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Zero-temperature properties of the quantum XFmodel with anisotropy
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The spin- —XY model on a square lattice is studied via series expansions around the Ising limit,

and spin-wave theory. Series are calculated for the ground-state energy, mass gap, magnetization,
and magnetic susceptibilities. Extrapolating these series to the isotropic limit, we find extremely

good agreement with the predictions of second-order spin-wave theory.

I. INTRODUCTION

This paper presents the results of a series expansion
about the Ising limit for the zero-temperature quantum
XY model on a square lattice. It forms a companion pa-
per to a similar study of the XXZ Heisenberg antifer-
romagnet which we recently carried out. '

The XY model has many features in common with the
XXZ antiferromagnet, but has been less well studied. A
recent review has been given by Betts and Miyashita.
The spin-wave theory developed by Anderson and oth-
ers was previously thought to be unsatisfactory in the
XY case, but recently Gomez-Santos and Joannopoulos
have shown that by a more judicious choice of the quan-
tized spin axis, one can obtain a good theoretical fit to the
model. Numerical studies have included the finite-cell
calculations of Betts and co-workers, " a Monte Carlo
(MC) simulation by Okabe and Kikuchi, ' and a series
calculation by Pearson. ' A renormalization-group
analysis has been made by Penson, Jullien, and Pfeuty, '

and a variational study by Suzuki and Miyashita. '

The series results presented here were obtained by an
eKcient cluster expansion technique proposed originally
by Nickel, ' and further elaborated by Marland' and
Irving and Hamer. ' ' A very similar method has been
discovered independently by Singh, Gelfand, and
Huse. ' ' We have added several terms to the ground-
state energy series of Pearson, ' and calculated new series
for the magnetization, mass gap, and susceptibility in
each spin direction.

The results are compared in detail with the predictions
of spin-wave theory. In Sec. II we carry out the spin-
wave calculations for the anisotropic XY model to second
order in 1/S, extending the analysis of Gomez-Santos
and Joannopoulos. In Sec. III the series results are con-
fronted with these predictions. Overall, they agree ex-
tremely well. The ground state of the isotropic XYmodel
is found to exhibit long-range order, as originally predict-
ed by Oitmaa and Betts. The existence of long-range or-
der has been rigorously proven, in fact, in recent papers
by Kennedy, Lieb, and Shastry and Kubo and Kishi.
Our conclusions are summarized in Sec. IV.

II. SPIN-WAVE THEORY

H= —y (S,"S"+xS)S»)+h yS,
(I )

(2.1)

where the indices l, m, i denote lattice sites, ( lm ) a sum
over all nearest-neighbor pairs, and (i ) a sum over all
lattice sites. The points x =0 and 1 correspond to the
ferromagnetic Ising model and isotropic ferromagnetic
XY model (F), respectively. The isotropic antiferromag-
netic XYmodel ( A )

H'= y (S, S'+SOS»)+h yS;
(Im) &i)

(2.2)

is related to the ferromagnetic one by a simple spin rota-
tion on bipartite lattices. Using a similarity transform
with S' on every site m of the odd sublattice, for in-
stance, one can transform: S' ~S', S —+ —S
S ~—S . Hence there exist relations between the iso-
tropic ferromagnet (F), antiferromagnet ( A ), and the
model described by Eq. (2.1) for the ground-state energy,

Eo(x =1)=EO(x = —1)=ED =ED (2.3a)

for the magnetization,

iM„(x =1)=m, (x = 1)=MF=~." '— (2.3b)

(where S denotes the staggered magnetization), and for
the susceptibilities,

X„(x=1)=X„(x= —1)=X =X„, (2.3 )

X„(x=1)=X,",'=X„,
X„(x= —1)=X,",=X„',

(2.3d)

(2.3e)

(2.36

from the early works of Anderson and others, togeth-
er with our recent analysis. ' For the XY model, the ap-
plication of simple first-order spin-wave theory by
Gomez-Santos and Joannopoulos has also proved satis-
factory in predicting the ground-state energy and magne-
tization. In this section we extend their treatment to
second order for the anisotropic XYmodel.

Gomez-Santos and Joannopoulos showed that it was
important to choose the quantized spin axis in the XY
plane; and in fact such a choice is forced upon us if we
are to make contact with the series analysis. Consider
then the following Hamiltonian:

Spin-wave theory provides a rather accurate picture of
the low-lying states of the XXZ model, as may be seen &,(x = —1)=X.".'=X.". . (2.3g)
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Choosing a representation in which Sl is diagonal
(rather than Sl'), the Hamiltonian can be rewritten as

H = —g SPS' +—(Si++Si )(S++S )
&Irn )

1
a k

1/2

1/2

ik. l

l

—ik l

l

(2.9a)

(2.9b)

+h QS;",
(i)

(2.4)

S;"=S—a;*a;,
S;+= (2S)' f;(S)a;,
S; =(2S)'~ a f,.(S),

where

(2.5)

where Sl
+—are raising and lowering operators for Sl".

The application of spin-wave theory to the above Ham-
iltonian is carried out in standard fashion (e.g. , Oguchi ).
First, we introduce "spin deviation" operators by means
of the Holstein-PrimakofF transformation: ak =cxkcosh0k+cx' ksinh0k,

ak =akcosh0k+n ksinh0k,

where the parameter 0k =0 k =0k is fixed by

XTk
tanh(281, ) =

2D —x yk

(2.10a)

(2.10b)

(2.11)

where X is the total number of lattice sites, and ak, ak
again satisfy boson commutation relations.

Finally, the terms in the Hamiltonian up to second or-
der in ak, ak can be diagonalized by a Bogoliubov trans-
formation:

f; (S)=(1—a;*a, /2S)'~ (2 6) where

The operators a;, a,.* satisfy boson commutation relations: D=1- h

zS ' (2.12)

[a;,a*]—6,,

If the occupation number (a,*a, ) is small, it is reason-
able to keep only the first terms in an expansion in 1/S of
f;(S), and so here we take

and yl, is the structure factor of the lattice

1
Xk

P

ik P (2.13)

The result is (keeping only terms which contribute up
to second order in 1/S)

f; ( S) = 1 —a;*a, /4S . (2.8)
H =E~+g (A)S+ A2)nI, + g 8(k),k2), (2.14)

Next, we introduce Bloch-type operators ak, ak by the
Fourier transformation: where

k), k2

S
E& = — +NSh +zDSXC1— 2D —1 D(Ci —C —i) +2(1+D)Ci+2(1 D)C i+ —

2 (Ci —C3)

A, =zD(1 —xyg/D)'

4D —3x C 1
—xC1—

X16
4(1+D)C +4(1 D)C +—

1 —1

4DC3
yz .cosh(28&)

X

(2.15)

(2.16)

4DC3 4D+ —3x C
X X

8D +x C, yz 2D (C
&

—C, )—.sinh(281, ), (2.17)

g (k &, kz) = — (n &n2cosh(28&)cosh(282)
2X

+y, I (n, cosh28, + n '& sinh28& )( n zcosh~Oz+ n 2sinh Oz) + —,
' sinh(28& )sinh(28&)( n

&
+n ', )( n q +n q ) )

—x ye[cosh(28, )+—,'sinh(28, ) ][cosh(28')+ sinh(282) ]n, n2 I ), (2.18)

and

C„=—g1
n/2

(2.19)
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I

1 k +k nl —k —k V1 —2=Vk —k
1 1 1 1 1 2

(2.20)

The first-order results above reduce to those of Gomez-Santos and Joannopoulos in the isotropic limit x = 1.
Setting the external magnetic field to zero (i.e., h =0, D = 1), one can derive from Eq. (2.14) the ground-state energy

Eo and mass gap m:

Eo
N

zS2 zSCi+
2 2

(C, —C, ) +2C, + (C, —C3)
Z 1 —x 2 2 1

(2.21)

z C3 1+xI = zS ——Ct — + C
4 ' x x

(1—x)' (2.22)

DifFerentiating with respect to h, one can obtain the magnetization and susceptibility in the x direction:

1 ~EhI =— =S——(C+C )
N Bh 4

+ 1

32S

2 2 1—
(Ci —C, ) + (C, —C3)(C3 —2C, +C, )+2 (C, —C, )(C 3

—C, )
x x x

(2.23)

1 ~Eh 1
Xx~ = ——

2
= (Ci+C 3

—2C
&

)
N ()p 2

h o 8zS

1

32zS2

2

(C, —C, )(3Ci —C, +C 3
—3C 5)

4 2

+ (C, —C, ) +2
2 (C, —C, )(C 3

—C, )

2

+ (C 3
—Ci) +2(C i

—Ci)(C i
—2Ci)+ (C i

—4Ci+3C3)

+2(C, —C 3)(C, —2C, )+ (C, —C3)( —C 3+3C,—7Ci+5C~) . (2.24)
1

In order to derive the susceptibility in the y direction, set h =0 in Eq. (2.1) and add an external magnetic field direct-
ed along the y axis, pg, S, . Perform the Holstein-Primakoff'and Fourier transformations as before, and then shift the
origin of the Bloch operators ao by —(1/z)&N/2Sp/(1 —x), so as to cancel linear terms in (ao+ao ). The Hamiltoni-
an can then be diagonalized by the Bogoliubov transformation as before, and one finds that the shift in ground-state en-

ergy caused by the external magnetic field is

AE (p) =— S C—
& Ci N 2—x 2x (1—x) 2zS

+ P (2.25)

Hence one can find the required susceptibility:

9 hE
N g 2

1+1

o z(1 —x)
C i

—Ci
2Sx

(2.26)

The susceptibility in the z direction can be obtained in a similar fashion:

1—
z 2Sx

(2.27)

Note that the C„appearing in Eqs. (2.21)—(2.27) are evaluated from Eq. (2.19) after setting h =0, i.e., D = 1.
Up to this point, the results have been applicable to the ferromagnetic XY model on any lattice or to the antiferro-

magnetic XY model on any bipartite lattice following a simple spin rotation. We now restrict our attention to the two-
dimensional square lattice (the application of our second-order spin-wave analysis to other lattices will be given else-
where ).

Using the same techniques applied in our calculation of XXZ model, ' we can find the asymptotic expansion near
x =+1 of the C„ for the two-dimensional square lattice:



10 792 C. J. HAMER, J. OITMAA, AND ZHENG WEIHONG 43

Cq = 0.098 18435—0. 1050697(1—x )+0.017585 6(1—x ) — — (1—x )
/

10&v~

+0.023772(1 —x )
— — (1—x )

/ + .
560&2ir

Ci = —0.04190860+0.0819183(1—x ) — (1—x~) / +0.065 780(l —x2)2 — (1—x )
/ +

3&2ir 120&2vr

C, =0.2857645 — (1 —x )'/ +0.280482(1 —x )
— (1—x )

/ +0.1643(1—x ) +
'7l 12&v~

( 1 —x 2) ' —0.836 163 5 —
( 1 —x )

'/ +0.087 706 2( 1 —x ) +
2~air

(2.28a)

(2.28b)

(2.28c)

(2.28d)

(1 x2) —3/2+ (1 x2) —i/2 0 953 1()5+
3~ 3&2vr

Hence one can deduce the asymptotic behavior near x =+1 of the physical quantities above:

Eo/X= —2S —0.083 817 2S —0.005 78467+(0. 163 836 6S —0.025 031)(1—x )

+( —0. 15005S+0.0065353)(1—x )
/ + . . (x —+1),

m =[4S—0.431436+1.2732(1 —x)'/ ](1—x)'/ + (x —1),
m =[4S—0.056276+0.233 88(1+x)](1—x)'/ + . (x ——1),
M, =S —0.060964—7.4036X 10 /S+(0. 112539—0.023 715 6/S)(1 —x )' + . . (x —+1),

(2.28e)

(2.29a)

(2.29b)

(2.29c)

(2.29d)

y,„=(0.028 1348/S+3. 958 26X 10 /S )(1—x )
'/ —0.045 30/S+0. 008 352 1/S + . . (x —+1), (2.29e)

=(1—x) '[0.25+0.0040959/S —0.079577(1—x)' /S+ . ] (x —1),
=0.125 —0.020479 5/S+0. 039 788 6(1+x)'/ /S + . (x ——1),

y„=0.25 —0.0175116/S+0.046747(1 —x)/S+ . (x —1),
g„=0.25+0.017 511 6/S —0.046747(1+x)/S+. . . (x ——1) .

(2.29fl

(2.29g)

(2.29h)

(2.29i)

III. SERIES RESULTS AND ANALYSIS

Series expansions for the model have been obtained us-
ing Nickel's cluster expansion method. ' ' The Hamil-
tonian (2.1) in zero magnetic field can be rewritten

H = —g [Si"S"+—„'x(Sr++St )(S++S )], (3.1)
&lm)

in a representation where S,- is diagonal and S,+,S, are

spin raising and lowering operators. The unperturbed
ground state at x =0 has all spins "up, " and the operator
proportional to x is treated as a perturbation operator,
which "Aips" spins on neighboring pairs of sites (lm ).
We have reviewed the techniques necessary for perform-
ing such a perturbation expansion in He, Hamer and Oit-
maa. Technically, the present case is a "low-
temperature" expansion, requiring the calculation of
"strong" embedding constants for the clusters involved.

TABLE I. Series coefficients for the ground-state energy per site Eo/N, the magnetization M, and
the parallel susceptibility y . Coefficients of x are listed.

Eo /N M Xxx

4
6

10
12
14

24
—0.428 240740741X 10 '
—0.125 118955 761 X 10
—0.553 856724242X10-'
—0.299 040 060 244 X 10
—0.182 300413 146 X 10
—0.120 533 943 936X 10

36
—0.906 828 703 704 X 10
—0.456 675 158 859 X 10
—0.287 374 997 710X 10
—0.201 587 464 747 X 10
—0.151 362 706 889 X 10
—0.11g 9g2 714 152 X 10

2

0.263 244 598 765 X 10
0.205 169 648 395 X 10
0.174432 424029 X 10
0.154267 331 542X 10
0.139 861198 156x 10-'
0.128 870 990 841 X 10
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TABLE II. Series coeScients for the transverse susceptibilities y», y„, and the energy gap m.
CoeScients of x" are listed.

2
3
4
5

6
7
8
9

10
11
12
13

Xyy

I

4
7

24

0.296 875 000 000
0.308 738 425 926
0.310543 491 191
0.316 136021 397
0.317 170 886 064
0.320 603 704 686
0.321 338 412 658
0.323 692 938 356
0.324 245 837 203
0.325 992 915 511
0.326 426 520 258
0.327 789 189 125

Xzz

24

0.520 833 333 333 X 10
—'

—0.318 287037037 X10 '
0.395 921 746 399X 10

—0.665 530922 374X10-'
0.323 355 318 811X 10

—0.228 148 917 862 X 10
—0.134630 116992 X 10
—0.100425 218 103X 10
—0.191 327 790 202 X 10
—0.519 134 609 996X 10
—0.173 983 050 S53 X 10
—0.298 654 517495 X 10

—0.416 666 666 667
—0.416 666 666 667 X 10-'
—0.104 745 370 370
—0.252 674093 364 X 10
—0.471 861 677 758 X 10
—0.201 121 534 927 X 10
—0.260 801 516 831 X 10-'
—0.151 060413 907 X 10
—0.180459 338 722 X 10

We used the same list of clusters as in our previous pa-
per. ' Calculating the contribution of each cluster to the
various series took up some 150 h CPU time on an
IBM3090 computer.

The resulting series are listed in Tables I and II. The
only previous series analysis that we know of is that of
Pearson, ' who calculated terms up to 0 (x ) in the series
for the ground-state energy. Our results agree with his to
that order.

The analysis of these series was carried out along the
same line as Zheng, Oitmaa, and Hamer. ' First, the form
of any singularities at x =+1 was investigated. For the
most part, a standard Dlog Pade analysis was per-
formed, after first differentiating each function where

5=1—(1 —x )' (3.2a)

necessary in order to promote the singular term into the
dominant term. The estimated singularity parameters are
shown in Table III. They show that the singularities do
indeed lie at the expected positions x =+1; and although
the index estimates are not very accurate, they are by and
large quite consistent with the predictions of spin-wave
theory.

Next, we assume the singularity indices are those pre-
dicted by spin-wave theory and attempt to estimate the
amplitudes of leading-order terms in the asymptotic ex-
pansions near x =+1. First, we transform to a new vari-
able, as proposed by Huse:

TABLE III. Estimates of singularity parameters for the series given in Tables I and II. Both un-
biased estimates (u.b.) and estimates biased by setting x, =1 (b.) are listed. The index values predicted
by spin-wave theory are also given for comparison.

Function

d Eo
d(x )

m (x &0)

dM

dx

yyy (x &0)

+yy (x (0)
d'X„

(x &0)
dx

d'X„
(x &0)

dx

'All estimates defective.

u. b.
b.

u.b.
b.

u. b.
b.

u.b.
b.

u.b.
b.

u. b.
b.

u. b.
b.

u. b.
b.

Singular point
x

1.0(1)
1

1.005(5)
1

1.01( 1)
1

1.000(1)
1

x, = 1.002(2)
1

x, = —0.95(10)
—1

x, = 1.04(4)
1

x, = —1.3(1)'
—1

Singularity
index

—0.7(2)—0.6(1)
0.56( 8)
0.54(3)

—0.55(6)—0.52(4)
—0.6(1)
—0.51( 1)
—1.06(5)
—1.03(4)
—0.3(2)—0.35( 10)
—0.9(2)—0.55(8)
—0.9(2)'—0.55(10)

Spin-wave
prediction

—0.5

0.5

—0.5

—0.5

—0.5

—0.5

—0.5
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-0-50 0 -50

Eo
N

-0.52

046

-0.54
044

0-2 0.4 0-6 0.8 1.0
0 42

0 0-2
I

04 0.6 0.8 1-0

FIG. 1. Graph of the ground-state energy per site, Ep/X,
against 5. The three curves shown are the series estimate and
the first- and second-order spin-wave predictions, marked SW" '

and SW' ', respectively.

or

(3.2b)

depending whether the quantity is a function of x or x,
and whether we are expanding about x =+ 1 or —1. The

FIG. 2. Graph of the magnetization M„against 6. Notation
as in Fig. 1 ~

function should then be analytic in the new variable 5 (or
5'), according to spin-wave theory. We then extrapolate
to x =+1 using three different methods. In the first
method, simple Pade approximants in 5 (or 5') were cal-
culated for each series, from which the value of the func-
tion and its derivatives at 5= 1 (or 5' = l ) can be calculat-
ed directly. In the second method, differential approxi-

TABLE IV. Series estimates for the leading-order amplitudes A„at x =+1 [as defined by Eq. (3.4)].
Also listed are the spin-wave predictions at first and second order.

Function

Eo /X

XXX

(1—~)-'"m

(1—
x)gyes

xzz

xzz

0
2
3
0
1

—1

0
1

2
0
2
0
1

0
1

0
2
0
2

—0.541 91
0.081 92

—0.075 03
0.439 04
0.11254
0.056 27

—0.0906
2

0.25

0.125

0.25

0.25

—0.547 69
0.056 89

—0.009 67
0.437 56
0.065 11
0.057 85

—0.0572
1.569
1.273
1.9437
0.2339
0.3319

—0.1592
0.084 04
0.079 58
0.214 98
0.0935
0.285 02

—0.093 49

Amplitudes A„
Spin-wave predictions

First-order Second-order
Series

estimate

—0.548 83{3)
0.069 80(2)

—0.031 1{1)
0.435 48(3)
0.0740(2)
0.0588(6)

—0.034(5)
1.61{1)
0.68(6)
1.763(4)
0.68{2)
0.3505(5)

—0.1515(14)
0.0900(5)
0.038(3)
0.209 54(3)
0.0486(6)
0.301 515(2)

—0.069 734(4)
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f (x )- g A„(1—x )" (x —1)
n=n 0

(3.4a)

035 or

F
Xy„

0.30

025
0 0.2 0.4 0.6 0.8 10

mants were calculated for each series, from which the
value of the function and its derivatives at 5= 1 (or 5'= 1)
can be found by numerical-integration. Last, we used the
technique of Singh, whereby partial sums S~ are com-
puted at x =1 for the original series in the variable x
(or x). If the leading singularity is of the form (1—x ),
then asymptotically one expects.

S~-S +
(%+a)

(3.3)

where S is the sum of the infinite series and c,a are con-
stants. The sums Sz are plotted against (%+a), and
n is adjusted so as to get the best fit to a straight line;
then S can be estimated by a simple linear extrapola-
tion. Comparing the results of all these methods, one can
form good estimates of the extrapolated value S and its
associated error.

The results of these procedures are listed in Table IV.
For each given function f, the asymptotic amplitudes are
defined by

FIG. 3. Graph of the susceptibility pyy (x & 0) against 5. No-
tation as in Fig. 1.

f (x)- g A„(1+x)" (x —+1),
n=n 0

(3.4b)

as the case may be. Our series estimates of these ampli-
tudes A„are listed in Table IV, together with the predic-
tions of spin-wave theory at first and second order in 1/S.

The agreement between the spin-wave predictions and
the series estimates is very good, even better than in the
case of the Heisenberg antiferromagnet. ' The reason
presumably is that the average "spin deviation" (nI ) is
smaller here than in the Heisenberg case, and so the trun-
cated spin-wave analysis is more accurate. Second-order
spin-wave theory predicts the leading amplitude for the
ground-state energy to within 0.2%, the magnetization
M to 0.5%, and y" to about 7%. The agreement is fur-
ther illustrated in Figs. 1, 2, and 3, which graph the series
estimates and spin-wave predictions as functions of 5 for
Eo, M, and y» (x )0). The series estimates here were
obtained by integrating the differential approximants in 5
(or 5').

Finally, a comparison of our results for the ground-
state energy with estimates from other sources is shown
in Table V. Our results are clearly consistent with the
earlier ones, but much more accurate.

IV. SUMMARY

Our conslusions are much the same as in the Heisen-
berg case. ' By extrapolation of our series expansions to
the isotropic limit, estimates for the behavior of the XY
spin model have been obtained which are substantially
more accurate than the few previous treatments. A de-
tailed comparison has shown excellent agreement be-
tween the numerical results and spin-wave theory. In
every case, the second-order spin-wave theory provides a
much more accurate representation than the first-order
theory.

The isotropic XY ferromagnet at x = 1 possesses a rota-
tional O(2) symmetry in the x-y spin plane, which is bro-
ken when x &1 into a Z2 symmetry in the x direction.
The ground state of the isotropic model exhibits spon-
taneous symmetry breaking by the Goldstone mecha-

TABLE V. Comparison of some numerical estimates obtained by different authors for the ground-
state energy of the S =

z isotropic XFmodel on a square lattice.

Reference

Oitmaa, Betts, and Marland (Ref. 10)
Pearson (Ref. 13)

Okabe and Kikuchi (Ref. 12)
Okabe and Kikuchi (Ref. 12)
Okabe and Kikuchi (Ref. 12)

Present work

Method

Finite lattice calculation
Series

8X8 MC
12X 12 MC
16X 16 MC

Series

4Eo /N

—2.16(2)
—2.198(8)
—2.008(8)
—2.1968(80)
—2.1960(20)
—2.1953(1)
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nism, so that if the isotropic limit is approached from the
Ising side (x ( I ), there is long-range order in the x direc-
tion, i.e., a nonzero M„value, in accordance with the
rigorous proofs of Kennedy, Lieb, and Shastry and

Kubo and Kishi. The mass gap goes to zero in the iso-
tropic limit, corresponding to the appearance of a mass-
less Goldstone mode. All these characteristics are very
similar to those of the XXZ Heisenberg antiferromagnet.
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