and for c. &)A. The strong
divergence of both contributions at c, =5 manifests the
breakdown of our perturbative consideration in a gap re-
gion.

In order to calculate the effect of the phase Quctuations
on the diffusion propagators (1.4) and (1.5), one should
average Eqs. (3.47) and (3.48) over the thermal Auctua-
tions of y(r) with the distribution function (1.1). The
averaging of D, (r —r') over such fluctuations reduces in
the replica limit X~O to the replacement of the func-
tional V[Q, @]by a new functional V[Q] according to Eq.
(1.3). The expression (3.48) for the particle-particle
diffusion propagator contains an additional factor

Using the property [W,p, ]+ =0, one obtains the follow-
ing expression for the corresponding functional

'=7~ '+Pg 'quadratic in W:

VD
'= ——fTr(V'W) d r+ ' fTr(W )d r,

0

(4.8)

(4.9)

D, (r —r') = — Tr( Wd(r) Wd(r') )&„(4.10)
(m.v, )

4X

fTr( W —cr Wcr W)d "r .
'1

f 2t 12 Z Z

0 f
The functional 9' ' determines the free-difFusion propaga-
tors (with no account for the Anderson localization
effects). The particle-hole and particle-particle free-
diffusion propagators are given by the correlation func-
tions
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and

(~v, )
C,' '(r —r')= Tr( W, (r)W, (r'))&~, ~IC(r —r'),

4N

(4.1 1)

functional P[g]. Instead, we will be interested in the
(Vg) terms arising in averaging of exp( —V ) over qr(r).
Such a term appears in the second-order expansion of
V[g] in powers of T:

where K(r —r') is defined by (4.3) and the matrices Wd
and 8' are the diagonal and off-diagonal quarternionic
components of the matrix 8' respectively. If we
represent the matrix 8' as a sum 8'= 8'd+ 8' and take
into account the relationship [o„Wd ]=0 and
[cr„W, ]+=0, we see that the terms in (4.9) proportional
to Tr(Wd) cancel each other. On the other hand, the
terms proportional to Tr( W', ) have the same signs and
they are present in (4.9). It means that the particle-
particle diffusion propagator has no divergence at
co=q=0, as was mentioned in (1.4). On the contrary, the
ordinary (particle-hole) diffusion propagator remains
divergent, as it should be according to the probability
conservation law

fTr(o, ger, VQ)Tr(o, Qo, VQ)d"r,
tp

where at T « 6 the coefficient o.p is given by'
2 2 2/d

ppT ppT ~F
&o

(4.14)

(4.15)

We have carried out the renormalization-group (RG)
analysis of the nonlinear o. model containing this term in
addition to the functional Vo [Eq. (3.45)]. The calcula-
tions, which we published elsewhere, are similar to those
made in Ref. 14. The main result of these calculations is
that the vertex [Eq. (4.14)] is a part of the combination of
vertices 7, which is relevant in the RG transformations:

1
Dd(q =O, co) ~

CO+l6
(4.12)

V =—f V(g)d"r,
p

where

(4.16)

8' =0. (4.13)

Though the functional 9'[Q] given by Eqs. (3.45) and (4.4)
is quadratic in Q, it is strongly nonlinear in the variable
W because of the constraint (3.27) and the parametriza-
tion (4.7). The higher powers of W which appear in the
further expansion of the functional P[g] describe the in-
teraction of the free-diffusion modes. Such an "interac-
tion" is present even in the case of noninteracting elec-
trons, and it is connected with the spatial correlations in
the electronic wave functions at different realizations of
the impurity potential. It is this interaction which leads
to the Anderson localization.

Near the Anderson transition point n =n„ the correla-
tion length l, ~ ~n n, ~

deter—mining the spatial corre-
lations in the electronic wave functions becomes very
large. It means that in the vicinity of the Anderson
transition the essential spatial scales q

' are of the order
of l, . Therefore, in the region l, ) lf, one can neglect the
nondivergent free-diffusion propagators in calculating the
effect of the interacting diffusion modes. Formally, it is
equivalent to the additional constraint

0,'=A 0
p

(4.18)

At small ap the renormalization of the coefficient t does
not depend on o. and it is the same as in the case of the
Anderson localization in normal metals in the presence of
time-reversal invariance. In the latter case the value t
is known to be proportional to the diffusion coefficient D,
which decreases near the Anderson transition. ' Using
the relationship D ~ l, ', we have

V(g) =Tr(cr, go, Vg)Tr(cr, go, VQ)

+ —,'Tr(o. ,g) Tr(c7, VQ)

—Tr[(cr, g) (o,VQ) ]——', Tr(o.,go, VQ)

(4.17)

The renormalization of the coefficient a can be expressed
in terms of the renormalized value of the coefficient t
attached to the gradient term in the functional Vo [Eq.
(3.45)]:

With the symmetry condition (4.13), the functional (4.4)
reduces to the inessential constant and the functional
(3.45) is equivalent to the nonlinear cr model defined on a
coset QEU(2N)IU(N)sU(N). This model is known'~ ~

to describe systems with broken time-reversal symmetry,
e.g. , the localization in a weak magnetic field. It is not
surprising that the order-parameter phase fluctuations
lead to the model of this kind because at nonzero V'cp

there are supercurrents in a system which violate time-
reversal symmetry.

It is interesting to calculate the behavior of transport
coefficients in the crossover region g( I, (If. In this re-
gion the q terms are the leading ones in all the free-
diffusion propagators [see, e.g., Eqs. (1.4) and (1.5)] and
we can neglect the gradientless terms in the effective

n —n,

n,
(4.19)

In the framework of the RG approach, the calculation
of the diffusion propagators (3.47) and (3.48) reduces to
the calculation of the free-diffusion propagators (4.10)
and (4.11) corresponding to the renormalized functional
V[g] expanded up to the quadratic in W terms (function-
al 9z '). The interaction between the free-diffusion modes
is actually taken into account in a process of the renor-
malization. The functional 9'z' ' consists of the renormal-
ized functionals (4.8) and (4.9) (with the coefficients t in-
stead of to) and the quadratic in W part of the functional
(4.16). It can be verified that the first two terms in (4.17)
make no contribution to the functional 9~ ' in the replica
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limit 2V~O. However, there is a contribution made by
the last two terms in (4.17), which have been generated in
the RG transformations:

fTr(VW) d r+ —fTr(cr, V W) d r .
2tp tp

(4.20)

If we again express Vii in terms of the diagonal and off-
diagonal quaternionic components of the matrix 8', we
obtain the following expressions for the coefficients at-
tached to the terms Tr(V'Wd ) and Tr(V Wd ):

1 cx
Dd ~ —1+——

2 tp
(4.21)

1 5o. t
D, ~ —1+

t 2 tp
(4.22)

00 n —n,
Dd =D 1+

2 n,
(4.23)

D, =D 1+ 5ap n —n,
n

3vE

(4.24)

Moreover, the coefficient Dd is no longer equal to the
coefficient D„ the difference increasing critically:

3vC
D, —Dd

0
—20!

n —n,
(4.25)

n,

V. CONCLUSION

Now we discuss the possibilities of the experimental
observation of the peculiarities in the diffusion propaga-
tors (1.4) and (1.5). The most usual way to measure the
difFusion coefficient Dd(E) in dirty superconductors is the
investigation of the thermal conductivity or the ultrason-
ic attenuation. Because of the electron-phonon interac-
tion, the equation for the phonon dispersion law acquires
an additional term:

co —coo(q) =
—,'g coo(q) X(q, co), (5.1)

where coo(q) =sq, s is a sound velocity, and g is a constant
of electron-phonon interaction. The imaginary part of
the self-energy X, which determines the low-frequency ul-
trasonic attenuation, is expressed in terms of the diffusion
propagator D, (q, co) as follows:

CO dfo
ImX(q, co) =—f ReD, (q, co) d E,

7T 0 d 'E
(5.2)

where fo(E) is a Fermi distribution function. At a

These coefficients are evidently proportional to the
coefficients Dd and D, defined in (1.4) and (1.5). Equa-
tions (4.21) and (4.22) show that in the crossover region
g(l, (l/ the coefficients Dd and D, are different from
the diffusion coe%cient D in a normal metal under the
same conditions:

3vE,

sufficiently low frequency of phonons, sq «s /Dd, Eq.
(5.2) reduces to

ImX= v, cDd c
2q' - dfo

(5.3)

where it is taken into account that the density of states v,
is zero at c. & A. At low temperatures T «6, the
ultrasonic attenuation is exponentially small because
of the exponentional decrease of the function
dfo/ds~ exp( —E/T). ' For the same reason the main
contribution to the integral (5.3) is made by the energy in-
terval E,

—6 & T «A. In this region the second term in
the expression for the diffusion constant (4.23) is dom-
inant because of the divergence of the coefficient 0,0 at
c —6~0:

0

2
E,F

2/d

(5.4)

Therefore, one can find both the coefficients Dd(s) and
D, (s ) by measuring the correlation function (5.6) at
different energies c and different shifts in energy ~.
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It means that, unlike the case of normal metal, the at-
tenuation constant increases rather than decreases as
n ~n, in all the crossover region g& l, & I&. In the close
vicinity of the Anderson transition I, &I&, the diffusion
coeScient and attenuation constant should decrease,
though considerably slower than in the case of normal
metal. Therefore, a peak might appear in the dependence
of the ultrasonic attenuation on the impurity concentra-
tion near the Anderson transition point. Of course, one
should not take this statement too seriously, because in
the vicinity of a gap region our perturbative calculations
cease to be valid. In the nonperturbative results, the
divergence in (5.4) has to be cut at small E —5, with the
cutoff occuring when the second term in (4.25) is of the
order of unity. Nevertheless, we can conclude that the
effect of the order-parameter phase Auctuations on the
electronic part of the ultrasonic attenuation is not negli-
gible even at low temperatures.

The next possible application of the results obtained is
connected with the reproducible Auctuations of the elec-
tronic density of states in an ensemble of small supercon-
ducting particles with sizes L &min(v'D/T, lI) (meso-
scopic ffuctuations). As follows from the results of Ref.
7, the correlation function (( v(E)v(8+co) )); z is propor-
tional to

«(.) (.+ )))...-, , +1 1

Dz(E)/L +co D, (c)/L +co.
(5.5)
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