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The proportionality between the field-induced shifts AT, (H) and ET,q(H) of the transition and
equilibrium temperatures T, (H) and T,q(H) and the root-mean-square random field hRF was stud-
ied over a wide range of concentration (0.31 x ~0.84) in the ideal random-field Ising model
(RFIM) system Fe Zn, F2. T, (H) and T,q(H) were determined experimentally from the optical
birefringence An, for which d(An) jdT exhibits a peak at T, (H) proportional to the magnetic
specific heat. T,q(H) was determined from the point above which zero-field-cooled and field-cooled
measurements gave identical results. For all x studied, T, (H) and T,q(H) were found to shift from
the H =0 transition at T& as [4T, (H), 6T,q (H) ]= [c,c,q ]Tz h a~it' as predicted, with P = 1.42+0.03,
the universal random exchange to RFIM crossover exponent, after a mean-field correction bH .
The nonuniversal quantities c and c,q

were found to be of order unity as expected, but slightly x
dependent. An empirical x dependence for c and c,q

is suggested. This analysis is applied to exist-
ing data on Mn„Zn& F2, and leads to very similar behavior for c, with essentially equal numerical
values.

INTRODUCTION

Amongst the earliest results' on the random-field Ising
model (RFIM) problem were the predicted field-scaling
properties near the phase transition and the proportional-
ity between the applied field and the random field for one
realization of the RFIM: a diluted antiferromagnet
placed in a uniform field H. Later work presented a de-
tailed form for the rms random field hRF and its depen-
dence on the concentration x of magnetic ions and other
material properties. While other critical exponent mea-
surements have been made, ' the random exchange to
RFIM crossover exponent tb has been obtained with con-
siderable precision ' and shown to be universal in the
sense of being identical for different random Ising
systems [Fe„Zn& Fz, ' Mn Zn& F2, and
Fe Mg, „Clz(Ref. 7)], as well as for dift'erent values of x
within a given dilute system. All of these measurements
made use of the scaling form' which relates the RF in-
duced shift in the transition temperature AT, (H) to hRF
(and implicitly H). However, no systematic numerical
evaluation of the relation between b, T, (H ) and h RF
(which is predicted' within a constant c of order unity)
has been made. It is this topic which is the major focus
of the present paper. A preliminary report of some of
this work will appear in the Proceedings of the Confer-
ence on Magnetism and Magnetic Materials. In addition,
we have evaluated the relation between the shift in
T,q(H) and hRF versus x, where T, is the temperature
above which all field and temperature cycling procedures
yield identical results. Results of a previous study on
Mn Zni Fz, which determined P for several values of

x, are also analyzed to determine c (x ). The values ob-
tained are very similar to those of the present work.

CROSSOVER TO RFIM BEHAVIOR

Fishman and Aharony' showed that a randomly dilut-
ed antiferromagnet (AF), when placed in a uniform field
H, was a physical realization of a random-field Ising
model system. It was predicted that new critical behav-
ior would be observed within a crossover region

where ~t~
—= ~T —Ttt+bH ~/Ttt is the reduced tempera-

ture measured relative to the mean-field phase boundary
Ttt bH, hit„ is t—he reduced rms random field, and tb is
the crossover exponent.

If a sharp phase transition exists (i.e., if d )dt, the
lower critical dimension), the new transition temperature
T, (H) is expected to shift from the mean-field phase
boundary by an amount

b, T, (H) = Ttv bH T, (H) =c—Ttth R—g' =—CH ~, (2)

where c is a constant of order unity. The mean-square re-
duced random field for the site-diluted case has been
shown to be, in the limit h ~F «1,

x (1 —x)[Ttt "(1)/T] (gpttSH/ktt T)
ARF [1+O™(x) /T]

where Ttv "(1) is the mean-field transition temperature of
the pure system, and O™(x)is the mean-field Curie-
Weiss parameter. At H=O one expects
T& "(x)=xT&"(1) and O "(x)=xO "(1). However,
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deviations from this relation are expected since
T~(x)~0 as x ~x~, where x~=0.24 is the percolation
concentration for body-centered magnets. To simplify
Eq. (3), we define

so that y(x)-x except when x~x, . Also, OM"=TM"
for an AF with dominant intersublattice exchange.
Equation (3) then becomes

h R„=x(1 —x)y [g @ASH/2k~ T~(1)] (4)

The magnetic specific heat C of a RFIM system is ex-
pected to scale as'

C~ (t, h ~F ) —h R„ f ( th R„), (5)

where a is the H= 0 random-exchange Ising model
(REIM) specific-heat exponent and f is a universal scal-
ing function. Assuming a sharp phase transition exists at
T, (H), this becomes, within the crossover region,

(6)

where t, —= [(T,(H) T&+bH —)/T~= ching, a—nd a is
the RFIM specific-heat exponent.

The actual value of the RFIM crossover exponent P is
of particular interest because it depends upon the system
from which the crossover takes place. Although the di-
luted antiferromagnet obviously corresponds to the
random-exchange Ising model system, it was originally
believed REIM exponents would not be observable in the
experimentally accessible critical region. ' Consequent-
ly, the crossover to RFIM behavior would be described
by P=y, the pure Ising (not REIM) susceptibility ex-
ponent. However, more recent renormalization-group
calculations have shown that the random-exchange fixed
point occurs at fairly weak disorder. ' Experiment sug-
gests" the crossover from pure Ising to REIM behavior
would be essentially complete for x «0.9; thus, REIM
critical exponents should be, and are, observable and the
crossover is from REIM to RFIM behavior in this range.
However, for a random-exchange AF system, PAy
(REIM), where y (REIM) is the REIM staggered suscep-
tibility exponent. For the d=3 RFIM diluted antifer-
romagnet problem, Aharony has shown' that P) y and
is bounded by 1.05 ~ P/y ~ 1.1. Thus, the following ine-
qualities are predicted for the d=3 REIM diluted AF:
P & y (REIM) & y with y (REIM) (Ref. 13)= 1.31 and

y =1.24 is the pure Ising exponent. '

EXPERIMENTAL PROCEDURE

The optical linear birefringence An has been measured
in samples of AF FeF2 diluted with the isomorphic but
nonmagnetic ZnF2. It has been shown that the tempera-
ture derivative of the linear birefringence d(b, n)/dT is
proportional to the magnetic specific heat C for both
the pure' ' and diluted' ' Auorides. hn was measured
using the Senarmont technique at the HeNe laser wave-
length 1=632.8 nrn using a photoelastic modulator for
increased sensitivity. The optical arrangement and tech-
nique are described in detail elsewhere. ' For the experi-
ments presented here, two di6'erent experimental ap-

paratus were used; for low fields, an iron electromagnet
for H 2 T, and for high fields, a superconducting
solenoid provided H «8 T. Since the bore of the latter
had no radial access, a sample holder with mirrors and
tilting mechanisms was designed and constructed to al-
low propagation of the laser beam perpendicular to H. In
order to study the phase transition at higher values of
hR„)0.05, we applied moderate external fields (H ~2T)
on relatively low Fe concentration samples (x &0.60),
and higher fields (H )2T) for those with x )0.60.

The concentration gradients of all of the samples were
characterized by room-temperature hn measurements.
The scans of three of the samples studied here (x=0.35,
0.46, and 0.84) are those appearing in Ref. 20. Typical
gradients along the growth direction are 0.5—1% per cm
and smoothly varying. To minimize the e6'ect of the axial
gradients on the phase transitions, measurements were
taken with a narrow laser beam defined by a pinhole of
=0.2-mm diameter and aligned perpendicular to the
growth direction, thereby reducing the axial variation to
typically 10 in x.

Sample concentrations were determined from a mea-
surement of T& for x )0.5, assuming T&(x)=xT&(1).
Experimental determinations ' of T~(x) versus x have
yielded the relation

T~(x)/Ttt(1) =0.99+0.04

for x) 0.4 in the Fe„Zn, „Fzsystem. The assumed pro-
portionality is thus well within experimental errors.
Some theoretical justification for this relation is also
found using real-space renormahzation-group methods
in the diluted anisotropic exchange model. The initia1
slope, near x= 1, was shown to be close to unity for large
anisotropy. For 0.31«x «0.35, x was determined by
density measurements to an estimated accuracy of +0.02,
assuming a linear variation in lattice constants according
to Vegard's law.

The sample temperature was measured and stabilized
to a relative accuracy of +0.1 mK with an ac resistance
bridge and carbon-glass thermometer with very low field
dependence; the latter was measured and corrected for.
Since large thermometry shifts (=100 mK) occur upon
warming the thermometer to room temperature, a series
of measurements of a particular sample at various fields
were made on the same day, if possible. Provided the
thermometer was kept below T= 100 K, day-to-day shifts
were of the order of 10 mK. For data collected over
more than 1 day, a thermometry correction of these shifts
was obtained by repeating the H=O measurements.

EXPERIMENTAI. RESULTS

We studied d(b.n)/dT for a variety of crystals of
Fe Zn& ~F2, with 0.35 «x «0.84. In addition, data from
a Faraday rotation measurement in a more dilute crystal
(x=0.31) (Ref. 23) and from a capacitance measure-
ment at x=0.73 were also utilized in the analyses. Typ-
ical data are shown in Figs. 1 and 2 for x =0.46 and 0.60,
which exhibit cusplike behavior in H=O for d (bn)/dT.
The important fact that concentration gradients result in
a specific-heat peak whose maximum occurs below the
average transition temperature at T~ has been taken into
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hRF=0.084) in Fep46Znp54F2. The solid circles indicate zero-
field-cooled (ZFC) data, while the open circles indicate field-
cooled (FC) data. The dramatic shift of the transition with field
and other effects of the random field are discussed in the text.
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FIG. 2. Temperature derivative of the ZFC linear
birefringence d(An)/dT vs T for fields H=O up to 80 kOe
(where h&F =0.21) in Fep 6Znp 4F2. The dramatic effects of the
random fields are discussed in the text. The lines are guides to
the eye.

account in determining Tz for each x, following the
method given in Ref. 25.

The field dependence of d (hn)/dT versus T is shown
in Figs. 1 and 2 for data taken following a zero-field-
cooling (ZFC) procedure. The ZFC peaks are seen to
shift downward in T with increasing field and to become
more symmetric. The former effect is a consequence of
the REIM-RFIM crossover, while the latter is the onset
of RFIM specific-heat critical behavior, which has been
observed to exhibit a symmetric, logarithmic divergence
in rt t, r. The broadeni—ng of the peaks with field is a

consequence of field-dependent crossover scaling, ' while
the increased rounding is a manifestation of extreme crit-
ical slowing down inherent in the RFIM dynamics. All
of these effects have been previously investigated in great
detail in the Mn Zn, F2 system. Furthermore, it has
been found that the extreme critical slowing down ob-
served in the ac susceptibility and neutron-scattering
experiments on Feo 46Zno 54F2 is so great that even "dc"
measurements are drastically affected.

To understand the peak heights, both static and dy-
namic scaling must be considered. For rt —t, r

(r*, a
characteristic dynamic rounding temperature, the static
critical divergence is cut off and finite peak heights are
observed. In the region where the crossover is from
REIM to RFIM, t" contains the static scaling of Eq. (1),
with only logarithmic field and frequency corrections,
given by theories of activated dynamics. This results in
peak heights which scale predominantly with the static
scaling of Eq. (6). The peak height is measured above the
H=O data as a background, and scales as H ', since
a= —0.09 and &7=0. Thus, it is expected to increase
very quickly for small H and then only very slowly for
larger H. The effect of concentration-gradient rounding
is to decrease the rapidity of the initial peak height in-
crease at low H. This effect has been clearly demonstrat-
ed in Ref. 5.

The data in Figs. 1 and 2 exhibit all of the above effects
and seem to be generally in agreement with what has
been previously seen in the Mn Zn

& „F2system. How-
ever, one new effect is observed in the x=0.60 data. The
peak heights do increase up to H=6.0 T, but at 8.0 T
there is a significant decrease. We note that here hR„is
large (hR„=0.21) and the relative shift of T, (H) is large
tbT, (H)/T& -—0. 14]. With such a value of hRF, it is
perhaps not surprising that departures from the predicted
small-field crossover behavior become apparent. Also t*
is determined by equating the RFIM characteristic fre-
quency for the dynamics to the corresponding REIM
quantity at the crossover boundary Eq. (1). in the model
of Ref. 26. However, at such a large shift, the crossover
is from RFIM directly to mean-field behavior. That is,
the entire critical region (rtr 0.1) is RFIM, and one
would expect the low-field dynamical crossover scaling
may also break down.

ANALYSIS

Unlike the asymmetric REIM case, the maxima of the
symmetric peaks in the RFIM case do lie at T„even in
the presence of concentration gradients. Thus, no
correction is required and T, (H) is taken simply as the
center of the d(bn)/dT peak. A mean-field correction
bH to the shift in T, (H) was made with b(x)=b(1)/x,
as indicated in Eq. (2). Least-squares fits were made to
Eq. (2), letting T& and C(x) vary as free parameters. Al-
though the quality of some of the data is not sufficient to
yield accurate determinations of P, fits to all the data give
values of P which are independent of x, within experi-
mental error, as was found to be the case in the
Mn„Zn& F2. These agree within experimental error
with the most accurate of the previously determined
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ones: /=1. 40+0.05 at x=0.6 (Ref. 4) and x =0.73,
and /=1. 44+0.04 at x=0.47 (Ref. 6) and x =0.31.
The value of P was therefore fixed at 1.42, which is the
average of these values. Thus, even at the extreme con-
centrations x=0.31 and 0.84, no crossover to other fixed
points such as percolation of pure Ising was apparent.
This is seen in Fig. 3, where we have plotted the mean-
field corrected h, T, (H) versus H [see Eq. (2)] in a log-log
plot for all the samples. The lines through the points
represent the best fits to Eq. (2) with P fixed to be 1.42.

The values of C(x) determined by the fitting procedure
are displayed in Table I. These values were then convert-
ed to the dimensionless units c by the use of Eq. (4) and
are shown in Table I and in Fig. 4 as a function of x; it is
seen they are, indeed, of order unity. That c(x) varies
somewhat with x is not surprising, since c (x) is not a
universal quantity. However, as x~1, c(x) appears to
approach a constant value, c (1)=0.7 independent of x.

VVe have found an empirical expression which approxi-
mately describes the x dependence of c (x); namely,

c(x)=c'(x)T~(1)l&~(x) .

That c'(x) is much less x dependent than c (x) is illustrat-
ed in Fig. 5. This definition of c (x) is equivalent to re-
placing Tz(x) in Eq. (2) by Tz(1) as follows:

AT, =c'(x)T~(1)h„g' .

Although we know of no theoretical justification for this
form, it is useful to have a simple expression which accu-
rately describes the data over the whole range of x.

The errors in c(x) obtained by fitting the data to Eq.
(2) are considerably smaller than those shown in Figs. 4
and 5; of the order of 5% for much of the data [see C(x)
in Table I]. It is not possible to draw a smooth curve

TABLE I. Values of C(x) obtained by fitting data for
Fe Zn& „Fzand Mn„Zn& „Fz(Ref. 5) to Eq. {2), with fixed
/= 1.42, and values of c(x) derived with the use of Eq. (4) to
give h RF. Also shown are values of c'(x ) derived using Eq. {7).

T (K) C(x) (RT i~) c'(x)

0.84
0.73
0.60
0.55
0.46
0.35
0.33
0.31

65.492
57.224
47.045
43.192
35.795
28.045
25.596
19.494

Fe„Zn& „F&
8.5(4) X 10
1.53(4) X 10
4.2(2) X 10
5.2{3)X 10
9.5(3) X 10
1.5(2) x 10-'
2.0(1)X 10
6.00(5) x 10-'

0.67(8)
0.73(6)
1.21(11)
1.26(12)
1.63(13)
1.7(3)
2.0(2)
3.8(4)

0.56(8)
0.53(6)
0.73(8)
0.70{9)
0.75(9)
0.62(12)
0.67(11)
0.95(15)

0.83
0.55
0.40

52.355
27.381
12.55

Mn, Zn& „F2
1.4(2) x 10-'
1.22(4) X 10
6.1(8)x 10-'

0.7(1)
1.30(4)
1.6(2)

0.56(8)
0.53(2)
0.30(4)

through these error bars, so it is evident that there must
be another source of error. Only likely error is in the ab-
solute concentration x. Our experience suggests that
some of the values of x could be in error by as much as
+0.02. Assuming an uncertainty in x of 5x =+0.02 for
each x, we have used Eqs. (2) and (4) to calculate the
efFect on c(x). When these errors are convoluted with
those obtained by the fitting, the result is as shown in
Table I and Figs. 4 and 5. In most cases, indeed, the er-
ror in x is the dominant one.

In contrast to the relatively sharp peaks seen in the
ZFC data, the field-cooled (FC) peaks become drastically
rounded for values of hRF &0.05 as seen in Fig. 1. Simi-
lar eA'ects are found for x=0.60 at high H. These hys-

io i & i i I I
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'~ Ceq(X)
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FIG. 3. Log-log plot of the random-field shift AT, (H) vs field
H after mean-field correction. See Eq. (2). Excellent fits, indi-
cated by the solid lines, were obtained for all the data, with P
fixed to the value 1.42 of the universal REIM-RFIM crossover
exponent. Curves a —i refer to values x of 0.836, 0.84, 0.73, 0.60,
0.55, 0.46, 0.35, 0.33, and 0.31, respectively. a and b are
diA'erent points on the sample.
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FIG. 4. Proportionality constants c(x) and c,q(x) relating
the shifts AT, (H) and AT,„{H)in the transition and equilibri-
um temperatures to the rms random field h RF.
[b T, (H), b T,q(H)]=[c(x),c,q(x)]TJvha/. These nonuniversal
parameters are of order unity, as expected.
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FIG. 5. Empirical expressions c'(x) =c(x)T&(x)/T~(1) and
& eq (x):ceq (x ) Tz (x ) /T& ( 1 ) which approximately describe the
x dependence of e (x) and c, (x).

FIG. 6. Proportionality constant c(x) relating AT, (H) to
hRF in Mn„zn& „F2together with c'(x)=c(x)T&(x)/Tz(1),
which approximately describes the x dependence of c(x). The
data are taken from Ref. 5.

teretic effects only appear at relatively large values of hRF
and were not observed in previous An experiments on
Feo 6Zno 4F2 up to hR„=0.05. The FC effect has been in-
terpreted as a freezing-in of a domain structure of aver-
age size R. The divergence of the correlation length g is
then limited to a value of the order of R and, consequent-
ly, the divergence of the specific heat is limited. The
equilibrium temperature T, (H), as defined in the Intro-
duction, is determined experimentally as the point above
which the FC and ZFC data in d(b, n)ldT first diA'er.

This can be seen in Fig. 1. Notice that T,q(H) ) T, (H)
and is also well above the region of dynamic rounding of
the phase transition.

It has been previously observed that T,„(H)scales
with field with RFIM crossover scaling, as does T, (H),
according to

AT,q(H)=T~ bH T,q(H—)=C,—H ~~ .

In analogy with Eqs. (2) and (8), we define the con-
stants c

q
and c

q
as

bT, (H)=c, Ttv(x)h~g=c, '„T~(l)hRp . (10)

Using Eq. (4) to give the relation between hR„and H, we
have fitted data for x=0.31, 0.46, and 0.60, and 0.73 to
Eq. (10). For these fits, Tz was fixed to be the value
determined from the T, (H) fits, P was fixed at /=1.42,
and only c, (x) was allowed to vary. Nevertheless, very
reasonable fits were obtained for the data at all x.

The results are very similar to those found for the shift
of T, (H). c,q(x) is found to be of order unity; it ap-
proaches an x-independent value for higher x, but exhib-
its a distinct x dependence for lower x. This can be seen
in Fig. 4. c,'q(x) is considerably less x dependent than
c, (x) is, as can be seen in Fig. 5, although it too retains
some x dependence. Comparing c,' (x) with c'(x), we
find that c,' (x) is, on the average, about 27% smaller

than the corresponding value of c'(x) and that no obvi-
ous x-dependent trend in this relationship is evident.
This fact has been observed in previous capacitance mea-
surements on samples of x=0.73 (again presented here)
and 0.46.

In an earlier study of the isostructural diluted antifer-
romagnet Mn Zn, F2, Ramos et al. determined P for
three concentrations: x=0.40, 0.55, and 0.83. Although
pure MnF2 is less Ising-like than FeF2, its asymptotic
critical behavior is also that of a c=3 Ising system. It
was found that, for all three diluted samples studied, P is
identical with the value determined in the more ideally
Ising Fe Zn, F2. Ramos et al. also determined values
of C(x) for each fit to the data, which we have converted
into the corresponding values of c (x) and c'(x) in Eqs. (2)
and (8), using parameters appropriate to Mn„Zn, ,F2.
The results appear in Table I and Fig. 6. As in the
Fe„Zn, „Fzcase, c (x) is of order unity, with a similar x
dependence. Interestingly, as x —+1, the magnitude of
c(1)=0.7 which is essentially the same value found in
Fe„Zn, „F2.The value of c'(x) is found, as in the
Fe„Zn, „Fzcase, to be much less x dependent than c (x)
is. As x~1, a value c'(x)=0.6 is approached, which is
very close to c'(x) in Fe Zni — Fz.

CONCLUSIONS

We have used the RFIM crossover formalism' of Eq.
(2) together with the explicit relation of Eq. (3) between
the rms random field h R„and the uniform field H applied
to a diluted Ising antiferromagnet. This has allowed us
to evaluate the nonuniversal constants c (x) and c, (x) re-
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lating b, T, (H) and b T, (H) to hRF in both the ideal Ising
system Fe„Zn& Fz, and the slightly less ideal system
Mn Zn& „F2.We find that c(x) and c, (x) are indeed of
order unity, as expected. We therefore conclude that
Eqs. (2) and (3) must accurately represent the experimen-
tal situation over a surprisingly wide range of x.
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