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Adaptive phase formation in martensitic transformation
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It is shown that an appearance of an intermediate martensite phase called adaptive martensite
may be expected if the surface energy of a boundary between two orientational variants of the nor-
mal martensite phase is very low and the typical lattice-mismatch-related elastic energy is high.
The adaptive martensite is formed as an elastically constrained phase when the scale of structure
heterogeneities induced by the crystal-strain accommodation is reduced to the microscopic scale
commensurate with the twin-plane interplanar distance. An example of the cubic—tetragonal
transformation is considered where the adaptive phase has a pseudo-orthorhombic lattice. The
crystal-lattice parameters of the adaptive phase are expressed through those of the parent cubic
phase and tetragonal normal martensite. It is shown that the (5,2)7R martensite in S'NiAl alloys
and the intermediate phase recently found just above the temperature of the fcc— fct martensitic
transformation in Fe-Pd are examples of the adaptive martensite. A possible role of the adaptive
phase in the thermal nucleation of the martensite is discussed. The nucleation of the normal mar-
tensite may be bypassed by nucleation of the adaptive phase, which transforms to the normal mar-
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tensite during the growth.

I. INTRODUCTION

Any structural transformation resulting in reduction of
the point symmetry of a crystal lattice produces a
crystal-lattice mismatch with the parent phase. The ki-
netic, structural, and thermodynamic characteristics of
the martensitic transformation arise when an elastic ener-
gy generated by the crystal-lattice mismatch between the
parent and product phases proves to be about equal to or
much greater than the transformation chemical driving
force, i.e., when ue3/|Af|~1 or ue/|Af|>>1, where
wel is a typical elastic energy, €, is a typical crystal-lattice
rearrangement strain characterizing the mismatch be-
tween the martensite and parent phases, u is a typical
shear modulus, and Af is the transformation driving
force equal to the difference between the specific free en-
ergies of the stress-free product and parent phases. These
relations between the transformation-induced elastic en-
ergy and the chemical driving force impose severe con-
straints on the transformation path and make the kinetics
and thermodynamics of the ‘“‘strong” martensitic trans-
formation different from those of the conventional phase
transformations. Under these conditions the phase trans-
formation can proceed only along the transformation
path providing almost complete accommodation of the
crystal-lattice mismatch. The transformation path is
characterized by a sequence of mesoscale coherent struc-
tures formed by martensitic plates consisting of the quasi-
periodic alternation of lamellae of two twin-related orien-
tational variants of the martensitic phase. The habit of
these lamellae coincides with the twinning plane (see Fig.
1). According to the geometrical theory by Wechsler,
Lieberman, and Read! and Bowles and Mackenzie,? the
volume ratio of the two variants of the martensite phase
should be chosen so that the macroscopic shape change is
described by an invariant plane strain, the invariant plane
being a habit plane. It has been shown by Khachatu-
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ryan® and Roytburd* that formation of a coherent mar-
tensitic plate with this morphology does not generate the
volume-dependent elastic energy, which is the only part
that could affect the phase equilibrium in classical ther-
modynamics. The elastic energy proves to be proportion-
al to the habit plane surface and is called (somewhat in-
correctly) the energy of the semicoherent interfacial
boundary. This elastic energy, together with the conven-
tional surface energy of twin boundaries separating
lamellae of two orientational variants, determines the
period A of lamellae (see Fig. 1):
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FIG. 1. Schematic representation of the martensitic phase
plate composed of twin-related lamellae of two orientation vari-
ants of the martensitic phase. The appropriate d,-to-d, ratio
completely accommodates the martensite-to-parent phase mac-
roscopic transformation strain mismatch along the habit plane.
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where D is the width of the plate, r, =7, /1€ is a ma-
terial constant with the dimension of length, y,, is the
twin surface energy, and p is the shear modulus. If the
thickness of the plate, D, is a constant, then the period A
is a constant as well, and the alternation of the twin-
related lamellae is periodic. The lamellae in this case can
be regarded as elastic domains* because of their profound
analogy with the magnetic and ferroelectric domains.’ A
manifestation of this analogy is the similarity between
Eq. (1) and the corresponding equations for the domain
size of ferromagnetic and ferroelectric domains.®

II. ADAPTIVE MARTENSITE

The martensitic transformation develops through for-
mation of internally twinned plates filling the sample.
Like magnetic or ferroelectric domains of large crystals, a
typical width of a twinned plate, D, in Eq. (1) is deter-
mined by nucleation kinetics, crystal lattice defects, un-
dercooling, and cooling rate.

Let us consider a situation where the typical mesoscale
size D and the material constants 7, are small (small twin
surface energy ¥,, and large typical elastic energy ued),
i.e., where

Y tw
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(a,, is the atomic interplanar distance for the twinning
planes). Then, according to (1), a typical twin size A also
decreases. The decrease can occur only conformally so
that the ratio of the volumes of the twin-related lamellae
o is kept constant to maintain the invariant plane trans-
formation strain. This conformal miniaturization of the
twinned martensitic structure has a natural crystallo-
graphic limitation that the lamellae thickness cannot be
less than interplanar distance a,, of the twinning plane
and that the thicknesses of twin-related lamellae d,; and
d, should be a multiple of this interplanar distance. In
other words, the following conditions have to be met:

4 o d\=ma,,, d,=na,, d,+d,=A
d2 l—a)’ 1 tw? 2 tw? 1 2 >

()

where m and n are small integers. Therefore, w is related
to the volume fraction of one variant in the martensite
plate shown in Fig. 1. Actually, miniaturization of twins
is constrained by a repulsion between the microtwin
boundaries. The interaction is substantial when the twin
size becomes comparable with the correlation length or,
which is the same, with the width of the twin boundary.
In the case of sharp boundaries, the minimum thickness
of the microtwins is limited by the crystallographic con-
straint (2).

When lamellae of the twin-related orientational vari-
ants reach a size comparable with the interatomic dis-
tance a, the mesoscale structure of the martensitic plate
becomes a microscale structure. Then the martensite
plate has a microtwinned (microinhomogeneous) lattice.
This lattice can equally be regarded as an ideal homo-
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geneous lattice whose atomic structure is related to the
atomic structure of the normal martensite lattice by an
appropriate shuffling of crystal planes imitating the twin-
ning plus a certain distortion of these planes and their
interplanar distances imitating the homogeneous parent-
to-martensite phase transformation strain for the normal
martensite. It, of course, should be remembered that the
miniaturization may affect the crystal-lattice parameters
of the twins when twin width is comparable with the dis-
tance between twin boundaries plane. This is actually a
twin boundary interaction effect, which is substantial if
the distance between the nearest twin boundaries be-
comes microscopically small.

Hereafter we call this crystal lattice produced by mi-
crotwinning (plane shuffling and plane deformation) an
adaptive lattice, and we call the corresponding martensite
the adaptive martensite. Then the microtwinned marten-
site plate described above can be regarded as an ideal
single-domain crystal coherently imbedded into the
parent-phase matrix. The total surface energy of the set
of microtwin boundaries is proportional to the martensite
phase volume ¥V and is of the order of ~(y,,/A)V. Be-
cause of this it should be included in the volume-
dependent part of the bulk free energy of the adaptive
martensite and thus renormalize the free energy. This
raises the specific free energy of the adaptive martensite
above the specific free energy of the normal martensite by
the value ~y,,/A. The semicoherent elastic energy of
the boundary should be included in the interfacial energy
between the adaptive martensite and the parent phase.
Therefore, the adaptive martensite can be formed only if
its renormalized specific free energy is less than the
specific free energy of the parent phase (the elastic contri-
bution to the specific free energy of the adaptive marten-
site vanishes because of the invariant plane strain con-
straint imposed on the adaptive martensite lattice).

The crystal lattice of the adaptive martensite has lower
symmetry than that of the normal (nontwinned) marten-
site. Particularly, the period A shown in Fig. 1 becomes a
new long period of the adaptive lattice. A fingerprint of
the adaptive martensite is the following geometrical
property of its crystal lattice: 4 unit cell of the adaptive
martensite is related to the transformation-related unit cell
of the parent phase by an invariant plane strain.

This necessary condition is a direct consequence of the
constrained nature of the adaptive martensite. Its
fulfillment can be readily verified for each specific case.
The condition imposes a severe geometrical constraint on
the crystal-lattice parameters of the adaptive martensite,
which is a pure result of the crystal-lattice accommoda-
tion. It is very hard to imagine a situation when the
values of the crystal-lattice parameters of the stress-free
parent phase and homogeneous martensitic phase provide
an invariant plane strain crystal-lattice rearrangement by
accident.

The second distinguishing feature of an adaptive mar-
tensite is that its shuffling planes must always be parallel
to the twinning (mirror) plane relating two orientational
variants of the normal martensite. For example, this re-
quirement predicts a (110) parent plane for the cubic-to-
tetragonal transformation.
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The third feature is less obvious. Equation (2) gives

Wy

s |3

1—w, ’

where the m /n ratio is fixed by the condition that m and
n are small integers, whereas o, is fixed by the invariant
plane strain requirement and, thus, is unambiguously
determined by the crystal-lattice parameters of the crys-
tal lattices of the normal martensite and the parent phase.
There is, however, almost no chance that the crystal-
lattice parameters are such that the wy/(1—w,) ratio is
exactly equal to the simple fraction m /n. The only way
to eliminate the mismatch between these two values
is to insert faults in the regular alternation,
-++dydydd, -, of the microlamellae thicknesses
d,=ma,, and d,=na,,. The faults should be the wrong
size microlamellae of the normal martensite whose thick-
ness deviates from the regular thicknesses d, =ma,, and
d,=na,, by one or several interplanar distances a,.
The thickness of faults and the distance between them
should be tuned up so that the volume ratio of all mi-
crotwins belonging to the first orientational variant and
microtwins of the second orientational variant (including
the faulting twins) is equal to the ratio wy/(1—w,) dictat-
ed by the requirement of the variant plane strain for the
adaptive martensite. The average distance between
“faulted microtwins” together with their thickness deter-
mines the position of the diffraction spots generated by
the adaptive martensite, which should deviate from the
positions  determined by the rational period,
A=a,,(m+n). This effect is similar to the effect of
stacking faults’ or correlated faults in a layer structure.?
The positions of spots, in general, do not coincide with
rational points of the reciprocal lattice. The latter fact,
as well as the dependence of the diffraction spot positions
on the temperature and composition (through the depen-
dence of w, on the temperature and composition via the
crystal-lattice parameters) may create the incorrect im-
pression that the martensite actually is an incommensu-
rate phase. The difference that may distinguish the fault-
ed structure of the adaptive martensite from an incom-
mensurate phase is the dependence of superlattice spot
positions of the adaptive martensite on the Brillouin
zone. Such a dependence is typical in randomly faulted
structures but should not be observed in commensurate
structures where the positions of the spots are the same
in all Brillouin zones, around different fundamental
reciprocal-lattice points.

Finally, a typical feature of the adaptive martensite is
sensitivity of its crystal structure to the applied stress.
The stress affects the two orientational variants
differently, depending on a mutual orientation of their
tetragonality axis with respect to the principle axes of the
stress tensor. The stress suppresses one variant and pro-
motes the other. As a result, the fraction wy/(1—wy),
and, thus, the period A, change. Large stress can com-
pletely eliminate one of the variants and, therefore, trans-
form the adaptive martensite to the normal martensite.

Below we consider a particular, but very important,
common case of the cubic-to-tetragonal martensitic
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transformation that illustrates the properties of the adap-
tive martensite. We apply the adaptive martensite con-
cept to the well-investigated cases of Ni-Al and Fe-Pd al-
loys and compare the calculation and observation results.

III. ADAPTIVE MARTENSITE
FOR THE CUBIC-TO-TETRAGONAL
CRYSTAL-LATTICE REARRANGEMENT

A cubic-to-tetragonal crystal-lattice rearrangement
transforms one of the cubic lattice parameters, a., into
the parameter ¢, of the tetragonal lattice and two other
mutually perpendicular parameters, a., into the parame-
ter a, of the tetragonal lattice. Such a transformation
generates three orientational variants of the tetragonal
phase distinguished by the direction of the tetragonal axis
with respect to cubic axes of the cubic parent phase. The
tetragonal axis can be parallel to one of the three direc-
tions, [100]., [010]., and [001],. The crystal-lattice
rearrangements producing these three orientational vari-
ants are described by three stress-free strain tensors:

& 0 0
e)y=10 €, 0|,
0 0 &,
&, 0 o0
€2)y=10 € 0 |, 3)
0 0 €,
& 0 o0
e3=10 €, 0],
0 0 €
where the strain components €3;=(c,—a.)/a,,

€%, =(a,—a,)/a, describe the crystal-lattice mismatch
between the tetragonal phase and the cubic matrix in the
stress-free state. The mismatch between any two orienta-
tional variants, for example, between the second and the
first ones, is, then, described by the difference

Ae(12)y=€(1); —€(2)Y

100

=(e}3—€}) |0 T 0. @)
000

The tensor Ae(12), can be rewritten as
Ae(12)y=¢(1) —e(2)};
=(eh—e))im;+1m;) , (5)

where 1=(1/v2,1/v'2,0) and m=(1/v'2,1/v2,0) are
unit vectors along the [110] and [110] directions of the
cubic matrix. Since Ae(12), is a symmetrized diadic
product, the corresponding stress-free mismatch tensor
describes an invariant plane strain. The invariant plane
is normal to one of the vectors / or m and thus is either
(110), or (110).. Because of that, the boundary between
the two martensite variants is stress-free if it is parallel to
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either of the two planes, (ITO)c or (110),. A coherent ad-
justment of the orientational variants along (110), results
in their rotation to eliminate the gap on the boundary
(see Fig. 2). The rotation angle is

¢ T
arctan— — —

=2
¢ a, 4

It follows from Fig. 2 that two martensite variants are in
the (110) twin-related position. Since a martensite crystal
is a sandwich composed of alternating twin-related lamel-
lae of two variants of the tetragonal phase, then the total
stress-free macroscopic shape change is described by the
average of the respective strains
?,-j=a)e(1)?j+(1—a))e(2)?j ,
where @ and 1—wo are volume fractions of both orienta-
tional variants composing the martensite crystal. To pro-
vide a stress-free boundary between the tetragonal phase
sandwich and the cubic phase matrix, the mismatch ten-
sor €;; should be an invariant plane strain. This is possi-
ble if one of the components of the tensor €; vanishes. It
can vanish only if €J; and €}, have different signs (i.e., if
the martensitic transformation expands one of the cubic
axes and contracts two others) and if |€3;] > |€9;]. This is
the case for practically all known martensitic transforma-
tions. Following the line of reasoning of Refs. 3 and 4 for
small strain, we obtain the value ® =w, providing an in-
variant plane strain. This value is
€}
0= 5 > 0. (6)
€117 €33

The tensor g; with o, determined by (6) transforms to

0 0 0
€,= 10 €5+e; 0 |. (7
0 0 €,
(110)
/
(110)
i = /

g =
‘N
.nlm"“"“ = I _mm__h__mu_ﬂ\

FIG. 2. Rotation due to a coherent adjustment of two orien-
tation variants of the tetragonal normal martensite along the
(110), plane. Shading indicates the direction of the tetragonal
axes distinguishing the variants. (a) A result of the cubic-to-
tetragonal transformation described by the strains e(1); and
€(2); (b) the rotation of the angle ¢ to restore a crystal-lattice
continuity across the (110), boundary plane.
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The values €}, and €3;+ €}, have different signs under the
current assumption that |€3;] > |€?,| and €3; and €9, have
different signs. Then the tensor g; is an invariant plane
strain with its habit plane normal to the vector

1/2 ]

GRaan
€1l + e85+t

Although results (6) and (7) are derived in the frame-
work of the linear theory of the martensitic transforma-
tion,* the vanishing of one of the diagonal components
of the average stress-free strain matrix, €;;, and equality
of the other component, &3, to €}, imposed by an invari-
ant plane constraint are fulfilled for large €}, and €J; as
well.

172
15(1)1'
’ |6(1)1| + |€93+€(1)1|
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>

IV. EXAMPLES OF ADAPTIVE MARTENSITE
FOR THE CUBIC-TO-TETRAGONAL
TRANSFORMATION

For a small twin-boundary energy y,,, and large typical
elastic energy ued the twin size may reduce and become
comparable to the atomic scale size. Then the appear-
ance of the adaptive (microscopically twinned) martensite
instead of the normal tetragonal martensite should be ex-
pected. If the (110), twin-related lamellae of the marten-
sitic phase are microscopically thin, the twinned marten-
sitic plate can be considered as an ideal single crystal of a
homogeneous phase, which we regard as adaptive mar-
tensite. Let us assume that the macroscopic description
of the crystal-lattice rearrangement producing an adap-
tive martensite lattice is still valid in spite of the micro-
scopic sizes of the twin-related lamellae. Then stress-free
strain (7) describes the correspondence between the
crystal-lattice parameters of the parent and adaptive mar-
tensite lattices. It is clear that the martensitic transfor-
mation described by the strain (7) results in the
cubic—to—pseudo-orthorhombic crystal-lattice rearrange-
ment.. Applying (7) to three cubic axes, a;=(a,,0,0),
a,=(0,a,,0), and a;=(0,0,a.), we can express the
crystal-lattice parameters of the adaptive martensite
through that of the normal tetragonal martensite c,, a,,
and of the parent cubic phase a,:

Aga=0ac >
b,y=a,+tc,—a,, (8)
Cad = »

where the definitions a, =a (1+¢€),), ¢, =a,.(1+€3;), and
byy=a,(1+€} +e3;)

=a.(1+e))+a.(1+€);)—a

(4
=a,+*c,—a,

are utilized. As has been stated above, the relations (8)
between the crystal-lattice parameters of the orthorhom-
bic martensite, the normal martensite, and the parent cu-
bic phase are fingerprints of the adaptive martensite. We
should emphasize the following: According to (8), the
crystal-lattice parameter of the cubic parent phase a, and
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the parameter of the normal martensite @, continue into
the range of existence of the adaptive martensite becom-
ing its parameters, a,; and c,;. The parameter ¢, of the
normal martensite is not extrapolated, however, into the
adaptive martensite range. The plot ¢, versus composition
or temperature is terminated at the boundary of the range.

In deriving Egs. (8) we used an assumption that the
crystal-lattice rearrangement of the adaptive martensite
can be reasonably well described by the alternating mac-
roscopic strains e(l)f-)j and 6(2)%. This assumption does
not affect the equation for a,; and c,4, but it may affect
equation for b,,;.

Below we compare the observed crystal-lattice parame-
ters of the 7R martensite in [3'-Ni-Al alloys and the or-
thorhombic precursor martensite in Fe-Pd alloys with
ones calculated from Egs. (8) and show that these phases
have all the features of the adaptive martensite. This
comparison demonstrates that the description of the
cubic-phase—to—adaptive-phase crystal-lattice rearrange-
ment by means of the cubic-to-tetragonal transformation
strain is in excellent agreement with the available experi-
mental data.

A. Adaptive martensite in B’-Ni-Al alloys

Let us consider, first, the case of the martensitic trans-
formation in the [’-NiAl phase (B2). The cubic-to-
tetragonal transformation of this phase is characterized
by the Bain distortion transforming the CsCl-type cubic
structure of the B’-NiAl phase to the L1; (CuAul-type)
tetragonal structure (Fig. 3), which we shall regard as a
normal martensite. The normal martensite has been ob-
served in this system by Enami et al.® who have shown
that B’-NiAl alloys containing 62-64 at.% Ni really
have a L1, structure. There are indications that the
stacking fault energy of the alloys is very low, since the
observed L1, martensite contains a large quantity of
(111),, stacking faults and thin twins. 10712

Since the (111), plane of the L1, phase is actually
formed by the Bain distortion from the (110). plane of

®
@ @ a
[ (5] /
| >,
- ay N

FIG. 3. Bain B2 (CsCl-type cubic lattice)— L1, (tetragonal
CuAul-type) crystal-lattice rearrangement producing the nor-
mal martensite in B'-NiAl alloys. The bold lines delineate the
cubic structure. Ni and Al atoms are shown by different circles.
The (110)z, plane, shown by thin lines, transforms to the
(111), o plane after the B2— L 1, martensitic transformation.
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the B2 structure, the appearance of many (111) L1, twins

and stacking faults actually means that the surface ener-
gy of the (110), twins is very low, and, thus, the appear-
ance of the adaptive martensite in these alloys can be ex-
pected.

Shapiro et al. reported that the crystal lattice parame-
ter of the parent B2 cubic phase matrix of the A1-62.5
at. % Ni alloy is a, =2.857 A."> Martynov et al.'»'® re-
ported the crystal-lattice parameters of the tetragonal
L1, martensite with 63.1 at. % Ni:
=‘/Liauo=3"/—8§3=2.708 A, c=c=3.18A.

Using these data and a, =2.857 A reported in Ref. 13,
we can calculate the mismatch tensor components €}, and
€);. Calculating the crystal-lattice parameters of the
adaptive martensite using the measured data for the
crystal-lattice parameters of the matrix phase and normal
L 1, martensite by means of Eq. (8) gives

a,

a,,=a,=2.85T A ,

b,y =a,+c,—a,=2.708+3.18—2.857
=3.031 A,

Cog=a,=2.708 A ,

which, as it follows from Fig. 4, are in an excellent agree-
ment with the measured values for the pseudo-
orthorhombic unit cell of the 7R martensite: '3

a;g =2.845 A, b, =3.022 A, c,p=2.709 A .

A P
(A) 3
321 b =
t 4
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3 3 3
31 3 8| ®rGa|
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S g8 x
01 & ® S
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291 ¥ 0§ ;
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§‘ S Jrac
o8t § @K
2
277 a¢-——--
2 S

FIG. 4. Relation between observed crystal-lattice parameters
of NiAl, ¢, and a,, of the normal tetragonal L 1, martensite (left
axis, open circles), observed lattice parameters of the pseudo-
orthorhombic 7R martensite (medium axis, open circles), the
cubic B2 parent phase, a, (right axis, open circles), and the pa-
rameters of the adaptive martensite calculated according to Eq.
(8) (medium axis, solid circles). The dashed line emphasizes
equality, a,s=a, and c,q=a,. This figure illustrates an excel-
lent agreement with the prediction (8) showing that the 7R mar-
tensite is an adaptive phase.
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Therefore the main criterion, fulfillment of Eq. (8), which
allows us to interpret the 7R phase as the adaptive mar-
tensite, is met. The agreement between the calculated pa-
rameter b,y and the observed one b,; confirms that the
macroscopic description of the microtwinning by means
of the homogeneous B2— L 1, Bain distortion is still ac-
curate in spite of the microscopic sizes of the twin com-
ponents with thicknesses d,=2a,, and d,=5a,,. The
agreement is sufficiently conclusive, since the calculation
results are very sensitive to the input crystal-lattice pa-
rameters of the B2 and L1, phases. It should also be
mentioned that actually the adaptive martensite should
be slightly monoclinic because of the rotation of the mi-
crotwins shown in Fig. 2.

Now we check whether the 2/5 ratio of twin-related
layers forming the 7R structure is the same value as the
@o/(1—w,) ratio of the thicknesses of the orientational
variants, which is predicted for the adaptive martensite.
The w,/(1—w,) ratio is expressed through the crystal-
lattice parameters of the B2 and L1, phases by Eq. (6).
With a,=ap,=2.857 A, and a,=(1/V2)ay, =2.708
A, ¢, =cpy,=3.18 A,'* equations €=(c,—a.)/a, and
€),=(a,—a,)/a, give €33=0.113 and €},= —0.052. Us-
ing these strain components in Eq. (6) gives the value, w,
of the volume fraction of the variant of the L1, normal
martensite generated by the transformation strain €(1 )?j:

0
wp=—1 =031

€i—e3s

If, however, the same strain components are calculated
from the observed parameters for the 7R (Ref. 13) using
Eq. (8), then Eq. (6) gives w,=0.30. The microscopic
structure of the microtwinned adaptive martensite with
the smallest possible period, A, and the d; /A ratio closest
to wy=0.3 is provided by the d,/d,=2/5 ratio, which
corresponds to the value wy=d,/A=2/(2+5)=0.29.
This demonstrates that the ratio w;=0.31 calculated
from the crystal-lattice parameters of the parent and nor-
mal martensite phases proves to be very close to the 2/7
ratio and, thus, leads to the formation of an adaptive
phase with the 7R structure.

The atomic structure generated by alternation of the
microtwins with thicknesses, d,=2a,, and d,=5a, can
be readily constructed. Using the standard A4, B, C desig-
nations for the positions of the close-packed (111) L1,

planes and taking into account that the L1, structure is
formed by the :-- ABCABCABC - - - sequence of the
close packed planes, we obtained the following sequence
for the adaptive microtwinned martensite:

-+ ABCABA "C ABCABA C ABCABAC™ ---,

where the period A represents ABCABA~C~ and the
minus sign means the shear of the opposite direction.
The corresponding structure is shown in Fig. 5. This is
just the structure reported for the 7R (5,2) phase.

The mismatch between these two values, w,=0.30 and
=~0.29, can be, for example, accommodated by faulting

10 837

FIG. 5. Microtwins in the 7R martensite in a NiAl alloy.
The atomic structure is described by the ABCABA C~ se-
quence of the close packed (111) planes in the L1, structure; d,;
and d, are widths of the twin-related variants of the ‘“tetrago-
nal” microscopic layers. This microtwin structure can be also
regarded as an ideal long-period structure.

the periodic 7R sequence (substituting microtwins with
the thickness d} =3a,, for the regular microtwins with
the thickness d,=2a,, makes the average distance be-
tween faults equal to ~8A=56a,,). Then the total
volume fraction of the microtwins increases from the
value ~0.29 determined by the (2,5) 7R structure to the
value ~0.30 dictated by the invariant plane requirement.
The random faulting would result in a shift of the super-
lattice spots of the 7R structure from their ideal positions
corresponding to the rational period A=7a,,, the shift
being different in different Brillouin zones. This effect
was observed by Shapiro et al.'* who first recognized that
such an irregular shift rules out the interpretation of the
7R structure as an incommensurate periodic structure.

Another distinguishing feature that indicates that the
7R phase is actually an adaptive martensite is its response
to the applied stress. As discussed above, if the 7R mar-
tensite is an adaptive phase, its periodicity and relation
between thicknesses of microtwins, d, /d,, should be very
sensitive to the applied stress. Thus, the position of the
superlattice spots should be sensitive too. Particularly, if
the direction of the applied stress promotes one of the
orientational variants suppressing the other, then the
second variant disappears, and, thus, the L1, normal
tetragonal phase emerges. This prediction seems to be
confirmed by Martynov and co-workers!*!> who reported
the appearance of the L1, martensite instead of the 7R
martensite under applied stress.

It should be emphasized that the formation of the
adaptive phase by microtwinning of the L1, tetragonal
phase, which is discussed here, and the conventional
shuffling mechanism supplemented by elastic distortion
produce the same end result, the 7R structure of NiAl.

As has been shown above, the crystal-lattice parame-
ters of the normal L1, martensite and the bcc parent
phase in Ni-Al alloys provide an invariant plane strain if
the volume fraction of microtwins, w,, is close to the
2/(2+5) ratio. The atomic structure with such a ratio is
generated by a periodical repetition of ‘“‘microtwins”
whose thickness is two (111)L10 interplanar layers. If,

however, the crystal-lattice parameters of the normal
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martensite and parent phases are different from those of
NiAl, it is possible that an invariant plane strain may be
provided by microtwins whose thickness is one (111)“0

layer. Such microtwins are actually stacking faults in the
ABC ABC sequence of the (lll)Ll0 planes generating the

normal L 1, martensite. For example, if o, is close to the
1/3 ratio, the resultant ‘“microtwinned” structure of the
adaptive martensite is generated by the
A “BCB CAC ™ AB sequence of the (111),‘10 planes. A

martensite with this structure is called a 9R martensite.
If w, deviates from a simple ratio, such as 1/3, faults in
the regular 9R sequence should be introduced to accom-
modate the deviation. If faults are random, it results in
the displacement of the diffraction maxima, which are
different in different Brillouin zones. This situation is not

unusual for systems with layer faulting. The best-known

example is a shift of diffraction maxima in the fcc lattice
caused by stacking faults (see, for instance, Ref. 16).
Faulting caused by stacking faults, which we regarded
above as one-layer microtwins, was also determined to be
the origin of unusual shifts of Bragg peaks in 9R phase in
Na and Li.!7” The shift of the diffraction maxima,
different in different Brillouin zones, has been, for exam-
ple, observed by Noda et al. in the 9R martensite in Ni-
Ti(Fe) alloys.'®

An important and nontrivial conclusion that the crys-
tal structure of many long-period martensites in nonfer-
rous 3 phase alloys is determined by an accommodation
of the martensite lattice to the parent phase lattice actu-
ally has been made in earlier works. These works are,
particularly, summarized and discussed in the review pa-
per by Warlimont and Delaey.!® In these works the
structure of the long-period martensite has been derived
from the condition of the stacking-fault-induced accom-
modation transforming the Bain strain to an invariant
plane strain. Therefore, these martensite phases are actu-
ally also adaptive phases in the sense discussed above.
Their structure can also be derived from the twin-related
variants of the normal martensite phase by their confor-
mal miniaturization to the microscopic sizes in exactly
the same way as the structure of the 7R martensite. The
long-period structures appear when the width of thinner
microtwins is reduced to that of the interplanar layer.

The long-period martensite formation is expected if the
lattices of the normal tetragonal martensite and cubic
parent  matrix accommodate under  condition
Vew/M€Sa, <1, ie., when the surface energy of the
(110), twin is very low and the L1,/B2 crystal-lattice
mismatch is large. If, however, v, /u€ia,, <<1, which is
probably the case for a martensite in the 3 phase alloys,
this martensite does not transform to the normal marten-
site upon the cooling but may exist in the thermoelastic
equilibrium at all temperatures.

B. Adaptive martensite in Fe-Pd

Fe-30.1 at. % Pd alloys undergo the fcc— fct marten-
sitic transformation as shown by Matsui, Yamada, and
Adachi®® and M. Sugiyama, Ohshima, and Fujita.” Seto,
Noda, and Yamada®? discovered an intermediate phase
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within the narrow range between 265 and 273 °K above
the fcc—fct transformation temperature. The crystal-
lattice parameters of this phase were measured by these
authors using a high-resolution x-ray single-crystal tech-
nique. These observations suggest that the observed in-
termediate phase is the adaptive martensite. Whether
this is so can be established if the characteristic features
of the adaptive martensite, extensively discussed above,
were found in this intermediate phase. Particularly, the
intermediate phase can be attributed to the adaptive mar-
tensite if the crystal-lattice parameters of the adaptive
martensite, a@,4,b,4,C,q, calculated from the crystal-
lattice parameters of the cubic parent phase and the nor-
mal martensite by using Eq. (8) are equal (or very close)
to the observed parameters of the intermediate phase.
The dependence of the crystal-lattice parameters of the
fcc phase, normal fct martensite, and the intermediate
phase on the temperature measured by Seto, Noda, and
Yamada?®? is presented in Fig. 6. It follows from Fig. 6
that in accordance with the theoretical predictions for
the adaptive martensite, the parameters a, and a, contin-
ue into the intermediate phase range becoming its param-
eters, a,4 and c,,, respectively. This observation is con-
sistent with the first and the third equations in (8). The
observed parameter c,, also in accordance with the pre-
dictions, is abruptly terminated at the boundary tempera-
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FIG. 6. Fe-30.1 at. % Pd. Observed crystal-lattice parame-
ters of the tetragonal fct martensite (a,,c,), cubic fcc parent
phase (a.), and the intermediate phase (Ref. 22). The tempera-
ture dependences of a,, ¢,, and a, are shown by bold lines. The
dashed vertical lines indicate the stability range of the inter-
mediate phase, which is actually the adaptive martensite. The
experimental data illustrates that the parameters a, and a, of
the normal martensite and parent phase are continued into the
adaptive martensite field becoming, in accordance with predic-
tion (8), the parameters c,q4 and a,q4, respectively. The parame-
ter ¢,, vs the T plot, is terminated at the intermediate phase
boundary. Dots shown are the extrapolation to calculate the
third parameter of the intermediate phase, b,q=a,+c,—a..
Triangles indicate the experimental points for 4.
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ture between the tetragonal and intermediate phase. The
parameter b,y =a,+c,—a, calculated for the adaptive
martensite from parameters a,,c,,a, extrapolated into the
intermediate phase range is shown by a thin line. Figure
6 shows the excellent agreement between this calculated
line for the adaptive martensite and the experimental
points for the intermediate phase. This agreement is so
good that we believe it proves that the intermediate phase
is actually the adaptive martensite, which is actually a
microtwinned fct phase.

We can estimate the twin volume fraction, wg, provid-
ing the invariant plane transformation strain for the
adaptive phase using the observed crystal-lattice parame-
ters, taken from Fig. 6, ¢,=3.697 A, a,=3.792 A,
a,=3.730 A, at T'=266 K and ¢,=3.730 A, a,=3.787
A a,=3.750 A, at T=273 K. Substituting these values
into equations

&= %% and €= f %
c c

gives the transformation strain components. The volume
fraction, w,, corresponding to the observed crystal-lattice
parameters, can then be determined by substituting the
numerical values of €}, and €3; into Eq. (6). The calcula-
tion gives wy=0.652 at T=265 K and w,=0.649 at
T=273 K. These volume fractions are slightly below
®o=%, which corresponds to the 2:1 ratio of the mi-
crotwin components.

The displacive transformation in the Fe-30.1 at. % Pd
alloy seems to be a second- order transition where a typi-
cal tetragonal distortion, €,= €3, —€J;, plays the part of a
long-range order parameter. If we assume that the inter-
mediate phase in Fe-Pd alloys is the adaptive martensite,
we can predict the following characteristics of this mar-
tensite.

(1) The intermediate phase composed of the periodic
alternating microtwins with the microscopic thicknesses,
d,=ma,, and d,=na,,, is actually a long-period struc-
ture with period A=(m +n)a,,. The smaller the period
A of the microtwin structure, the smaller is the elastic
strain energy.® The estimated d, /d, ratio, from the con-
dition of an invariant plane strain, is close to 2:1. The
maximum possible miniaturization of the microtwin
structure consistent with the 2:1 ratio occurs when the
adaptive phase is a periodic layer structure with A=3a,,,.
This structure is described by the 4 AB A AB sequence,
where 4 and B designate twin-related atomic layers
whose width is the interplanar distance of the (110) twin-
ning plane, a,,,. Tripling the periodicity of the (110) layer
structure in the fcc lattice should generate the superlat-
tice diffraction spots of the 2(110) generic type. The in-
tensity of the superlattice spots should be very low, since
it is proportlonal to the squared long-range order param-
eter, €], — €33, which is small near the second-order tran-
sition.

It should, however, be remembered that the basic
2(110) structure discussed above is actually the limiting
case of a structure with a minimum period consistent
with the wy=~Z constraint imposed by the elastic energy
accommodation. This structure is predicted under the
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assumption that the correlation length (the width of the
twin boundary) is less than, but nearly equal to, the width
of one interplanar layer a,,. Otherwise, the adaptive
structure has to multiply its parameters conformally in
accordance with the increasing correlation length; i.e.,
the period may be described by one of the following
periodic sequences whose translational motifs are
AAAABB (doubling), AAAAAABBB (tripling), etc.
All these motifs maintain their 2:1 microtwin 4 /B ratio.
In these cases, however, the faulting mechanism can be
even more complex.

(2) As has been mentioned above, the complete elastic
accommodation occurs at the calculated value wy, which
deviates slightly from the nearest rational fraction
m/(m+n)=2% associated with the regular

- AABAAB - - - sequence. This deviation is compen-
sated by the appearance of “faulted twins” in the regular
sequence such as

AABAABBAABAABAAB -+ AABAABBAAB - - -

where underlined faults have an extra B layer. This fault-
ed sequence reduces w, from the value Z approaching the
values 0.652 and 0.649 calculated for different tempera-
tures. The average distance between faults determines
the deviation of w, from % The longer the distance, the
smaller the deviation is. One can readily see that the
value w, is related to average separation distance between
faults by the relation
2n

CL)O= 5 (9)
3n+1

where 7 —1 is the average number of the 4 AB elements
of the regular sequence between the nearest faults, and
3(7i—1)a,, is an average separation distance between the
faults.

The intermediate phase structure should be very sensi-
tive to the alloy temperature, since the crystal-lattice pa-
rameters a,,c,,a., determining the volume fractions of
microtwins, @, and 1—w,, are strongly dependent on the
temperature. This dependence should result in the tem-
perature dependence of the thicknesses of the microtwins
d,,d, and, thus, should affect the period A and the aver-
age distance between faulted microtwins.

It follows from Eq. (9) that the temperature depen-
dence of @y, varying from 0.652 to 0.649 gives the varia-
tion of 7 from 15 to 12. This means that the calculated
values of w, providing the complete accommodation of
the volume-dependent elastic energy can be obtained by
faulting if the average separation distance between faults,
3(7—1)a,,, is between 42a,, and 33a,,. If faults were
random, the diffraction pattern generated by the faulted
microtwins would have an appearance of a pattern gen-
erated by an incommensurate phase, but unlike the real
periodic incommensurate phase, the superlattice
diffraction spots generated by the alternating microtwins
with faults would be dependent on the Brillouin zone.
This phenomenon should be similar to that observed in
Ref. 13 and 18 for Ni-Al and Ni-Ti(Fe) alloys.
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(3) If faults are distributed periodically, which would
minimize the elastic energy, then the adaptive phase is a
commensurate long-period structure whose period A is
determined by the distance between faults:

A=a.,(3n+1),

where n is an integer between 15 and 12. Then the tem-
perature and concentration variations of the crystal-
lattice parameters of the parent fcc phase and normal
martensite should result in the appearance of the homolo-
gous series of the adaptive phases whose crystallographic
motif can be presented as
(AABB)(AAB)" " '=A4"B" "L

(4) The range of the intermediate phase and its struc-
ture should be very sensitive to the applied stress. Using
the conventional Landau expansion for the free energy
near the second-order transition point with respect to the
long-range order parameter (which is proportional to the
tetragonal distortion €;) to calculate the twin-boundary
energy 7,,, one can readily show that the ratio y,,,/u€l
vanishes when the temperature approaches the second-
order transition temperature. As has been mentioned
above, the adaptive phase is expected if the 7, /(u€ia,,)
ratio is small. Therefore the formation of the adaptive
phase can be expected just below the second-order transi-
tion. The corresponding miniaturization of microtwins
in this case is limited. The twin width cannot be much
smaller than the correlation length determining a typical
radius of interaction between nearest twin boundaries. A
decrease of the temperature would result in an increase of
the y,,,/ue€3 ratio and, thus, the transition from the adap-
tive to the normal martensite. These conclusions seem to
agree with the observation of the adaptive phase in
Fe-30.1 at. % Pd within the narrow temperature range
(about 8°) below the temperature ~273 K and its trans-
formation to the normal martensite below approximately
265 K.

V. A POSSIBLE ROLE OF THE ADAPTIVE PHASE
IN THE THERMAL NUCLEATION OF A MARTENSITE

As is known, the strong martensitic transformation
with a large crystal-lattice mismatch (ued/|Af|>>1),
such as the fcc—bcc or beec—fee transformations, can-
not homogeneously nucleate, since the elastic energy gen-
erated by a coherent homogeneous nucleus of the marten-
sitic phase is too high. Actually, this elastic energy bar-
rier completely blocks the nucleation via thermal fluctua-
tions at any undercooling. However, the transformation
path through the nucleation of homogeneous particles of
the normal martensitic phase is not the only option. The
transformation may bypass such a nucleation and, in-
stead of homogeneous particles of the normal martensite,
particles of the adaptive phase may nucleate. The adap-
tive phase nucleation does not generate the volume-
dependent elastic energy and, thus, is not blocked by the
elastic strain barriers. From the crystallographic and
thermodynamic viewpoint the adaptive phase may be re-
garded as just a conventional metastable phase whose free
energy is slightly higher than that of the stable normal
martensite but whose nucleation, unlike the nucleation of
the normal martensite, does not substantially raise the
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elastic energy. Thus, the nucleation of the homogeneous
adaptive martensite particles can occur conventionally in
the same way as the classical nucleation of a phase with a
low crystal-lattice mismatch. The growth of the adaptive
phase nuclei should, according to Eq. (1), increase the
equilibrium microtwin sizes d; =woA and d,=(1—wy)A
up to the stages where they reach the macroscopic scale.
Then the resultant structure is actually a conventional
structure of the normal macroscopically twinned marten-
site. Observation of the adaptive martensite is possible
only if the coarsening of the microtwins is hindered either
by the low surface energy of the twins, ¥, or for other
reasons. It is possible that so-called premartensitic phe-
nomena observed above the temperature of the martensi-
tic transformation M| in some of the martensitic trans-
formations are caused by fluctuational formation of nu-
clei of the adaptive martensite or by their formation on
crystal-lattice defects.

The appearance of the transient adaptive phase is ther-
modynamically possible only below the temperature T 4
of the congruent stress-free equilibrium between the
parent phase and the adaptive martensite. This tempera-
ture is, of course, lower than the temperature T of the
congruent stress-free equilibrium between the parent
phase and the more stable normal martensite. It is possi-
ble that the undercooling required to start the martensitic
transformation is partially associated with this fact.

Since the formation of the adaptive martensite, by its
definition, does not generate a volume-dependent contri-
bution to the free energy, the volume-dependent change
of the free energy consists of two terms only, the “chemi-
cal” free-energy change in the stress-free state and the
positive free-energy contribution associated with the mi-
crotwins. They are the first and second terms in the
equation

AF'bulk=[Af( T)chem+27/tw/}‘]V ’

where V is a transformed volume, Af(T) ., is the
change of the specific free energy at the stress-free parent
phase—to—normal martensite phase transformation at
temperature 7. The parent—to—normal martensite phase
congruent equilibrium temperature T, is, by definition,
determined by the equality Af(T)pem=0. The tempera-
ture of the congruent stress-free equilibrium between the
adaptive martensite and parent phase, T,4, is determined
by a similar equation,

[Af( Tad )chem+27/tw/7]=0 .

The reduction of the transformation temperature due
to the microtwin surface energy positive contribution is
determined by the Clausius-Claperon equation,

TO_Tad - 27/tw
T, QA

(10)

where Q is the heat effect at the parent-to-normal mar-
tensite phase transformation. If y,, is very low, then
both temperatures, T, and T4, are close. If v, is large,
then the undercooling required to get the adaptive mar-
tensite is also large, in which case we can expect a large
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temperature hysteresis between the equilibrium tempera-
ture T, and the M temperature.

Let us roughly estimate the difference AT =T, — T4
for the Fe—30 at. % Ni alloy with the fcc—bcc martensi-
tic transformation. Although nobody observed the adap-
tive phase in this system, the phase may be important as
a transient state required to bypass the strain-induced nu-
cleation barrier. Let us assume that the microtwins pro-
ducing the adaptive phase are a result of the miniaturiza-
tion of the conventional (110)g. twins in this system.
The (110)g. twins in the fcc parent lattice become
(112)y,. twins in the martensite bce lattice. The surface
energy ¥.,~ 10 erg/cm? of the (112),.. accommodation
twins has been estimated for this system in Ref. 5 using,
in Eq. (1), the twin size A and martensite plate thickness
D, observed by Maki and Waymam.23 The heat effect,
0=1.218X10"? erg/mol=1.73X10° erg/cm’® was re-
ported in.2* The calculated value o, for this system is
close to 0.4. Actually, we do not know the degree of the
miniaturization of microtwins in Fe-Ni alloys, but let us,
for microtwins, assume the smallest possible width for, d;
and d,. Then the widths of the twin-related layers con-
sistent with w,=0.4 are d,=2a,, and d,=3a,,, where
a., =d(j12) is an interplanar distance of the twinning
(112),, plane. Therefore, A=d,+d,=5a,,=5a,../V 6,
where a,.. =2.86 A. Using the above numerical values in

J

1/2
|fg3+6(1)1!

|€(1)1|+|5(3)3+€[1)1|

lf?ll

b=(e%—¢€%) |0,

’

This analogy with a dislocation loop is not accidental,
since a platelet characterized by an invariant plane strain
generates the same elastic strain field as a conventional
dislocation loop in the invariant plane with the above
Burgers vector. Therefore, any segment of normal dislo-
cations (they are always present in the parent phase ma-
trix) whose Burgers vector has a direction close to b in
Eq. (11) should facilitate formation of the adaptive mar-
tensite nuclei and, thus, serve as a nucleation site.

VI. DISCUSSION

As shown above, the adaptive phase is a metastable al-
ternative to the normal martensitic phase. The adaptive
phase cannot exist in the stress-free unconstrained state.
It forms only in a constrained state when formation of a
more stable normal martensite is suppressed by a large
transformation-induced elastic energy. A crystal lattice
of the adaptive phase is geometrically derived from that
of the normal martensite phase by crystal-plane shuffling,
which can be regarded as a microscopic limit of conven-
tional accommodation twinning with twin thicknesses of
one or several atomic layers. The main geometrical
feature of the crystal lattice of the adaptive phase is that
it is related to the parent phase lattice by an invariant

|5(1)1|+|€(3)3+€(1)1|
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(10) gives
TO - Tad

~0.2 .
T,

In the relevant situation of the comparatively large twin
surface energy, 7.,, the adaptive transient martensite
formed during nucleation should immediately transform
to the normal martensite in the growth process. The
above-estimated 20% undercooling of the Fe—30 at. %
Ni alloy, required to start the thermal nucleation of the
adaptive martensite and its immediate transformation to
the normal bcc martensite, is a very substantial value. It
may be partially responsible for the large undercooling
with respect to the temperature of the stress-free
fcc—bcc congruent equilibrium required to start the
martensitic transformation.

To accommodate the bulk elastic energy completely,
the nuclei of the adaptive martensite should be platelets
whose habit plane is parallel to the invariant plane.>’
Part of the remaining elastic energy is proportional to the
habit plane surface and, thus, can be included in the
parent/martensite phase surface energy. The other
remaining part of the elastic free energy is proportional
the platelet perimeter. It is described by the same equa-
tion as the energy of a dislocation loop with the efficient
Burgers vector,’

1/2
] . (11)

f

plane crystal-lattice rearrangement. Only then will the
volume-dependent part of the elastic energy vanish (it is
the only cause of the adaptive phase formation).

Also, the concept of an adaptive phase may be impor-
tant in resolving the problem of the thermal nucleation of
the martensite. As is known, the formation of a critical
nucleus of a conventional martensite increases the elastic
energy and, thus, increases the nucleation barrier to such
an extent that the barrier cannot be surmounted by
thermal fluctuations. This completely blocks the thermal
nucleation, but the system may bypass this barrier by nu-
cleating the metastable adaptive phase instead of the final
martensite phase. The nuclei of the adaptive phase may
later easily transform to the normal martensite during the
growth stage when the coarsening increases the nucleus
size D to the values where the twin width wgA, related to
D by Eq. (1), reaches macroscopic size. Then the
coarsening kinetics, unlike nucleation, do not require
overcoming the volume-dependent elastic barriers.
Therefore, the martensitic transformation through a tran-
sient adaptive phase is a mechanism that may explain the
thermofluctuative homogeneous nucleation during a
strong martensitic transformation, unassisted by ‘built
in” crystal-lattice defects.

The smaller the twin surface energy and the greater the
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crystal-lattice mismatch, the easier it is to form an adap-
tive martensite. Depending upon these factors, different
cases can be expected: (i) a sufficiently stable adaptive
martensite existing over a wide or even entire tempera-
ture range such as in the cases of the 7R martensite and
similar long-period martensites in nonferrous B phase al-
loys (very low y,,), (ii) the intermediate case when the
adaptive martensite exists only within a narrow tempera-
ture range above the temperature of the martensitic
transformation M, (intermediate y,,) such as the above-
considered case of the Fe-Pd alloy, and (iii) the compara-
tively high-energy adaptive martensite (high y,,), which
may form only during the nucleation stage to bypass the
completely blocked nucleation of the normal martensite;
the adaptive martensite immediately transforms into the
normal martensite when the nucleation barrier is sur-
mounted. In cases (ii) and (iii) the formation of the adap-
tive phase can be perceived as the premartensitic
phenomenon.

As has been mentioned above, the crystal-lattice struc-
ture of the adaptive martensite is very sensitive to the ap-
plied stress. The other feature, predicted for the adaptive
martensite structure, is the “incommensurate” position of
its diffraction spots related to accommodation shuffling of
crystal planes. This effect is caused by random faulting
of the periodic distribution of shuffling planes, since such
a faulting, like the formation of stacking faults in the fcc
lattice, results in a shift of the diffraction spots from their
regular positions. The value of the shift depends on the
density of faults, and, thus, is determined by the crystal-
lattice mismatch. It also depends on the diffraction
indexes of the diffraction spots and, thus, the shift is
different in different Brillouin zones. A true incommens-
urate phase can, however, be distinguished from a ran-
domly faulted adaptive phase, since the positions of the
diffraction spots of the former are the same in all Bril-
louin zones, while the positions of the latter are not.

Now let us consider a structural transition of the
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second order. If the symmetry of the irreducible repre-
sentation of the space group inducing the transformation
is such that crystal-lattice parameters of the low-
temperature phase are linear functions of the long-range
order parameter, then the ratio y,,/ue entering Eq. (1)
tends to zero when temperature is close to the second-
order transition. If the ratio is close to zero, then the
adaptive phase should be formed. Therefore, the appear-
ance of the adaptive phase just below the second-order
transition should be expected. It should generate extra
diffraction spots associated with regularly spaced accom-
modation faults with a period of the order of the correla-
tion length. If there is a certain randomness in the fault
distribution, then the position of the spots is incommens-
urate. To distinguish this structure from the real period-
ic incommensurate structure, the positions of the extra
diffraction spots in different Brillouin zones should be in-
vestigated. The Fe-Pt alloys discussed in this paper are
an example of the system where these phenomena can be
observed. Similar phenomenon can be expected in the
case when the transformation is a “soft” first-order tran-
sition. From this viewpoint a close look at the origin of
some incommensurate phases observed near the second-
order or first-order soft transition before the normal
phase emerges would be useful.
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