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Anharmonic perturbation theory for the lattice-dynamic shell model
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We construct a perturbation theory to compute the phonon response function and thermodynam-
ic properties of ionic solids described by an anharmonic shell model.

I. INTRODUCTION

The study of dynamic and thermodynamic properties
of a solid beyond the harmonic approximation is of great
interest. In particular, the anharmonic effects in the crys-
tal response to neutron scattering are to date well known.
This can be qualitatively summarized by saying that a
complex anharmonic self-energy modifies each harmonic
phonon frequency. The real part leads to a change in the
frequency value, while the imaginary part is the recipro-
cal of the single-particle amplitude for the phonon life-
time. This last effect is observed as a broadening of the
peaks in the energy distribution of the scattered neutrons.
All these facts have been theoretically understood by us-
ing many-body techniques. In particular, diagrammatic
expansions for the perturbative evaluation of the renor-
malized phonon frequencies and the phonon lifetime were
used by Maradudin and Fein, for a rigid-ion model.

For the lattice dynamics of ionic crystals the so-called
shell model was used with considerable success. In this
model, the outer electrons of the ions are represented by
a spherically symmetric massless shell of charge. The po-
larizability effects are thus incorporated in the dipole ap-
proximation. This leads to a better description of the ob-
served dynamical properties, as compared with the rigid-
ion model. In the harmonic approximation the usual
treatment is to eliminate the sheH coordinates from the
equations of motion by using the adiabatic condition.
Therefore, an effective potential for the motion of the
cores (nuclei) is given. However, in a general anharmon-
ic situation the shell coordinates cannot be explicitly ob-
tained from the adiabatic condition. Therefore, the for-
mulation of the dynamics and statistical mechanics of the
shell model is not trivial. By means of a perturbative
method the self-consistent phonon approximation" has
been recently extended to include calculations with a gen-
eral anharmonic shell model. However, the method pro-
posed in Ref. 5 is valid only to evaluate the free energy of
the system. In a recent work we have obtained the quan-

turn partition function for a general adiabatic shell model
by using the path-integral representation.

The aim of this paper is to find a perturbative method
to evaluate the phonon response function (susceptibility,
Green's functions) and thermodynamic properties for a
solid described by an anharmonic shell model. For this
purpose we will take as a starting point the partition
function obtained in Ref. 6.

II. PRELIMINARIES

The partition function for a general rigid-ion model is:

Z= J 2)u exp ——J dr[ —,'M; u 'u j+ ,'D; u'u~-] pa

periodic h o

+4„(u)]

where u' denotes an ionic displacement whose Cartesian
component, cell, and ionic site are summarized in the in-
dex i. The quantity u ' is the time derivative with respect
to the Euclidean time variable 7.=it, and D, and M; are,
respectively, the dynamic and mass matrices.

The quantity Nz is the anharmonic piece of the in-

teracting potential and is given by

W~ =&3+44+
where

ll 72 l

I 2

By writing the displacement u in the basis of eigenvec-
tors A which diagonalizes completely the harmonic part
of the potential, the expression (2.1) takes the form
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0 Og (2.5)

In (2.4) we have written the free phonon propagator
given by

The expression (2.10) for Z also can be written as

Z = f2)u 2)v 2)A. 2)g2)y)texp ——S'(u, v, A, , g, y)t)
1

where

0 0 1

69„+COk

(2.6)

(2.12)

where the effective action S' is defined by

S'(u, v, A, , yi, g )=SE(u, v)+ f dr[A.;X'+yitP'~yi ],
0

with co„=(2m.lPh )n the Matsubara frequency and co& the
eigenvalues of the dynamical matrix. The index k corre-
sponds to the set of indices (k, j). The first index runs
over the Brillouin zone and the second one is a polariza-
tion index. The nth interaction term in the q representa-
tion is given by F . . . . By means of these definitions,

qn

the diagramatic representation in q space is directly ob-
tained. '

On the other hand, the anharrnonic Green's functions
are given by adding diagrams with two external legs.
Moreover, it is weil known from Dyson's theorem that
the correction to the free phonon frequencies 6kk and
the inverse I kk of the phonon lifetimes are obtained by

making

lim g (f1+is)= Ph [b,qq (—0)—iI qq (0)] .
kk'

(2.7)

The quantity gzz. (Q+ie) is the sum of all the diagrams
strongly connected up to a given order, analytically con-
tinued to all the complex frequency plane.

In the rigid-ion model the electronic cloud effects are
taken into account in the interaction potential between
ions. It is known that a suitable way to incorporate the
polarizability effects is by treating the electrons as mass-
less shells, with empirical potentials between shells and
between cores and shells. The equations of motion to
study the lattice dynamic of systems which are described
by the shell model, can be obtained from the following
Lagrangian:

(2.13)

where

P'J(u, v )= BN
BU;BU.

ae
X~(u, v)—=-

BUJ

(2.14)

(2.15)

III. PERTURBATIVE EVALUATION
OF THE PHONON RESPONSE

FOR THE SHELL MODEL.

With the aim of giving a perturbative method to evalu-
ate the phonon thermodynamic Green's functions we
take as a starting point the partition function expression
(2.12). The potential @(u,v ) will be in general a polyno-
rnial in the u' and v; variables and therefore the last term
on the right-hand side of Eq. (2.13) will also be a polyno-
mial expression in the u, U, A., g, and gt variables.

If we define the quantity

u
X(i )= v; (3.1)

In (2.12) we have used the integral representation for
the 5 function and the det[P] was written as a path in-
tegral on the Grassmann variables g.

L(u, u, v)= —,'u 'M,iu ~ C&(u, v ), — (2.8)
the expression (2.13) can be written in terms of it and will
contain terms of the form

where U is the displacement of the jth spherically sym-
metric shell and 4 is a general interacting potential.

The Euler-Lagrange equations are

2 8. . . y(i, j, . . . , k )X (i )X8(j) Xy(k ), (3.2)

B.8 y(l,j, . . , .k. ,. h, p)X. (i)X'(j) Xy(k)nh np

.. ) ()4
au'

(2.9a) (3.3)

We use the convention of summation on repeated in-
dices for both the Greek and italic ones. The Greek in-
dices run from 1 to 3. In the repeated italic indices, in
addition to the summation over sites, an integral from 0
to ph in the continuum variable y must be understood.
We will use this convention whenever the integral on ~ is
not explicitly written.

In order to construct the matrices A and B appearing
in (3.2) and (3.3), the indices of sites must be fixed and the
matrix coefficients A~&. . . z and B~&.. .

&
will be deter-

mined in such a way that the development of terms of the
form (3.2) and (3.3) allows us to obtain the expression
(2.13) for a given potential @. In the way the matrix
coefficients of the polynomial are constructed, we can see
that the Greek and italic indices are not independent.

ae
OUI.

(2.9b)

Z= f, 2)u 2)vDet[P]5(X)exp ——SE(u, v )
1

periodic A
path

(2.10)

where the Euclidean action is

S~(u, v)= f dr[ ,'u 'M; u J+—@(u,v)] . (2.11)

where this last equation is the adiabatic condition.
The quantum partition function for this model is given

b 6
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That is, permutations in the Greek indices imply permu-
tations in the italic ones.

Now we can consider the usual Feynman rules for a
given theory. That is to say, the propagator will be given
by the harmonic piece of the action and the remaining
anharmonic piece will be represented by vertices.

The harmonic piece No of the potential N can be writ-
ten as follows:

(3.4)

In this case the expression (2.13) for the efFective action
S' takes the form

S0 ( u, u, A, , i) ', ri) = f ( —,'M;, u 'u i+ ,' R;J u 'u—i+T~u 'U,
0

where the elements of the matrix D in (3.11) are defined

by

TkS —
1( T T)1

ij ij i kl J (3.13)

(i, j )
o(P

The matrix D is the well-known dynamical matrix in
real space. The matrix g is the free-phonon propagator of
the efI'ective rigid-ion model. Such propagator is ob-
tained when the adiabatic condition (2.9b) for the poten-
tial No is used to write U, as a function of u '.

Now we are going to give the Feynman rules in real
space for a general anharmonic interacting potential.

(i) Propagators: We associate to the propagator
G &(i,j ) a line connecting the two points i and j

+S"U;A, +S'~ri; T)J )dr,

where we have used the following equations:

aeo
Tm i+Sim

BU

(3.5)

(3.6)

We associate to the propagator S;. ' a wavy line con-
necting the two points i and j,

(3.7)
(ii) vertices: The generic vertices (of n legs X (i)) are

represented by

We have used a notation to make evident the lack of
symmetry in the coupling constant present in the poten-
tial N under permutations of the indices. Therefore, we
use upper- and lower-site indices for both the displace-
ment fields and the coupling constants.

The above lack of symmetry is due to the distinction
between the strength acting on the ith ion when the shell
jth is displaced and the strength acting on the jth ion
when the ith shell is displaced.

Using the definition (3.1), the expression (3.5) for So
can be written as follows:

( —1)—A i3. . . ~(i,j, . . . , k)1

(
—1)8 &. . . ~(i,j, . . , k, h, p. )

So =
—,'X (i)[G '(i,j)] +~(j)+i);S"i), , (3.8)

where the matrix G ' whose elements are [G '(i,j )] &
is given by

G S S
s 0 '

(3.9)

Looking at the expression (3.8) we can see that in this
formalism there are two propagators, one for the field X
and another for the ghost field q. These propagators are
given by the matrices [G(i,j )] ~ and S; ', respectively.
The inverse of the matrix (3.9) is

g gC 0
6 = Cg CgC S (3.10)

0 S-' —S-'
In (3.10) we have called g and C the matrices whose ele-
ments are

(iii) A minus sign must be added to each closed loop
built up to g fields, owing to its Grassmannian character.

(iv) Each diagrain must be multiplied by the corre-
sponding topological factor.

(v) The summation over all internal indices, Greek and
italic, must be carried out.

(vi) The external legs can take only the value a= 1 cor-
responding to the first component of the field X, whi h
is the unique independent dynamical field.

Therefore the other two components (U and A, ) of the
field X and the ghost field q can contribute only to the
internal structure of the diagrams.

Now we are going to illustrate the above considera-
tions with an example which allows us to check our per-
turbative method. We take a model with the following
potential:

+(u, )=U,'R;Ju'u'+T —u'U + ,'S'JU;v—
(3.14)

g;& (r) =(M;,8,+D, ). .

S—
1( TT)k

(3.11)

(3.12)
where R, T, S, I', and L, are matrices which give the
atomic force constants.
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Using the equations

=T u'+Si v +—'F u'u +I. u'v
Bv

7 P IJ 7 J
Vm

(3.15a)

18GI (i, k)A tI (k, l, m)Gtls(l, p)

XGy (m, q)As (p, q, h)G I(h,j),
18G, (i, k)A tI (k,p, h)GIIs(p, l)

(3.20a)

ae &1m+I Im i (3.15b)

X G„(q, t ) A s„(l,q, t )G
& (P,j), (3.20b)

( —1)g, (i,k)B (k,p, q)S

Xsq, 'B&(l, m, t)G&&(l,j), (3.20c)

and the definition (3.1), the expression (2.13) for the
effective action takes the form

: ( —1)3G, (i,k)A tie(k, l, m )

X G&,(/, p )G~, (m, j )B,(p, h, t )Sh,
' . (3.20d)

S'= ,'X (—i )[G '(i,j )] +~(j)+ilats'jri

+ —,A tj~ (i,j,k )X (i )XP(j )Xr(k )
1

+B (i,j,k)X (i)ritrjk . (3.16)

If we consider (3.14) for a particular case in which
L/~=0, from (3.16) we can see that the ghost and the X
fields are not interacting. Hence the ghost fields can be
integrated out of the path integral and the diagrams
(3.20c) and (3.20d) do not appear. Therefore, up to
O(F ) we have

In the present case the only nonvanishing matrix ele-
ments are +0 F
A Ilz(l, j,k ) —A», (l, k,j)—A», (k, I,j ) =F,",
A ]]3(ij,k )= A &3&(i,kj )= A &3&( ki,j )=Fk

A, zz(i, j,k ) = A z,z(j, i, k ) = A zz, (j,k, l ) =L, "
,

(3.17a)

(3.17b)

(3.17c)

(3.21)

By developing these diagrams the following expression
can be written

A Iz3(l,j,k ) —A I3z(I, k, j ) —A 3z, ( k, j, l ) = A , z(j3, i, k )
9

gpn +
2 (gplX(Ith )gtighj (ijk )gkm )

B,(i,j,k)=Lj" . (3.17e)

= A3, z(k, i,j)= Az3, (j,k, i)=Lj", (3.17d) +I gplX(lth ) ghlX(ijk ) gjkgtn )

+
2 (gpl (lhpj )ghpgjm ) (3.22)

The two vertices corresponding to the interacting po-
tential (3.14) are

where

k —1 I
(ijh ) (ij IkII I7)

—1 I
X(mnij ) =F(mnS ItIIFij ) ~

(3.23a)

(3.23b)

(3.18)

The parenthesis means that the expression has been
symmetrized in all the indices enclosed. The indices en-
closed in vertical bars are understood as excluded from
the symmetrization. This symmetrization comes natural-
ly from the explicit computation of the terms in the dia-
grams (3.21).

On the other hand, for this particular potential we are
treating, it is possible to define an effective rigid-ion
theory. This can be done by writing the field v; as a func-
tion of the u' through the adiabatic condition (2.9b).
Later on, the field v; thus written must be replaced into
the potential. Then we obtain

The diagrams with two external legs, containing up to
two vertices (second order in the coupling constants) are

@' (u ) =N' (u )+N' (u )+@' (u ),

where

(3.24)

e'(u)= —,'u'(Z; —T;hS 'T )uj, (3.25a)

+O(F,L ) . (3.19)

Using the diagramatic rules given above, the analytic

expression for each diagram is:

alt; ( u ) = —,' TIS;.'F„-u 'u 'u P, —

~'g ( u ) = SF/~Sj 'Fph u 'u ~u Pu—h —.

(3.25b)

(3.25c)
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Therefore the effective theory contains vertices of three
or four legs. From (3.25) we see that only the symmetric
part of the factors multiplying the fields u ' must be taken
into account.

Now we can compare this last result with the previous
one obtained in the framework of the general treatment.
To do this we must add diagrams up to O(F ) which in
the last case are

+O(F ) . (3.26)

where g is the free-phonon propagator given in (2.6) and
in this case mk are the eigenvalues of the dynamical ma-
trix of the shell model ~ Consequently, we must insert uni-
ties J J in the analytic expressions (3.22) of the diagrams.
Thus, the first term of the diagrams gives rise to the ex-
pression (2.6) for the free propagator g in q space. The
other terms give rise to the corresponding expression for
the different quantities X in q space.

It i~ easy to see that the added terms to the harmonic
propagators contain anharmonic constants. Therefore,
they are corrective to this free propagator.

Having this fact in mind we propose for the shell mod-
el the following generalization of the Dyson theorem
given in the rigid-ion theory. We assume that the correc-
tions to the frequency and lifetime of the phonon are for-
mally given in the expression (2.7). But we interpret that
the quantity gkl, is now given by the sum of all the terms
obtained from the diagrams strongly connected to the
general theory which has the external g removed. We
note that diagrams strongly connected in the general
theory give rise to expressions which never can be
separated into two or more independent pieces by only
taking out one g. Finally, as in the rigid-ion theory, the
sum of the vacuum-connected diagrams allows us to com-
pute up to a given order the partition function Z and
therefore thermodynamical properties can be obtained.

Before concluding this section we wish to remark that

The evaluation of the diagrams (3.26) by means of the
usual rules of the rigid-ion theory in real space, leads to
the same results as those obtained in (3.22).

In summary, we have given the diagrammatic rules for
the evaluation of anharmonic properties in a shell model
with a generic interacting potential, even if there is no
possibility of writing v; as a function of u . In the partic-
ular case in which the anharrnonicity is such that the
effective potential 4(u, u(u )) can be defined, our results,
using the perturbative scheme developed here, are the
same as those obtained from the usual anharmonic crys-
tal theory.

For the computation of the phonon thermodynamic
Green s functions through a perturbative formalism, it is
more convenient to use a representation in a Fourier
space. This Fourier representation is obtained by writing
the diagrams of the type (3.22) given in a real space, in a
representation where g is diagonal. This transformation
remains defined by the unitary matrix Jwhich verifies:

(3.27)

IV. THE PHONON LIFETIME IN THE NONLINEAR
POLARIZABLE SHELL MODEL

In this section we show that the phonon lifetime for
the polarizability model is infinite at lower perturbative
order.

The nonlinear polarizability model describes the
dynamical properties of a 1arge variety of ferroelectric
materials. This model is characterized by a local anhar-
monic core-shell interaction which corresponds to the
nonlinear polarizability of the anion (i.e., 0 ). Such
anharmonic coupling treated in the self-consistent pho-
non approximation accounts for the temperature depen-
dence of the ferroelectric soft mode and other measured
properties in several materials. ' But this approximation
does not provide a knowledge of the phonon lifetime.

For convenience, we use w=v —u as a relative dis-
placement coordinate instead of the shell coordinate v.
In terms of the u and w coordinates the potential of the
model can be written as

4(u, w ) =—,'R i u 'u J+ T~u 'w + ,'S'jw; wj—

+—F~ wwwwi kl
i j k I (4.1)

where, in this case, R, T, and S represent the harmonic
interaction between u and w, and I' is the anharmonic
coupling.

Taking into account the definitions of Sec. III, the ac-
tion is written,

~a~P~f~aP (4.2)

where

~ 2222 ~ 3222 ~ 2322 ~ 2232 ~ 2223 +22 (4.3)

our diagrammatic expansion can be simplified by taking
into account that the Greek and italic indices are not in-
dependent. Therefore the set of italic indices can be elim-
inated.

Consequently, considering the analytic expression for a
given diagram, and after computing the matrix product
in the Crreek indices, we proceed as follows. (a) First, we
order all the terms and consider that two of them are
equal when one can be obtained from the other by inter-
changing the order of the factors. (b) The matrices g ap-
pearing in each term of the sum will be interpreted as
"propagators, " and with the remaining pieces we con-
struct matrices which can be interpreted as "vertices. " (c)
Subsequently, to reintegrate the indices we proceed as fol-
lows: The S ' matrix must be used as a connector be-
tween the other matrices. Thus, a summation over the
lower indices of this matrix and the upper indices of the
remaining matrices must be carried out. (d) Finally, the
matrices which represent "vertices" must be symmetrized
in all their indices. A summation over the indices of
these matrices and the indices of the ("propagators") ma-
trix g of all possible forms must be carried out.
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In order to use the simplified diagrammatic rules, all
the italic indices were suppressed. The lowest-order dia-
grams are

—12
G ]~ 24 ~py$ Gpy GQ] (4.4)

: 2G~~&.pS 'Gpi . (4.5)

Developing the summation over the Greek indices and
by using our rules we obtain the following:

(i) The expression of diagram (4.4) contains two
different kinds of terms. One of these has a "vertex"
given by

X(jkl~) F S&t Sp& Sqi S~ T(j Tk Tl T~ )

The other one has the following "vertex:"

X =F"Pq"S 'S 'S . 'T'. T'
(jk) nt pq ri (j k)

(4.6)

(4.7)

Therefore, we can see that the analytic form of the dia-
gram (4.4) is

1— = —12 —
)
g ij +(jlkm) gkl gmq

1

2 gij (j klm) gklR~q 7 (4.10)

where the terms without internal propagator g cancel
among themselves.

When we consider the Fourier representation of the ex-
pression (4.10), we can see that it is equivalent to that

corresponding to the tadpole diagram
in a rigid-ion model with quartic anharmonicity given by
X. Therefore, there is no contribution to the phonon
linewidth up to this perturbative order.

V. CONCLUSIONS

We have constructed a perturbative formalism useful
for computing anharmonic properties in a lattice-
dynamics shell model. For the case in which an effective
potential for the core can be defined, our results are the
same as those provided by the rigid-ion theory. More-
over, we have proposed a generalization of the Dyson
theorem given in the rigid-ion theory, for the shell model.
This generalization allows us to interpret the results of
the diagrammatic in terms of corrections of the frequency
and lifetime of the phonons.

1+
~p, glj +(jk)gkq (4.8)
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