
PHYSICAL REVIEW B VOLUME 43, NUMBER 13 1 MAY 1991

Permeability and permittivity spectra of granular materials
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We present an extended analytic technique for calculating the permeability and permittivity spec-
tra of granular materials. It addresses the relationship between grain properties, their size relative
to the wavelength, and the permeability and permittivity spectra of polycrystalline material. The
scattered multipolar fields about a single sphere are related to the polarizability of an ordered
congregation of such spheres. The product of the external wave vector k and sphere radius a is
small and the product of the internal wave vector k; and a unrestricted. The Clausius-Mossotti re-
lation is used in combination with the scattering results to yield an equation that permits us to cal-
culate the effective permeability and permittivity spectra of a cubic array. The result is a variety of
possible spectral types, including complex perrnittivity and permeability spectra that have been
measured and explained either by including multiple atomic-level sources or by statistical weighting
over an ensemble of grains. This theory predicts both "classical" and "anomalous" spectra from a
single source, as well as certain conglomerate permeability spectra that have been measured and for
which no direct explanation is available. Our results show that an understanding of the permeabili-

ty and permittivity spectra of composite materials cannot be complete without inclusion of a depen-
dence on the ratio of the grain size to the wavelength.

I. INTRODUCTION

Electronic materials, chosen for having specific values
of relative permittivity and permeability, are widely used
and have in common an inherent frequency dependence.
The sources of the permittivity and permeability are
thought to be atomic-scale dipoles. ' By definition the
permeability and permittivity are, respectively, the
derivative of the magnetization M with respect to the
magnetic field and the derivative of the polarization P
with respect to the electric field. M and P are the (vec-
torial) sums, respectively, of all magnetic- and electric-
dipole moments per unit volume.

Magnetization changes due to domain-wall motion are
calculated with use of the lossy harmonic-oscillator equa-
tion. A dual procedure is used for the induced permit-
tivity. Magnetization changes due to coherent rotation
are calculated with use of the electromagnetic torque
equation, usually with a phenomenologically added Gil-
bert or Landau-Lifshitz loss term for magnetics. A simi-
lar technique with a Debye loss term is used for dielec-
trics. Although spectra calculated with use of these tech-
niques match quite well the measured spectra of such
ideal materials as single crystals, changing the parameters
of the model only smooths or sharpens the shape of the
resonance, raises or lowers the resonance frequency, or
raises or lowers the magnitude of the initial component.
The techniques cannot explain multiply peaked spectra of
uniform, polycrystalline material.

The purpose of this paper is to extend the present ana-
lytic technique for calculating permeability and permit-

tivity spectra and to apply the results to solid, polycrys-
talline materials. Our results show that a single mi-

croscopic source can result in a broad range of macro-
scopic permeability and permittivity spectra and that the
permeability and permittivity are interdependent. Our
calculations show spectral forms that include resonances,
relaxations, and anomalous forms.

We begin by solving for the scattered and internal
fields, respectively, about and within a dielectric sphere
of arbitrary scalar permittivity and permeability that is il-
luminated by an incident electromagnetic plane wave.
The product of the wave vector k and sphere radius a is
much less than 1 and the product of the internal wave
vector k, and sphere radius, k, a =ka &pe, is uncon-
strained. The field coefficients are determined from
matching boundary conditions on the surface of the
sphere and related to the dipole moment. We then form
a polycrystalline solid by bringing together an infinite set
of such spheres to form a cubic array. Sphere-sphere in-
teractions are calculated with the help of the Clausius-
Mossotti equation.

We justify applying the technique to sources arising
from electromagnetic torque by requiring the initial mag-
netization (polarization) of the grains to be random; then
the sum over nearest-neighbor off-diagonal terms is zero
and can be ignored. "' This allows us to assign to the
individual spheres scalar properties derived from either,
or both, induced and existent dipole moments. The result
is a technique for calculating the effective permeability
and permittivity of congregate material with arbitrary,
intrinsic granular permeability and permittivity as a func-
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tion of the product ka =oo and the packing density.
Although the multipolar expansion is correct for all

size-to-wavelength ratios, the Clausius-Mossotti relation-
ship is not; its derivation includes putting the electric-
field intensity equal to the gradient of a scalar potential
function. Since the gradient relationship is correct only
in the limit of zero frequency, interaction effects as calcu-
lated are applicable only at zero frequency. However,
asymptotic results are very close to reality so long as par-
ticles remain small compared with the wavelength; that
is, so long as

ka (1.0 .

Since our results are intended to apply to polycrystalline
solids at microwave frequencies (or to aerosols at optical
frequencies), we are interested in conditions under which
Eq. (1) is applicable, although Lewin has shown that
theory and experiment are in good agreement up to ap-
proximately ka =1.0. Although Eq. (1) is applicable to
the problems of interest here, the permittivity and per-
meability of the grains may be large enough to make k;a
large so that k;a )ka. Since external moments of order n

are proportional to (ka) "+' higher-order moments
remain small. Therefore, as with other theories, we keep
only the dipole terms. Since for large and changing
values of k;a the spherical Hankel function remains fixed
in magnitude and varies rapidly in phase, so do the dipole
moments and, in turn, so do their contribution to the
external constitutive parameters. An exact accounting
for the frequency-dependent phase both of p and e forms
the theory presented in this paper.

j„(cr;)E„= g i' "B„n(n+1) P„'(cos8)cosg,
n=0 C7 I.

oo „(cr; )
qH„= g i ' "A„n (n +1) P„'(cos8)sing,

n=0

(4)

where A„and B, form an infinite set of field coefficients.
Matching boundary conditions, we find the scattering
coefficients for the TE and TM fields, C„and D„, respec-
tively, to be given by ' '

2„+1 J„(~,)J„( .)g —j„( .)J„(,)
C„= n(n+1) J„(o,)h„(cr, ) —j„(o;)H„(o,)r)

2n+1D„=
n (n + 1)j „(o,)H„(o, ) —J„(o;)h„(o, )g

where o.;=k,a and o., =ka. The spherical Bessel and
Hankel functions are given by

The scattered fields are given by

h„(o )E„= g i' "D„n(n+1) P„'(cos8)cosg,
n=0 0

h„(o )
(3)

rI,H„= g i' "C„n (n +1) P„'(cos8)sing,
n=0 o

where C„and D„ form the infinite set of field coefficients.
For a description of the fields inside the sphere, we let

o; represent the product of the internal wave vector k;
and radial distance r, where r is less than or equal to the
sphere radius. The interior fields with this polarization
are

II. CALCULATION MODEL

We solve for the field coefficients by expanding all
fields, interior and exterior, by a multipolar field expan-
sion, ' ' and matching boundary conditions at the sur-
face of the sphere. To help clarify the physical
significance of the field coefficients, we consider the radial
terms of the field expansions. Although the angular
terms are required for solving the boundary conditions,
they are derivable from the radial terms, ' as detailed in
our earlier work; we follow our previous notation.

Using a e'"' time dependence, we consider a z-directed,
x-polarized plane wave incident upon the surface of a
sphere of radius a centered at the origin. By definition,
o =kr, where r is the distance from the origin. j„(o ) and
h„(o ) are, respectively, spherical Bessel functions and
spherical Hankel functions of the second kind (also
known as Riccati-Bessel functions). Associated Legendre
functions of order n and degree one are given by
P„(c sOo). Using rationalized mks units, the radial terms
of the multipolar field expansion of the incident wave as
defined are

oo j„(cr)E„= g i ' "(2n + 1) P„'(cos9)cosg,
n=1

QO j„(o )
g, H, = g i ' "(2n + 1) P„'(cos8)sing .

n=1

j, ( cr ) =sino. /o. —coso /cr,

h, (o )=e '
(
—1/o+i/o

The derivative functions J, (cr ) and H, (cr ) are defined by

H, (o )=— (crh t(cr))
1 d
0 dO

D„=
2n +1
0

n (n + 1)[(2n —1)!!j

Jc„r( ) c—r(n + 1)j„(o., )

nj„(o; ) gcr, J„(cr;)—

The first fraction decreases rapidly with increasing value
of n: io., /2, io., /54, io., /2700, etc. The second fraction
does not change much. In other words, all external fields
created by higher-order terms are negligibly small. Our
results are caused by changes in the external dipole mo-
ment.

The dipolar field coefficients are

These field coefficients are exact, and valid for all fre-
quencies.

As previously stated, k, a can be any value but ka
remains small; for this case, the expression for D„ is
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ji(cr;)J&(cr, )i) —j,(cr, )J, (0;)C=—
2 J, ( cr; )h, ( cr, )

—j, (cr;)H, (o, )il

j, (cr, )J, (cr; )i1—j, (cr; )J, ( o, )D=—
2 j,(cr;)Hi(cr, )

—&i(cr;)hi(cr, )i)

(9)

Approximate forms of the field coefficients have been
used to determine the effective properties, ' for k, a ((1,
Eq. (9) reduces to

C = —io.,

D = —io.,

p 1

p+2
1

6+2

(10)

The approximate forms of the field coefficients result in
calculation of an effective permeability (C) independent
of grain permittivity, and an effective permittivity (D) in-
dependent of the grain permeability. To show how the
permeability and permittivity are interrelated, we keep
the next-order correction term for C and D to find

3o., +i8~a CN

3o., —4ima CN

30., +i8~a DN

3o.,—i4~a DN

(12)

(13}

where N is the number of spheres (grains) per unit
volume. Doyle uses an equivalent form of Eq. (13) to
find the reflectance of a suspension of Ag spheres, with

p = 1. For close-packed, face-centered-cubic lattices,
N= 1/(4a V2), and

3p —1 . q ep +p —6p+4C loo 310 0p+ 2 10(p+ 2)

3e—1 . 5pe +e —6@+4
D loo 3l0 oe'+2 10(@+2)

The field coefficients are symmetrical with respect to p
and e. ' ' In Sec. IIIA we consider the difference be-
tween spectra calculated using the exact and approximate
forms of the field coefficients.

The Clausius-Mossotti relation shows the effective per-
meability and permittivity to be

tion of o.„and in Sec. III C we consider spectra calculat-
ed for frequency-dependent sphere properties. Most ma-
terial applications are designed for a particular frequency
range. Therefore, instead of changing our spectrum win-
dow to observe the dynamic responses for given sphere
properties, we keep the window fixed and change the
sphere properties to bring the dynamics into the window.

A. Field coefBcient form

The coefficients C and D are evaluated at the surface of
the sphere where cr, =cr, V'pE. Small argument approxi-
mations are often used in scattering problems, even
though the product &pe of the rejecting material can be
large; therefore, differences between the effective spectra
calculated using exact and approximate forms of the field
coefticients are of particular interest.

Figure 1 is a plot of p,~ calculated with p=250 —i10
and @=15—i5000 over the range o., =10 —10 ' using
both exact and approximate forms of the field
coefficients. o, /cr, =776. 1 —i805.4. The permit tivity
and permeability values assigned the sphere are typical of
those found in ferrites. The effective permeability calcu-
lated using the approximate form of the field coefficient
shows a constant valued spectrum: p', ~, the dashed line in
Fig. 1, is about 9.4 and p",& is close to zero. The spectrum
calculated using the exact form of the field coefficient is
noticeably different. It is apparent that, although we res-
train ourselves to a range where ka is small, the approxi-
mate form of the field coefficients leads to substantially
different results when the internal wavelength is large.
We use the exact form of the field coefficients for all
remaining spectra calculations.

Figure 1 is worthy of note for it displays a p,~ relaxa-
tion spectrum, much like the type measured experimen-
tally, ' which is not necessarily predicted using an elec-
tromagnetic torque equation. Absence of a negative
value is ascribed to field averaging over multidirected and
shaped units, although such averaging will always pro-

10

3cr, /2+i2vrC
Pea 3a,&2 i irC— (14)

~ W

3o,&2+i 2rrD

3cr, &2 i~D—
Fquations (14}and (15) show the effective properties to be
functions of p and e of the grain, and o,

III. CALCULATED EFFECTIVE SPECTRA

CO

~ W

0

4
10

fl

I'en

-1
10

We now use Eqs. (14) and (15) to calculate the effective
permittivity and permeability spectra for different grain
properties. In Sec. III A we compare spectra calculated
using exact and approximate forms of the field
coefficients. In Sec. III B we examine spectra calculated
for several different constant sphere properties as a func-

FIG. 1. p,z calculated for p =250 —i10 and e = 15—i5000 us-

ing exact form of field coefficient given in Eq. (9). Dashed line is

p ff calculated using approximate form of field coefficient given
in Eq. (10). o.;/o. , =776. 1 —i805.4. The 0, range is from 10
to 10
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duce a p' less than 1 at high frequencies. ' Figure 1

demonstrates that this type of spectrum also arises from
granular size effects. Postulates about atomic scale prop-
erties or polycrystalline averaging are unnecessary.

~ M
~ IH

B. Fixed grain properties

In this section we investigate the effects on the
conglomerate spectra of assigning the individual spheres
different constant valued permittivities and permeabili-
ties. The values assigned to the individuaI spheres are
chosen to clearly present the dependence of the effective
property spectra and not to necessarily reflect actual ma-
terials.

We begin by considering the effects of changing p' of
the sphere while keeping p" and the permittivity con-
stant. Figure 2 shows p,z calculated for p=5000 —i2 and
@=200000—i10000. The p,z plot shows a relaxation,
while the e,z spectrum calculated for the same values is
flat. Larger values of p' act to shift the relaxation point
of p,z to lower values of o., and increase that of e,&. Fig-
ure 3 is a plot of p,z with p' changed to 5. We see a clas-
sical resonance response where p', z goes negative and p",z
peaks at the midpoint of the p', z slope, but with "feet" at
the tail end of the traces. Such feet are prevalent in mea-
sured experimental work ' ' and have been the subject
of much discussion. ' "'

Figure 3 shows a p,z spectrum quite similar to that
measured and discussed by Rado et a/. ' They ascribed a
similar spectrum with multiple peaks to the combination
of two different, microscopic permeability mechanisms:
wall motion and coherent domain rotation. They at-
tempted to separate the two mechanisms by milling the
material to a smaller grain size which they hypothesized
would eliminate domain-wall movement. After the ma-
terial has been remilled to a smaller particle size, the mul-
tiple peaks were not present, which they took as proof
that the multiple peaks of the spectrum were from the
combination of different permeability mechanisms. Al-
though other evidence shows that the conclusions drawn
by Rado et al. in their paper may be correct, ' Fig. 3
demonstrates that such complex spectra are obtainable
from a single mechanism.

~ ~

4
10

jeff

-1
10

FIG. 3. p,z calculated for p=5 —i2 and @=200000—i10000.
The o., range from 10 to 10

Figure 4 is a plot of p,~ calculated using p=5 —i20
and e =200 000—i 10000. The p,z spectrum is quite
different from that seen in Fig. 3, where p=5 —i2. The
steps evident in Fig. 3 have disappeared into a slowly
damped tail, while e,& is little changed. Increasing p"
produces a lower g resonance with the resonance shifted
to a higher frequency; e,z changes slightly to indicate a
lower resonance frequency.

C. Frequency-dependent grain properties

=y(MXH}—
dt 4aM,

Mx™
dt

where the boldface type signifies vectors. M represents
the magnetization, 4~M, the saturation magnetization,
and H is the magnetic field. y is the gyromagnetic ratio
taken as 2.8 MHz/Oe. a is the damping coefficient, equal

We now consider the effective spectra when the per-
meability and permittivity of the grains are frequency
dependent. We determine the dynamic, frequency-
dependent permeability of the grain using the Gilbert
equation given by

10

~ W
~ TH
~ 1H

~ pH

CO

C4

O
0

G0

-1
10
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10

FIG. 2. p,z calculated for p =5000—i2 and
@=200000—i10000. The o., range is from 10 to 10

FIG. 4. p,z calculated for p = 5 —i20
a=200000 —i10000. The cr, range is from 10 to 10

and
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to, approximately, several tenths for highly damped ma-
terials, 10 for thin films, and 10 for single crystals.
The magnetization M is the vector sum of the saturation
magnetization 4m.M, and the rf magnetization. Similarly,
the magnetic field vector H is the vector sum of all inter-
nal fields acting on the magnetization, which includes the
externaBy applied field Ho, the shape demagnetizing field,
the anisotropy field Hk, and the rf magnetic field.

Our analysis is applicable to two special cases: One is
where the magnetic moment of each sphere, summed
over its contained domains, is zero; the other is for
single-domain, randomly oriented spheres, the macro-
scopic moment of which sums to zero. As k;a increases,
the fields interior to the sphere become more position
dependent. Our extension to include frequency-
dependent, non-uniform internal-field distributions in-
creases the channel for power transfer from the uniform
precessional mode to Walker modes. However, our
analysis is limited to small-signal permeabilities, where
the rf applied field is vanishingly small, and so we ignore
power losses other than those described by the loss term
of Eq. (16). As previously discussed, so long as there is
no external static moment, the off-'diagonal terms sum to
zero and can be neglected:" The result is that the per-
meability of the ensemble is a scalar quantity. With use
of Eq. (16), the relative sphere permeability is found to be

co (co +i cuba)

(cok +irma)(coo+i boa )—co
(17)

where ~ =@4&Ms Mk VHk &0=@Ho and co is the sig-
nal frequency.

For microwave-to-millimeter wave frequencies the
complex permittivity of the sphere is commonly modeled
using free-electron theory. For these frequencies the
sphere permittivity is approximated by

l IpEoco, ' (18)

where p is the resistivity. In this section we shall consid-
er the effective property spectra while using, respectively,
Eqs. (17) and (18) for calculation of the grain permeabili-
ty and permittivity. We examine changes in the effective
spectra due to variation of five different grain properties:
sphere radius a, e', e" via the resistivity p, damping
coefficient a, and crystalline anisotropy Hk.

The resonance frequency predicted usinz the Gilbert
equation is approximated by f„=y+4mM, Hk, and the
initial permeability by 4aM, /Hk. Since the two vari-
ables, M, and Hk, are interrelated we do not consider the
effective spectra as a function of the saturation magneti-
zation. The spectra are presented as a function of fre-
quency to provide a better intuitive feeling on how
changes in the frequency-dependent grain properties
affect the calculated spectra. We keep the frequency
range between 10 MHz and 10 GHz, and examine vari-
able effects on the response inside the frequency window.

I. Variable grain radius

We now consider the dependence of the effective spec-
tra upon particle size. Equation (17) is used to determine

20

~ 'M

C4

~ t~&l

10
7

10

Frequency (Hz)

10
10

FIG. 5. p„& calculated for grain properties Hz=10.0 Oe,
a=0.15, 4mM, =10 G, e'=5, and p=10'. a =10 ' m. The
frequency range is 10 MHz to 10 GHz.

the permeability of the grain with 4~M, = 10 G,
a=0.15, and Hk =10.0 Oe. Equation (18) is used to cal-
culate grain permittivity with e'=5, and p=10 Qm.
Figure 5 is a plot of p, ff for grain size a =10 rn. For
these particular grain values the p,z spectrum remains
virtually unchanged for grain size ranging between 10
and 10 m, although the responses do have slightly
lower Q's, lower resonance frequencies, and decreased
magnitudes as the particle size is increased.

For grain sizes below 10 m, the e,z spectrum is con-
stant valued; e',z is about 9.5 and e",~ is of negligible value.
As the grain size increases beyond 10 m, a relaxation
appears in the e,z spectrum which shifts to lower frequen-
cies as particle size is increased. Small changes in the
particle size dramatically affect the shape of the calculat-
ed spectrum. Figure 6 shows e,~ calculated for a grain
size of 10 m. The spectrum is a complex one, similar
to those measured for some NiFe204 ferrites, for which
no theory has been put forth to explain. Increasing or de-
creasing the conductivity of the grains acts to enhance or
reduce the rise in e',z prior to resonance.

~ l~+I

~ t~~l
eff

0
7

10

eff

Frequency (Hz)

10
10

FIG. 6. e,z calculated for grain properties Hk =10.0 Oe,
a=0.15, 4aM, =10 G, e'=5, and p=10 . a =10 rn. Fr'e-

quency range is 10 MHz to 10 GHz.
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2. Variable e' 20

We now consider the effect of changing e' of the grain.
The sphere permeability is determined using Eq. (17) with
IIk =10.0 Oe, +=0.15, and 4~M, =10 G. a =10 m.
The sphere permittivity is determined using Eq. (18) with
p=10 Am. Figure 7 shows p,& calculated with e' of
the grain set equal to 1. The spectrum shows a classical
resonance. The calculated e,& spectrum is virtually con-
stant with e',z about 9.5, and e",z increases with frequency
but is still quite small, 0.06, at 10 GHz. Keeping in mind
that e' values larger than a few tens are plausible only for
bulk ferroelectric materials we And that the spectra
remain virtually the same for e' up to, approximately,
10 . Figure 8 is a plot of p, ff calculated with e'=5 X 10 .
The spectrum displays a second resonance of reduced
magnitude at a higher frequency. Such second resonance
tails have been measured, and predicted using a macro-
scopic (sample size) dimensional resonance theory. Fig-
ure 8 demonstrates that the same type of secondary reso-
nance can be obtained from a microscopic basis. The
second resonance is seen between e'=2X10 and 2X10 .
While the frequency of the first resonance stays constant,
the frequency and spectral magnitude of the second reso-
nance shift lower with the increase in e'. At e'=10, a
third resonance peak is visible. Further increases in e'

bring the p,z spectra back to the classical form of the res-
onance curve and begin to lower the resonance frequency.
The e,& spectrum remains unchanged for e' values up
through 10' .

~ TH
~ TH

V
C4

~ pE

0

7
10

Frequency (Hz)
10

10

FIG 8 p ff calculated for grain properties H& = 10.0 Oe,
+=0.15, 4aM, =10 G, p=10, and a =10 ' m. e'=5X10.
Frequency range is 10 MHz to 10 GHz.

For p & 10 0 m, the e,z spectrum is constant, show-
ing no signs of a resonance; e',z is about 9.5, and e",z is of
neghgible value. At p= 10, the spectrum changes from
one of constant value to one indicating the onset of a re-
laxation or resonance. As the resistivity is further in-
creased, the relaxation shifts to lower frequencies inside
the window. Figure 9 is a plot of e,& calculated for
p = 10 . As the resistivity is further increased, the relaxa-
tion shifts to frequencies below the limits of the plot; e',ff

goes to zero, and e',z goes to approximately 4.5.

3. Variable e" 4. Variable damping coe+cient

We now consider the effect of changing e" of the grain.
The grain permeability is calculated with 4m.M, =10 G,
a=0.15, and Hk =10.0 Oe. a =10 m, and e'=5. For
small values of resistivity, p & 10 Q m, the p,z spectrum
displays a relaxation. As the resistivity is increased from
10 to 10 Qm, the resonance sharpens, dropping all
vestiges of a relaxation. For p values greater than 10
Q m, the p,z spectrum is quite similar to that seen in Fig.
7.

We now consider the effect of changing the damping
coefficient of the grain. Equation (17) determines sphere
permeability with 4m.M, = 10 G and Hk = 10.0 Oe.
Equation (18) determines the sphere permittivity with
p=10 Qm and e'=10. a =10 m. Figure 10 is a
plot of p,z calculated with a=0.015. The p,z spectrum
shows a sharp resonance of large magnitude much like
those associated with single crystals. The e,~ spectrum is
constant over the frequency range with e',z equal to ap-
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~ IH

0

N -10
7
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aft ~
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Frequency (Hz)
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FIG. 7. p, ff calculated for grain properties 0& =10.0 Oe,
a=0.15, 4~M, =10 G, =10, and a =10 m. e'=1. Fre-
quency range is 10 MHz to 10 GHz.

FIG. 9. e,ff calculated for grain properties HI, =10.0 Oe,
&x=0.15, 4aM, =10 G, e'=5, and a =10 m. p=1. Frequen-
cy range is 10 MHz to 10 GHz.
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FIG. 10. p,z calculated for grain properties HA =10.0 Oe,
4~M, =10 G, p=10, e'=10, and a =10 m. o.=0.015.
Frequency range is 10 MHz to 10 GHz.

FIG. 12. p,z calculated for grain properties HI, =10.0 Oe,
4~M, =10 G, p=10 ', e'=10, and a =10 ' m. +=1.20. Fre-
quency range is 10 MHz to 10 GHz.
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FIG. 11. p,z calculated for grain properties Hk =10.0 Oe,
M, =10 G, =10, e'=10, and a =10 ' m. a=0.15. Fre-
quency range is 10 MHz to 10 GHz.

proximately 9.6 and e",ff of negligible value but increasing
with frequency.

Figure 11 is a plot of p, ff calculated for a=0.15. The
spectrum has relaxed with the increase in damping
coefficient, with resonance no longer such a sharp transi-
tion. The resonance frequency has shifted slightly down-
ward, and the spectral magnitudes at resonance have de-
creased by a factor of about 10. The e,ff spectrum is vir-
tually unchanged from that calculated with the smaller
damping coefficient.

Figure 12 is a plot of p, ff calculated for a=1.20. The
p, ff resonance has become a relaxation, with p",ff showing
a very wide resonance peak. p', ff no longer goes negative.
Greater spectra relaxation is seen for further increases in
the damping coefficient; p', ff stays positive, and the reso-
nance frequency shifts to values below 10 MHz. The e,ff

spectrum remains the same, appearing to be unaffected
by the value of the damping coefficient within the fre-
quency range examined.

5. Variable Hk

We examine the effect of the crystalline anisotropy us-
ing Eq. (17) to determine the grain permeability for
4wM, =10 G and a=0.15, and using Eq. (18) to deter-
mine the grain permittivity with e = 10 and p = 10,and
a =10 m. We find, for a range of anisotropy values
from 0.01 to 200 Oe, a p, ff spectrum almost identical to
that of Fig. 11, and a constant valued e,ff spectrum with
E ff equal to about 9.5 and e",ff about 0. For these grain
values the crystalline anisotropy seems to have little effect
on the calculated spectra.

IV. DISCUSSION AND CONCLUSIONS

This work considers the effective permeability and per-
mittivity spectra of polycrystalline materials. In particu-
lar it addresses the dependence of macroscopic values on
the intragranular values of grain permeability and per-
mittivity and upon the size-to-wavelength ratio. To do
this, we first calculate the scattering from an isolated
sphere of arbitrary material. An infinite, cubic array of
such spheres is then used to form the polycrystalline
solid. Sphere-sphere interaction is accounted for by using
the Clausius-Mossotti relationship. Since the Clausius-
Mossotti relationship is valid only for small external-
size —to—wavelength ratios, our results are applicable only
to that case.

Attempts have been made to explain permeability spec-
tra displaying multiple peaks or relaxations by summing
a resonant response over a range of grain parame-
ters. ' ' This approach fails, however, since a resonant
microscopic model leads to a resonant macroscopic one.
The local field, particularly when the internal wavelength
is large, must be considered. The theory presented here
results in spectra that match measured resonances and
also predicts, under appropriate conditions, other more
anomalous permeability and permittivity spectra that
have been experimentally observed. Our results suggest
that it is necessary to include the effects of the in-
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tragranular size to wavelength ratio as well as the
Clausius-Mossotti equations if spectra are to be properly
interpreted.

We find that high-permittivity spheres give an e,ff that
primarily measures the volume fraction occupied by the
spheres, and, depending upon the size of the sphere, that
the permittivity may strongly infIuence the p, ff spectrum.
Dual comments are, of course, valid. When the permit-
tivity and permeability of the sphere are 1arge, the spec-
tra obtained using the approximate and exact forms of
the field determining coefficients are quite different.

Section III B shows that the familiar frequency-
dependent spectra can be obtained from a lattice com-
posed of grains with constant properties. With p", e',
and e" kept fixed, different, constant values of p' result in
effective permeability spectra ranging from resonance to
relaxation. Changing p" while keeping p', e', and e"
fixed varies the Q of the spectra.

Section III C considers the efFective spectra calculated
for a lattice of spheres with frequency-dependent elec-
tromagnetic properties. The sphere permeability was
determined using the Gilbert equation, and the sphere
permittivity determined using free-electron theory. Sec-
tion III C 1 shows that the sphere size plays a large role
in determining the effective spectra. Results include
spectra quite similar to published data considered to be
anomalous. Section III C2 shows that changing e' had
little effect on the calculated effective spectra. Although
increasing e' did shift the resonance frequency slightly
lower, the effect was not noticeable for realistic values of
E .

In Sec. IIIC3 we saw that varying e" produces a
dramatic change in the calculated effective permeability
spectra. Larger values of e" produce relaxations com-
mon to low-frequency ferrites while smaller e" values
produce resonances typical of single crystals. Section
III C4 shows that changing the damping coefficient a of
the sphere greatly affects the effective permeability spec-
tra. At small values of a, the calculated spectra resem-
bled those typical of a single crystal, while large n values
resulted in lower-Q responses. Section III C 5 shows that
changing the anisotropy field HI, of the sphere has little
effect on the calculated effective spectra.

One series of permeability spectra seen in the paper by
Miles et a/. is particularly interesting for comparison to

results calculated in this work; they display a series of
temperature-dependent permeability spectra measured at
298, 153, and 83 K for four different nickel-zinc ferrites.
Their temperature-dependent spectra correspond quite
closely to those of Sec. III C 1: effective spectral depen-
dence upon the size of the spheres. The temperature
dependence can be simply explained if the constituent pa-
rameters of the grain changed with temperature.

Dimensional resonance effects on permeability and per-
mittivity spectra have been examined from a macroscopic
point of view which considers both the physical size and
shape of the sample being measured. Brockman et al. .
investigated macroscopic dimensional effects in a high-
permittivity ferrite. They developed a theory to predict
p ff and e,ff spectra as a function of the bulk material
properties and physical dimensions of the sample being
measured. Their predicted spectra are similar to some
presented in this work calculated from a microscopic
basis. Analogous to the work described here, these au-
thors point out that the frequency-dependent p, ff and e,ff

spectra which their theory predicts are not necessarily
determined by dispersion of the bulk material making up
the sample; similar spectra are obtained using constant-
valued material. Although dimensional effects are well
accepted on a macroscopic basis, there has been little
work considering the effect on a microscopic level. Re-
sults presented here suggest that the role of dimensional
resonance between the microscopic particles in determin-
ing the permeability and permittivity spectra need to be
considered.

An extended method of calculating the permeability
and permittivity spectra of composite materials has been
introduced that includes dimensional effects on a granu-
lar level. The ability of the method to calculate many
different, complex spectra from a single origin is
noteworthy. Our work suggests that the frequency
dependence of the permeability and permittivity spectra
is strongly afFected by dimensional responses at the
granular level.
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