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Quantum vector spin glasses with random Dzyaloshinsky-Moriya interactions

T. K. Kopec* and G. Buttner
Theoretische Tieftemperaturphysik, Uniuersitat Duisburg, Lotharstrasse 1,

4100 Duisburg 1, Federa! Republic of Germany
(Received 10 December 1990)

The infinite-range quantum vector spin glass with random Dzyaloshinsky-Moriya anisotropy
{with variances J and D for random bonds and anisotropy, respectively) and external magnetic field
(h ) is studied by means of the thermofield dynamics as a substitute for the replica method for the
spin values S=—', 1, and —.The temperature-anisotropy phase diagrams have been calculated nu-

merically for arbitrary anisotropy and different values of the applied magnetic field h. The stability
analysis of the mean-field-type solution against the action of fluctuations has been performed, lead-
ing to the upper and lower critical lines in the field-temperature plane. For small values of the re-
duced anisotropy variance d=D!J (0. 1 &d &0.3), we find a crossover of the upper critical line
from the de Almeida —Thouless (AT) -type behavior [T,(h)~h ] for small fields to the Cxabay-
Toulouse (GT) -like behavior [T,(h) ~h j for large fields. For larger anisotropies (d)0.3) the
upper critical line is essentially that of the AT type. Interestingly, the lower critical line, which per-
sists for d &0.5, exhibits the reverse type of behavior for the corresponding values of the anisotropy
d. Additionally, we have analyzed transverse and longitudinal susceptibilities for different values of
the field h. We found that a small amount of the anisotropy d stabilizes a plateau of the local sus-
ceptibilities in the spin-glass phase.

I. INTRODUCTION

In recent years it has been found that many of the
spin-glass properties are strongly inAuenced by various
types of anisotropies. Specifically, a pronounced anisot-
ropy inhuence has been found in a number of hexagonal
metallic spin-glass systems,

' which behave either
Ising-like or Heisenberg-like, depending on the sign and
size of the single-spin uniaxial anisotropy energy.
Theoretically, uniaxial anisotropy brings about several
new features which have been investigated either in classi-
cal or quantum-spin-glass models. " In particular,
it has been shown that the corresponding problem in the
quantum limit behaves qualitatively distinct from its clas-
sical counterpart. As has been demonstrated, ' for a
large negative uniaxial anisotropy and integer-valued
quantum spins, one expects a condensation in the S, =O
state resulting in a nonmagnetic spin state accompanied
by the destruction of the spin-glass phase. Therefore, the
investigation of various anisotropic agencies in spin
glasses constitutes a subject of current interest.

Experiments on the canonical spin glasses as CuMn
and AgMn in the presence of non-magnetic impurities
(e.g. , Au or Pt) with strong spin-orbit coupling to the
conduction electrons' reveal the existence of an anisotro-
py which is associated with the direction of the remanent
magnetization, but not connected with any crystallo-
graphic direction. ' It turns out that this kind of anisot-
ropy can be explained by the Dzyaloshinsky-Moriya
(DM) interaction' which describes the scattering of the
conduction electrons of the host (Cu) by Mn spins via the
spin-orbit exchange of the nonmagnetic impurity.
Theoretically the inAuence of the DM interaction has

been investigated in Monte Carlo simulations for classical
spin-glass systems' as well as in analytical studies with
random DM exchange. ' ' It has been found that ran-
dom DM is expected to play an important role in the
spin-glass transition, in particular, in the presence of an
applied magnetic field. Qualitative studies performed
with classical spins' and small anisotropies indicate the
appearance of interesting crossovers between Ising- and
Heisenberg-like behavior for certain ranges of anisotropy
and applied fields.

In the present paper we investigate in detail the quanti-
tative properties of a Heisenberg model with both ran-
dom Dzyaloshinsky-Moriya anisotropy (of arbitrary
value) and applied external magnetic field with special
emphasis on the crossover effects. Moreover, we consider
the (more realistic) quantum limit and analyze several
distinct cases corresponding to the spin dimensionalities
S=

—,', 1, and —,', which might be of interest from an exper-
imental point of view.

As emphasized elsewhere, the quantum spin glass in
comparison with its classical counterpart is far from be-
ing a trivial one due to the noncommutativity of the
operators involved which require special methods to han-
dle it. ' Typically, quantum mechanics manifests it-
self via time-dependent self-interactions and order param-
eters and, in contrast to the classical spin-glass systems,
the dynamics becomes an inherent feature of the problem
which significantly inAuences the calculation of e.g. , criti-
cal lines and transition points. The technique employed
here to deal with both randomness and quantum features
was introduced by one of us and has successfully been
implemented to other quantum-spin-glass prob-
lems. 2' ' It is based on the thermofield dynamics
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method (TFD), which presents a real-time finite-
temperature quantum-field theory. Apart from intrinsic
interest in dynamics, this method allows one to avoid the
use of the n-replica trick, simultaneously dealing with the
physical observables like response and correlation func-
tions. In this respect, the TFD method can be regarded
as a quantum counterpart of the Martin-Rose-Siggia
formalism, known as the dynamic approach to classical
spin-glass problems (see, e.g., Ref. 28).

In the following we will present calculations of the
anisotropy-temperature phase diagrams for several values
of quantum spins including the inAuence of an applied
magnetic field. Phase-transition points and lines are
found separating nonergodic spin-glass phases as indicat-
ed by the corresponding stability analysis. Special atten-
tion will be paid to the study of the variety of crossovers
from the Ising-like longitudinal freezing to the
Heisenberg-like behavior in the field-temperature plane as
manifested by explicit numerical calculation of upper and
lower instability lines for arbitrary values of the random
anisotropy. Specifically, we establish the range of ther-
modynarnic parameter involved for their occurrence.
Furthermore, we evaluate anisotropy, field, and ternpera-
ture dependence of longitudinal and transverse suscepti-
bilities as well as the corresponding spin-glass order pa-
rarneters which might be of interest while comparing the
predictions of the present work with experiments.

II. PRELIMINARIES

To facilitate the construction of the mean-field theory
for the present problem, we adopt a Hamiltonian

N N
H= —g [J)S; S +D;J (S;XSJ)]+g Ho;,

which describes the interaction of the quantum spins as-
sociated with the local moment S via the set exchanges
[J; j and [D,.J =(D",D~, D'); j, the latter corresponding
to the DM interaction. Here, the spin vector
S=(S„,S~,S, ) at a given site obeys the familiar spin alge-
bra commutation relation

Ho; = —hS„. (6)

and describes the action of the magnetic field along the z
direction.

To proceed within the TFD approach, we recall the
correspondence between the conventional statistical aver-
age and the TFD expectation value for a given operator
A:

~O(p) & =y e "
~nn &Z-'"(p),

where
~
n ) and

~
n ) are the eigenstates (with the eigenen-

ergies E„)of the Hamiltonians H and H, respectively, and
Z (p) =Tr exp( pH). Corres—pondingly, many properties
of the usual quantum-field theory can be extended to
finite-temperatures provided that one works with the to-
tal thermal Hamiltonian

(9)

rather than with H alone. The best merit of the TFD
method when applied to the quantum disordered systems
lies in the fact that, due to the vacuum normalization
condition &O(p)~O(p))=1, one avoids the so-called
"denominator problem" obstructing the calculation of
the quenched average and forcing one to use the n-replica
trick.

&O(P)~ A ~O(P)) =Tr(e ~ A)/Tr(e ~ ) .

Here, the temperature-dependent vacuum is introduced
where P= 1/k&T with kii being the Boltzmann constant
and T the temperature, while H represents the Hamil-
tonian of the system. In order to have a consistent opera-
tor formalism, one needs to double the operator degrees
of freedom. Corresponding to any operator A, a tilde
operator A is introduced. There is a mapping between 3
and 3 called the tilde conjugation rules, equivalent to
the Kubo-Martin-Schwinger condition. By using two
equivalent operator sets [ A j and [ A j, the thermal vacu-
um is expressed as

[S„,S ] =i pe„„S (2)
III. QUENCHED AVERAGE

AND FUNCTIONAL INTEGRAL FORMULATION

and the multiplicity S is defined by
2S

g (S„+S—l) =0
1=0

with p=x, y, z and S S=S(S+1). The J; (iWj) are
quenched, independently distributed exchange interac-
tions with the probability distribution

P(J; )=(N/2mJ )'~ exp( NJ; /2J ) . —

A similar distribution is assumed for the anisotropy con-
stants

P(D; )=(N/2nD )
~ exp[ —N(D;J D;J. )/2D ] .

As usual, the scaling of the variances J/N and D/N
ensures a sensible thermodynamic limit N —+~. The
second term in Eq. (1) is given by

As usual, in the dynamic approach we shall discuss the
thermodynamics of the system in terms of the disorder
averaged generating functional for the TFD causal
Green's functions

&Z[n]&~n

= I + + dJ, dDi'P(J, )P(Di')Z"[ri, [J," j", [D; j],
(10)

where Z [il, I J; j, [D;1 j ] is the unaveraged generating
functional for a fixed realization of random bonds and

)J n represents the subsequent average with respect
to the probability distribution (4,5). Specifically, in the
interaction picture with respect to the single-body Hamil-
tonian (6), one obtains the unaveraged generating func-
tional
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Z[p, f&;, [, [D;,]]=(OP Texp —i f dt[HI[t&+h„[t)] 0][),
where lO~P) refers to the thermal vacuum corresponding to the single-site IIamiltonian (6) while

@,(t)=g e. {J,,S;(t) S;(t)+D,,-[S;(t)XS;(t)]] (12)

and

A„(t)=f dt'A„(t, t'), (13)

A„(t, t')= gg—g (e, E, )' 'rt„".(t, t')S„',(t)S"„(t')~ =1
i abpv

(14)

represents the source term to account for the nonlocal (in time) expectation values of the composite spin operators.
Furthermore, e&

= 1, @2=—1, and the spin operators are defined in the interaction picture in the standard way as

S', ( t ) =exp( iHO t )S„';exp( iHO t )—, (15)

where p =x,y, z and the thermodoublet notation has been adopted S„' =S„,S„=S„.The disorder average (10) amounts
in a Gaussian integration over J, and 0, variables

(Z[p]]i~=(O,][ T exp —f dt f dh'[E[&, t')+A„[t, t']] Od),
where the effective four-spin coupling reads

E(r, t')= g g E.e, {J'[S;(t) S;.{t)][S,'(t') S,'(t')]+D'[S;(t) XS;(t)] [S,'(t') XS,'(t')] j .~ = 1

iWj a, b

Now, using the vector identity

{AXB) {CXD)=(A.C)(B.D) —(B C)(A D),
one obtains, after some algebra,

t(t, t')= g g e.e„g{J'S,'„(t)S;„(t)S,".(t')S,"„(t')+D'[S,'„(t)S,' (t')S;.(t)S,'.(t') —S;„(t)S,'„(t')S,'.(t)S;„(t')]] .
1

i' ah p, v

(19)

Subsequently, in the large-N limit, by employing the relation

g A;A = gA; +0(1),X~. ' ~ 2N

we can write the quantity K(t, t') as
2

K(t, t')= ge.e„(1—d')g g 'S(t) '„S(t') '+d' gg S„',(t)S', (t') ' +0(1) .
a, b p, v l I p

(20)

(21)

Furthermore, parametrizing according to Sherrington
and Kirkpatrick with the help of the Gaussian func-
tional integration, we find, for the averaged generating
functional for the causal TFD functions,

(Z[vl, {J; ], {D; )])JL]

=f ++DQP)R' exp( NL [Q, R]+A[q]—),
a, b p, v

TrR'= f dt f dt'gR''(t, t')R"'(t', t) .
a, b

Here,

(24)

with

TrQ'= f dt f dt'g+Q„". (t, t')Q'.„'(t', t),
a, b p, v

where the single-site dynamic effective Lagrangian reads and

L[Q]=TrQ +TrR —ln@[Q, R] (23) R "(t,t')=R"'(t', t)
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represent symmetric tensor fields which are nonlocal in
time. Subsequently, the source term is A[il ]=Tr(Qi) ) /J and

UgR( —0D;+ ~ )

=T,exp i—j dt J dt'H& R(t, t') (26)

e[Q, R]=(O,P/ UgR( —~;+~ )io,P),
while, for the evolution operator in the interaction pic-
ture, one obtains

containing the time-ordered exponential resulting from
the interaction picture. Furthermore, the effective time-
dependent single-site thermal Hamiltonian takes the form

H(2R(t, t')= —J g g (e, eb)'~ [(1—d )' Q„'„(t,t')+dR' (t, t')5„]S„'(t)S„(t').
a, b p, v

(27)

5L[Q, R]
5Q ah

5L[Q, R]
gg ab

Thus, one obtains

Q' (t, t')= ,'(e e )' J(l—d)' G' —(t, t')

and, correspondingly,

Rob(t, t')= ,'(e, eb)'~'d —g6„'„(t,t')

(28)

where the causal TFD function is defined as

G„'",(t, t')

From Eq. (27) it can be read off that the quantum gen-
eralization of the problem results in a time-dependent
self-interaction JQ„' (t, t') and R' (t, t') between spin
operators at the same site which have to be determined
self-consistently.

In the N ~ OQ limit, the steepest descent method can be
used which amounts in finding the stationary points Qo„
and R 0 (t, t') determined by the extremal conditions

C(co) =R(co) 1

1 —JX(co)R(co)
(33)

2„' (co) = [ U R(co)rX„(co)U R(co) ]'
with

(34)

sinhg(co) cosh/(co)
cosh(t (co) sinhP(co)

l
e~ —l

U R(co) =

sinh (t(co)=
(35)

as the thermal transformation matrix. The correspond-
ing diagonal matrices in the thermofield component space
are

and

&~ (co)
&' (co)=

0

0 'ab

&„(co) (36)

The self-energy part and causal TFD Green's function in
thermofield space can be diagonalized with the help of
the thermal Bogoliubov transformation. For example,
the self-energy part [and similarly 6(co)] can be decom-
posed as follows:

(O, P~)T S„'(t)S (t')Ug ( —;+)~O, P)
(O,P) T, U~, ( —;+) ~O, P)

gR
G„' (co)=

G„,(co)

ab

(37)

and the averages at the right-hand side of Eq. (31) are cal-
culated with the effective Hamiltonian containing the
self-consistency value of the Q and R fields

IV. ORDER PARAMETERS AND SUSCEPTIMI. ITIES

The location of the spin-glass transition can be de-
scribed by the divergence of the inverse relaxation rate
characterized by a generalized damping function I „(co)
(p=x, y, z), defined as

r„-'(~)=i [6 (~)]„„

for co —+0 if one approaches the spin-glass freezing tem-
perature from above. Furthermore, by using the Dyson
equation for the TFD causal Green's function in the ma-
trix form,

1

0

with 6„' '(co) being the matrix of retarded (advanced)
Green s functions. The dynamic spin self-interaction can
be written as follows:

X„'",(co)=Je, eb(1+2d )6'„(co) . (38)

one can write the Dyson equation in terms of the retard-
ed (advanced) response function, e.g. ,

XR (co)
( )=

1 —J (1+2d )6 (co)
(39)

Making use of Eqs. (32)—(38) and observing that, in zero
field, one has rotational symmetry in the spin-component
space

[gR(A)( ) gR(A)( )5 yR(A)( ) yR(A)( )5 ]
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and, consequently, from Eq. (32)

G~(co)X~ (co)r-'(~) =
1 —J (1+2d )G~(co)

ar, (~)
Bco

(40)

k~T, (h =0)=—,'JS(S+1)(1+2d )' (41)

Below the freezing temperature in zero field, the onset
of the glassy phase is marked by a nonzero value of the
spin-glass order parameter. Within the context of the dy-

The denominator of Eq. (40) represents the renormaliza-
tion of the damping function due to the random exchange
while the nominator containing the derivative of the self-
energy is the further renormalization due to the dynamic
self-coupling. We shall assume that c)X~(co)/c)co is finite
and discuss the resulting low-frequency behavior. In the
limit co~0, Eq. (40) implies a singularity of the inverse
relaxation time at the transition temperature T, . For the
zero of the external magnetic field, one obtains

namic theory, the spin-glass order parameter has to be
determined via time-persistent quantities. To accomplish
it, we factorize the matrix of the causal TFD Green's
functions into finite-time (G„,) and time-persistent
parts (G„„)„' as follows:

G„'.(t, t') = (G„,)„",(t, t')+ (G„„,)„".,

where

(42)

(43)

For the finite-time part, one has restored time-
translational invariance in thermal equilibrium

G„,(t, t') =G„,(t —t')

and the correspondence with measurable quantities is
achieved by the following decomposition of the Fourier-
transformed causal Green's function in the space of the
thermofield components

(G„s )„' (co)= [ U ~(co)rG„(co)U ~(co) )'"

2i(C„s )„(co)= [rG (co)j'— e~"+1 Pco/2

Pco /2

(44)

Here, (C„)„(co)refers to the matrix of the thermo-
dynamic correlation functions in the spin-component
space being related to G„(co) by means of the usual
fIuctuation-dissipation theorem. Furthermore, it turns
out that the time-persistent part (G„„)' (co) has the form

ab
1 1

(G„„)„'~(co)= 2vn q„„5—„5(c'o)

(g„,)'".(t t') = ,'—(e, E, )—'"Jy.5(t t')o., —

where

y„= lim G„(co) = lim G„" ( co)
co—+0 60~0

(48)

(49)

quantum fluctuations on a time scale such that the finite-
time part of the dynamic self-interaction can be presented
by an instantaneous term

where

q„=qL6„,+qT(1 —6„,) (46)

is the matrix of static susceptibilities which can be
decomposed into longitudinal and transverse parts ac-
cording to

is the Edwards-Anderson (EA) spin-glass order parame-
ter ' and qL and qT are the order parameters associated
with longitudinal and transverse spin-glass ordering, re-
spectively. In fact, by substituting Eq. (45) into (44) and
using (42), one obtains, for the total correlation function,

C„(co)= ( C„,s )„(co)+2vrq„o(co) (47)

in accordance with the standard dynamic definition of the
EA spin-glass order parameter.

Because of the appearance of the dynamic self-
interaction JQ„'" (co) in the effective thermal Hamiltonian
(27), the explicit solution of Eq. (31) is a rather formid-
able task. For this reason we will focus on the effects of

X„.=~„.[X &„.+X (1 —&„.)) . (50)

The time-persistent contribution to the effective
thermal Hamiltonian can be represented by using auxili-
ary Gaussian integrations having the form of a static
Gaussian noise which acts as a random field to generate
time-persistent autocorrelations. Accordingly, the self-
consistent equation (31) becomes

G",(t t') = ( G„".(t —t'lz) ), —,
where, for the noise-dependent unaveraged causal
Green's functions with the use of the vacuum normaliza-
tion condition we get

6„'(t —t'lz) = i ( (PO, )l zTS„'—(t)S'(t') U«( —~;+ ~ lz)lO(P, z) ) (52)
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U& ti ( —oo;+ ~~z)=T, exp i—f dt H(t~z) (53)

Here, A.&(z) (1=0, . . . , 2S) represents one of the 2S+1
eigenvalues of the effective single-site quantum-spin
Hamiltonian (36), while

and the Gaussian average over the static noise
z = (z„z~,z, ) is given by

W, ,(z)
a„X,(z) =

h =o
(61)

3(. . . ) — d z —~z~/2. . .
)
3/2 (54)

(55)

which contains the static noise, while the time-ordered
exponential contains only the finite-time part of the dy-
namic self-interaction. The corresponding total single-
site effective Hamiltonian can be then established via the
correspondence (7)—(9) with its thermal counterpart and
reads

H(z)= —
—,'J (1—d ) gy„g S,

p, , v

+d gy„„g(S„) +Ho(z) . (56)

Here, ~O(/3, z)) is the thermal vacuum associated with
the single-site effective Hamiltonian

Ho(z)=HO —gJ (1—d )q„„+d gq '/2z„S„,

where h„denotes an infinitesimal longitudinal (trans-
verse) applied magnetic field.

T' he temperature and field dependences of various
suceptibilities and spin-glass order parameters for
different anisotropies and quantum-spin numbers are
presented in Figs. 1 —4. The remarkable feature of the
zero-field susceptibilities is that their temperature depen-
dence in the paramagnetic phase is the same irrespective
of the aniostropy value. More interesting behavior ap-
pears in an applied magnetic field h, where the suscepti-
bilities in the spin-glass phase exhibit a rather weak tem-
perature dependence with increasing anisotropy constant
d and a remarkable similarity of the transverse (yT) and
longitudinal (yl ) components. This can be explained as
a result of the mixing of various modes via the random
DM interaction. Indeed, as follows from Eq. (56), the
temperature behavior in the paramagnetic phase is deter-
mined via the self-consistent solution for the quadrupolar
parameters y„. However, for zero field, mixed modes
disappear as a result of isotropy and with y„=y5„and

From Eq. (56) it is seen that various susceptibilities cou-
ple to the squares of spin operators and thus y„can be
considered as a kind of quadrupolar order parameter
which should be determined self-consistently together
with q„„. The corresponding self-consistency equations
which follow from Eqs. (43) and (49)—(56) are then

1.0—

q„= (m'„(z) )„y„.= (y,.(z) ), ,

where p, , v=x, y, z, while m„(z) and

y„(z)=G„(co=0,z)

(57)

0.6-
are the magnetization induced by the static random fields
and the unaveraged susceptibility, respectively. Further-
more,

2S
m„(z)= —g [B„A,,(z)]pi(z),

I =0

while

(58) 0

2S

y„.(x)= —y [a„a.X,(z)]p (x) 0.2—

2S
+/3 g [8 A, i(z)][8„X,(z)]pi(z)

1=O

—m„(z)m (z)

0.0
0.0

I

0.1 0.2
I

0.3 0.4 0.5

where

exp[ —/3Ai(z)]
P, (z)=

2~
Oexp[ —

/3A, k(x)]
(60)

FIG. 1. The temperature (t =k~T/J) dependence of the lo-
cal static susceptibility for h =0 (y=yL =gT) and d =0, 0.1,
0.3, 0.5, 1 (from the top to the bottom, respectively), and for
S=—'

2



43 QUANTUM VECTOR SPIN GLASSES WITH RANDOM. . . 10 859

the property S S=S(S+1)one arrives at the purely di-
agonal effective quantum Hamiltonian (56). As a result,
the weighting factors (60) are independent of X, irrespec-
tive of the quantum-spin value, resulting in a Curie be-
havior of the susceptibility in the paramagnetic phase.

V. INSTABILITY LINES AND PHASE DIAGRAMS

1.0-

XL(T)

0.8-

The generalized damping function [Eq. (32)] diverges
in the static limit (co~0) also in the case of the applied
magnetic field (h%0), where it splits into one longitudi-
nal [I, '(co)—:I I '(co) ] and two transverse relaxation
times

I '(co) = I" (~)—:I (~),

'( )=( ~
IG '(,*)I„„ (62)

respectively. It is convenient to work with the unaver-
aged TFD causal correlation functions G„' (co, z) which
depend on the static noise z and the corresponding self-
energy parts g„' (co, z). Specifically, one has

0.6—

0 4—

0.2—

~ ~

~ ~

where the unaveraged TFD causal functions can be
decomposed with the help of the thermal transformation
matrix as follows:

0.0
0.0

I

0.1
I

0.2
I

0.3
I

0.4 0.5

G(co, z) = U R(co)TG(co, z) U R(co), (63)

where

G „',(co, z) = G„(co,z)

0 G„" (co, z)

' ab

(64)

Furthermore, expanding the corresponding Green's func-
tion in powers of the self-interaction X, one obtains

G(co, z) =R(co,z)+ R(co, z)JX(co)R(co,z)

+2(co,z)JX(co)2(co, z)JX(co)2(co,z)+. . .

FIG. 2. The temperature (t =k~ T/J) dependence of the lo-
cal static longitudinal (y&, dotted lines) and transverse (y&,
solid lines) susceptibilities for fixed anisotropy d =0.3 and
different values of the applied field: h =0, 0.125, 0.25, 0.5 (from
the top to the bottom, respectively). The quantum-spin number
is fixed at S=

—,'.

and

where

(65)
X„'„(co,z)=

X„(co,z)

X„(co,z)

ab

(69)

X„',(co)=Jr, eb (1—d )G„' (co)+d g G„'„(co)
p

(66) The unaveraged dynamic-response function G (co, z)
obeys, in turn, a Dyson equation

and G(co) = ( G(co, z) ), is the averaged causal TFD
Green's function.

The expansion (65) is generated by the following Dyson
equation for the function G(co, z):

G (co, z)

=XR(co,z)[1—J [(1—d )G (co)+d TrG (co)]j

(70)

G(coz) =R(co, z)+R(co, z)JX(co)G(co,z),
where

R(co, z) = U R(co)TX(co,z) U R(co)

(67)

(68)

which follows directly from the Eqs. (63), (64), and
(68)—(70).

Specifically, differentiation of Eq. (71) with respect to
the frequency co leads to

gGR gGR gGRJ2 (1 d2)GR(~ z) GR( z)+d2Tr G R( z) ~ GR(~

aR, (~,z)+G (co, z)XR '(co, z) RR (co, z)G (co,z), (71)
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FIG. 3. The temperature (t =k& T/J) dependence of the lo-
cal static longitudinal (yL, dotted lines) and transverse (y~,
solid lines) susceptibilities for h =0.25 and d =0.3 for different
values of the quantum-spin number: S=—', 1, —(from the bot-
tom to the top, respectively).

FIG. 4. The temperature (t = k& T/J) dependence of the lon-
gitudinal (ql, dotted hnes) and transverse (qT, solid lines) spin-
glass order parameter for fixed anisotropy d =0.3 and different
values of the applied field: h =0, 0.125, 0.25, 0.5 (from the top
to the bottom for transverse and from the bottom to the top for
longitudinal components, respectively). The h =0 curve is iden-
tical for qL and qT and cut the temperature axis at T, (h =0)
[Eq. (41)]. The quantum-spin number is fixed at S=—'.

while, for the static-noise averaged quantities, one has, in terms of spatial components (a =x,y, z}

5„—J (1—d )y„')(ro)+d gg„')(ro) ()G (co)
Bc&

where we have adopted the notation

y„"'(~)=([G„.(~,z)]'), .

a,P, y, g

(G „(co,z)[X~ '(co, z)] p
()X~ (co, z)

[XR '(ro, z)]rsG s„(co,z) ), ,
C)CO p&

(72)

(73)

Furthermore, by observing the rotational symmetry with respect to the z axis (the direction of applied field), one can ex-
plit-. itly write

y(T2)(~) y(2,)(~) y(2)(~)

~(2)(~)—~(2)(~) ~(2)(~) ~(2)(~) (74)

~(2)(~) ~(2)(~) ~(2)(~)

The condition for divergence of the inverse generalized damping functions l „'(ro=0), which is equivalent to the
marginal stability reads x =0, where ~ belongs to the set of eigenvalues of the matrix A

&p =5„—J (1—d )y('(0}+d gy~ '(0} (75)
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determined from the following equation:

det( A —)(I)=0 .

Specifically, taking into account Eqs. (75) and (76), one obtains the following components of A:

A 11 A 12 A 13

A 12 A 11 A 13

A31 A31 A33

(76)

(77)

with

J2
I
~(2 )( () ) +d 2[~(2)(() ) +~(2)(P ) ] ]

= —J~[y(2)(0) +d2[y(2)(P) +y(2)(0) ] ]

= —J~[y( )(Q)+d [y( )(0)+y(~)(0)]]

J2 [~(2)(P ) +d 2[~(2)(0 ) +~(2)(0 ) ] ]

= 1 —J2[y(~)(0)+2d2y(2)(0) ]

(78)

The corresponding eigenvalues of Eq. (77) in the general case turn out to be

J2
K, ,= 1 —

I y( )(0)+y")(0)+y")(0)+d'[y")(0)+y")(0)+4/")(0) ] ]

J2
+ ( [+(2)(0) +(2)(0)++(2)(0)+d2[+(2)(P)++(2)(0)]]2

+ 8[+(2)(P)+d2[+(&)(0)++(2)(0)]]I+(2)(0)+d2[+(&)(0)++(2)(0)]]))/2 (79)

where the eigenvalue K)(d, h, T) stands for the upper and
~z(d, h, T) for the lower critical line, respectively.

For zero anisotropy and an applied magnetic field h,
one has

X„' '(0) =X' '(0)t)„

I

even for the simplest assumption concerning the replica-
breaking scheme.

In the case of zero magnetic field h =0, but nonzero
anisotropy d, one has

~(2)(0)—~(2)(0) ~(2)(p)

and from Eqs. (78) and (79) one obtains

(80)

and y„'~)(0)=y(,'(0), which, subsequently results in

x., =l —J [y' '(0)+2y( '(0)](1+2d ),
(can= 1

—J [y' '(0)—y„' '(0)](1—d )
(81)

for the pure quantum Heisenberg spin-glass model. Here,
the vanishing of the degenerate eigenvalue ~1 determines
the upper critical line [the so-called Gabay-Toulouse
(GT) line ] which describes the transition from the er-
godic to the nonergodic spin-glass phase. Note that, in
this case, the upper critical line can be determined by the
equivalent condition of vanishing of the transverse com-
ponent of the spin-glass order parameter (qT=O). The
lower critical line [the so-called Almeida-Thouless (AT)
line ] resulting from the condition )(2=0 describes, in
turn, the transition in the field-temperature plane from a
region with small nonergodicity to strong nonergodicity
(and cannot be determined from the corresponding condi-
tion qz =0 due to the applied field which makes qL
nonzero everywhere). Moreover, since the lower critical
line already lies in the spin-glass region, its exact calcula-
tion would presumably require the quantum analog of the
Parisi replica symmetry-breaking scheme. However, ex-
plicit calculations of the static properties in this region of
the h-T phase diagram would be extremely complicated

with the eigenvalue ~, being nondegenerate and ~2 being
twofold degenerate. In the absence of the anisotropy
(d =0) the above eigenvalues vanish at the same critical
temperature T, [Eq. (41)], i.e., the lower and upper criti-
cal lines coincide in zero field. For finite anisotropy, this
is no longer true and the corresponding phase diagram is
presented in Figs. 5 and 6 for different values of the quan-
tum spin.

For finite anisotropy (dAO) and the applied field
(hXO), the degeneracies of the eigenvalues )r, and ~z in-
terchange with x1 being nondegenerate, as compared to
the corresponding zero anisotropy case. Therefore, one
expects a crossover behavior from the Heisenberg GT-
type to Ising AT-like with increasing anisotropy (or from
Ising-type to Heisenberg-type for a given anisotropy d
and increasing magnetic field h), as can been seen in the
field-temperature (h-T) phase diagrams calculated (Figs.
7 and 8) numerically for several values of the anisotropy
constant d. Here, for the rather narrow interval of aniso-
tropies, one observes the characteristic changeover from
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1.5 FIG. 6. The anisotropy-temperature (t =k& T/J) phase dia-
gram (upper critical lines ~&=0) for h =0 (dotted line) and
h =0.5 (solid lines) and for different values of the quantum-spin
number: S= 2, 1, 2

(from the left to the right, respectively).
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VI. SUMMARY AND DISCUSSION
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FIG. 5. The anisotropy-temperature (t =k&T/J) phase dia-
gram for (a) S= —,', (b) S=1 (~, =0 and ~2=0 for upper and

lower critical lines); zero-field case (dotted lines), (a):
h/J=0. 125, 0.25, 0.5, (b): h/J=O, 0.25, 0.5 (solid lines, from
right to the left, respectively; the lower critical line for h =0.5
is suppressed).

the convex-type AT line to the concave shape of the criti-
cal line typical for GT behavior. Moreover, this cross-
over manifests itself in the anisotropy-temperature phase
diagram (d —T) (Figs. 5 and 6) as a characteristic reen-
trant behavior at the upper critical line for nonzero h.
Note, however, that in the nonzero field case, the upper
GT line cannot be determined from the condition qz-=0.
The remarkable feature of the random DM anisotropy is
that it leads to a mixing of the longitudinal and trans-
verse modes and for h WO one has qI %0 as well as qz.AO
everywhere. Therefore, the determination of the phase
diagrams and critical lines can only follow via the full
stability analysis [Eqs. (72)—(79)].

We have considered the eftect of the random
Dzyaloshinsky-Moriya interactions in Heisenberg quan-
tum spin glasses using the thermofield dynamics as a sub-
stitute for the n-replica trick. As far as critical (i.e. , in-
stability) lines are concerned, the presence of random
DM anisotropy leads to a crossover at the upper critical
line from the Ising [T,(h) ~ h ~

] to the Heisenberg be-
havior [T,(h) ~h ] manifested on the field-temperature
(h-T) phase diagram with increasing field. The lower
critical line, in turn, exhibits the reversed behavior, i.e.,
the crossover from Heisenberg-like to typical AT Ising
behavior. However, our numerical calculations show
that this characteristic e6'ect is rather weak and occurs
for small anisotropies d. For larger values of the anisot-
ropy constant (d &0.3), the upper critical line is practi-
cally indistinguishable from the shape of the AT line
while the lower critical line is suppressed for d &0.5.
This might suggest that random DM interaction is re-
sponsible for the lack of the characteristic GT-like shape
of the upper critical line, as has been detected in many
experiments with Heisenberg spin glasses. Therefore, the
actual observation of the crossover phenomenon would

presumably require samples with precise controlled dop-
ing since the addition of a few hundred parts per million
of nonmagnetic impurities increase the DM anisotropy
by orders of magnitude, ' thus affecting the picture (in
the field-temperature critical line) considerably. Howev-
er, it is interesting to note that measurements on CuMn
alloys doped with Au impurities (which induce strong
DM anisotropy) indeed show that the irreversibility onset
line progressively changes from GT-like to AT-like as the
concentration of Au is increased in consistency with the



43 QUANTUM VECTOR SPIN CiLASSES WITH RANDOM. . . 10 863

4.0

1.0

3.0

0.5

2.0

0.0
0.0 0.1 0.2

1.0

3.0

2. 0

0.0
0.00 0.25 0.50

I I

0.75 1.00

s~~s(s+ s)

1.0

FIG. 8. The field-temperature (t =k&T/J) instability lines
(upper and lower) for fixed anisotropy d =0. 1 and different
quantum-spin numbers: S= 2, 1, —(from bottom to the top for
lower and upper instability lines, respectively).
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FIG. 7. The field-temperature (t =k& T/J) instability lines
(upper and lower) for (a) S= 2, (b) S=1, and various anisotro-
pies including d =0 (dashed lines), d =0.1 (solid lines), and
d =0.3 (dotted lines). The d =0. 1 critical lines show Ising-to-
Heisenberg crossover. (upper line) and reversed behavior (lower
line).

presented picture of random DM anisotropy.
Another characteristic feature of the random DM in-

teraction is a strong mixing of the longitudinal and trans-
verse modes. In our calculations this is best seen from
the field and temperature dependence of the longitudinal
and transverse susceptibilities. Specifically, the presence
of DM anisotropy is reflected by a rather weak tempera-
ture dependence of various susceptibilities (a plateau for
strong anisotropies) in the spin-glass phase as compared
to the pure Heisenberg spin-glass case. Moreover, the
calculations which include the eFect of magnetic field in-

dicate the pronounced similarity of the shape for longitu-
dinal and transverse susceptibilities as a function of tem-
perature. For example, the cusp of the transverse suscep-
tibility with field, present in the pure case as well as in the
case of Heisenberg spin glass with nonrandom uniaxial
anisotropy, ' is washed out in the DM case as a result of
mixing of various modes.

In closing, we would like to stress that, although we
have considered here a specific case of random anisotro-
py, it would be interesting to check whether a similar pic-
ture persists in other cases which may be present in real
spin-glass systems. Of special interest are anisotropies
which randomly mix spin directions, e.g. , random
dipole-dipole interaction or even random local anisotro-
pies as uniaxial anisotropy with random axial direc-
tions.
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