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Impossibility of continuous deterministic phasons in octagonal quasicrystals
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It is shown that quasicrystals with octagonal symmetry do not admit continuous deterministic
phasons. This rules out the possibility of finding a dynamical model of the Frenkel-Kontorova type
for this simplest class of quasicrystals.

I. INTRODUCTION

In the past, all the known quasicrystals had phasons
present merely as a frozen-in disorder: their dynamics
were irrelevant on experimental time scales. ' Since then,
a class of quasicrystals with dynamical phasons was
discovered by Bancel. He interpreted his results via
phason relaxation times on the order of minutes. In his
case, phasons most likely have some sort of diffusive dy-
namics, which can be accomplished by the hopping
motions of the atoms. This experimental discovery pro-
vldcs an added incclltivc to study an cvcn ITlolc pllstlnc
possibility: phasons with nonrelaxational dynamics, un-
der which the atoms move continuously in a predeter-
mined way. In the one-dimensional (1D) case, this situa-
tion is exhibited by the Frenkel-Kontorova model.

It was shown in that, in the case of quasicrystals, there
exist rather nontrivial constraints that are absent in 1D.
These constraints can a priori jeopardize the very ex-
istence of the Frenkel-Kontorova type models for quasi-
crystals. Before such a model is even written down, we
require its solutions to satisfy a sym, nzetry requirement
(e.g. , icosahedral, decagonal, octagonal, etc. ) and the to-
pological requirement of continuity of atomic motions.
When combined with several other general physical re-
strictions (a precise formulation is in the next section), it
turns out that these conditions may be incompatible with
each other in some situations. Even when they are
compatible, they can severely limit the allowed solutions.

Given the nontriviality of constraints posed by symme-
try and continuity, much effort has been directed towards
the classification of the geometric structures correspond-
ing to continuous phasons. Luckily, the most physically
interesting icosahedral symmetry turned out to be com-
patible with continuous phasons, and some progress has
been made towards the goal of a complete classification
of the possible solutions in this case. ' ' However, until
recently, the two-dimensional quasicrystals have received
little attention. We now know that pentagonal quasicrys-
tals in two dimensions do not admit continuous phasons.
This work is devoted to proving a similar result for octag-
onal quasicrystals. As explained, this unfortunately rules
out the possibility of constructing a Frenkel-Kontorova-
type model for this simplest class of quasicrystals.

While quasicrystals with octagonal symmetry may ap-
pear to be a somewhat academic case, we would argue

against such a viewpoint. As we emphasized above, the
classificational studies of the geometric structures admit-
ting continuous phasons are a very important step, but
finding a dynamical model (whose solutions would of
course correspond to these geometric structures) might
be of even greater physical significance. From the
viewpoint of inventing such a model, one may be better
off exhausting the two-dimensional possibilities before ad-
dressing the more complicated icosahedral case. The
lower-dimensional situations are easier to visualize, and
this would be of help in the search for the model.

We now turn to formulating the problem in a more
precise fashion, and then, to the proof of impossibility of
continuous phasons in the octagonal case.

II. FORMULATION OF THE PROBLEM

Since the general formulation of the problem has ap-
peared before, we choose brevity over detail in this
section. The quasicrystal structures we consider are ob-
tainable as cuts in higher-dimensional spaces' (hyper-
spaces). One defines a subspace, or a plane, in this hyper-
space. This subspace has the same dimensionality as the
quasicrystal under consideration and is called a physical
space. A maximal subspacc orthogonal to the physical
space is called a normal space. One introduces a set of
atomic surfaces, whose intersections with the physical
plane determine the locations of the atoms comprising a
quasicrystal. This set of surfaces is invariant under a
specified space group acting on the hyperspace. The
physical plane is chosen in such a way that any element
of this group of symmetry operations preserves its overall
orientation in the hyperspace. (This automatically
preserves the orientation of the normal space as well. )

While the oUeraO orientation of the physical space is
preserved, these symmetry operations can still induce the
motions of the atoms within the physical space.

Moving the physical plane along itself induces trivial
translations of the atoms in it. Moving the physical plane
in the direction perpendicular to itself corresponds to far
less trivial rearrangements of atoms corresponding to the
phason degrees of freedom. We are interested in studying
continuous deterministic phasons. This implies further
restrictions on the atomic surfaces, besides the symmetry
restriction already mentioned. These surfaces have to be
continuous, if atoms are to move continuously in the
physical plane in response to the displacements of the
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physical plane. Furthermore, they cannot have holes.
We do not want atoms appearing and disappearing or
jumping under phason degrees of freedom. Finally, one
imposes a physical requirement that no two atoms can
get too close to each other. These conditions are formal-
ly summarized as follows (cf. Ref. 3).

Condition 0: Determinism. The atomic positions are
defined by intersecting a d-dimensinal physical plane,
whose precise location is determined by xo, its point of in-
tersection with a normal plane, with a D-dirnensinal sur-
face.

Condition 7. I'eriodieity. The atomic surface is period-
ic in D )d dimensions.

Condition 2. Conservation of atoms. Under changes in
xo, atoms are never created or destroyed.

Condition 3. Smoothness. The atomic positions are a
continuous function of xo.

Condition 4. Hard cores. Atoms cannot get closer than
a minimum distance r.

It had been shown that these conditions result in
another important property of the atomic surfaces: each
of them is "plane-like", i.e., each stays within a finite dis-
tance of a plane of dimensionality d~=a —d, and these
"approximating planes" are rational within the hyper-
space.

This property is at the root of difhculties in finding the
structures that obey both continuity and symmetry. If
condition 1 is supplemented with a requirement that a set
of atomic surfaces is not merely invariant under a group
of translations in the hyperspace, but rather, under a
space group that includes rotations as well, contradic-
tions can result. Rotating an atomic surface results in a
surface with a di6'erently oriented approximating plane.
Indeed, two planes of di6'erent orientations, whose
dimensionalities add up to (or exceed) the dimensionality
of the hypersurface, will generically intersect. The same
applies to the continuous surfaces they approximate. In-
tersections mean that two atoms can get arbitrarily close
to each other when the physical plane comes near the in-
tersection, which violates condition 4. Only if the two
approximating planes are oriented in a nongeneric way,
such that they share a common direction (more precisely,
if the totality of vectors from both planes do not plan the
full hyperspace), can one avoid intersections.

If one starts from some generically oriented atomic
surface, acting on it with rotations from our symmetry
group will typically produce surfaces whose approximat-
ing planes are oriented in a way that intersections cannot
be avoided. Only if euery single plane that results under
every single symmetry operation acting on the initial
plane shares a common direction with it can we hope to
obey all of our conditions. If one cannot find a plane
with the needed orientation, one need look no further: a
continuous deterministic quasicrystal will not exist for
that particular symmetry group. We claim that one can-
not find such a plane in the octagonal case.

III. PROOF

We now prove our assertion that there are no continu-
ous deterministic phasons in the case of octagonal quasi-
crystals.

Theorem. Conditions 1 —4 are incompatible with oc-
tagonal symmetry.

Proof. We first review some geometric facts about the
eightfold quasicrystals. A 2D quasicrystal with an eight-
fold symmetry is realized as a 2D cut in a 4D space. The
physical 2D plane in the 4D space can be based, for ex-
ample, on tangent vectors

t, =(1,2'i, 1,0),
f2

——( —1,(), l, 2 )

and the normal space can then be based on

n, =(2'~ —1 0 1)

n2=(0, 1, —2'~~ 1)
(2)

It is easily checked that the following rotation of the
4D space leaves the physical and normal spaces invariant:

0 1 0 0
0 0 1 0
0 0 0 1

—1 0 0 0

The physical and normal spaces rotate within themselves
in an eightfold fashion (i.e., R =E). In the physical
space the corresponding rotation is by 45 . A set of rota-
tions R, k =0, . . . , 7, form a group.

As explained before, in order for a smooth determinis-
tic eightfold quasicrystal to exist, there should exist a ra-
tional 2D plane p in the 4D space, such that for any ele-
ment of the eightfold rotation group R, p and R p do
not add up to a full 4D space. In other words, p and R p
should always share at least a common direction. We
will show that the only 2D spaces satisfying this property
are the physical and normal spaces. These are not ration-
al, therefore, this will mean no such structures are possi-
ble. The proof now proceeds in several steps.

(1) First we formalize the statement that p and R "p
share a common direction. Let p be spanned by two
tangent vectors:

X) XP X3 X4

33 X4
(4)

Then Rp is spanned by (Rx, Ry). The fact that p and Rp
do not span the full 4D space can be expressed as
det(x, y, Rx, Ry)=0, or

X4

(Rx)& (Rx)z (Rx)3 (Rx)4
=0.

(Ry), (Ry)~ (Ry)3 (Ry)4

Substituting various R for R, we get a system of equa-
tions that, in principle, determines a set of possible (x, y),
i.e., a set of all planes p. These equations are hard to
solve both due to the redundancy of such characteriza-
tion of p and, also, due to the noninvariance of character-
izing two-plane p by two arbitrary vectors from p.

(2) We now describe an invariant way of characterizing
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2D subspaces of the 4D space. The 2X4 matrix
T

X1 X2 X3 X4

for the physical and normal spaces. For the physical
space of Eq. (1), we obtain

y 31 32 33 34
(6)

X1 X2
b(12)= b(13)=

3'2

X1 X3
(7)

is clearly not invariant under the replacements of x and y
by their linear combinations. Consider, however, a set of
six 2 X 2 determinants,

b, (12}=2' b, (13)=2, b, (14)=2'

b,(23)=2' b, (24) =2, b,(34)=2'

and for the normal space of Eq. (2) we obtain

5(12)=2' b(13)=—2, b(14)=2'
g(23)=2~~ g(24)= —2 g(34)=2

(13)

(14)

These are essentially all the 2 X 2 minors of the 2 X4 ma-
trix above.

It is easy to see that all the six determinants h(ij) are
only multiplied by a common scale factor under the re-
placements

x=ax'+py',
y= yx'+5y',

and this factor is simply

(8)

This implies b.(12)= 1, which sets the scale for x, y. Then
we obtain

det
y

The set of six b, (ij) is thus similar to a set of direction
cosines for a 1D line.

We now study the inverse problem of identifying a 2D
plane from a set of b(ij). Suppose b, (12)%0. Then we
can choose for tangent vectors,

T

z 1 0 x3 x4
(9)0 1 3'3 y4

det

X1 X2 X3 X4

31 32 33 34

X4 X1 X2 X3
—34 » 32 33

=0

and

(3) We now derive a set of equations determining the
allowed two spaces p in terms of b, (ij) We. basically
reexpress the determinental Eq. (5) in terms of b, (ij).
First, we count our equations, however. Observe that

=I, where I is inversion [note that det(I) =1 in 4D].
Inversion I does not change any linear vector subspace of
4D. Thus, only the determinantal equations for R, R,
and R need to be considered. We further notice that the
equations for R and R are really identical in our case.
Indeed, R =R 'R =R 'I. Since 1 leaves a two-space
p invariant, to say that p and R p do not add up to a 4D
space is the same as saying that p and R 'p do not add
up to a 4D space. Since p is arbitrary, we can replace
p ~Rp. This results in a statement that Rp and p do not
add up to a 4D space. Thus R is indeed redundant.

So, we need only consider the equations for R and R,
which are

b,(13}
b,(12)
6(14)
b(12)
b (23)
b, (12)
b, (24)
b, (12)

(10)

X 1 X2 X3 X4

det
3'1 3'2 3'3 3'4

X3 X4 X1 X2

33 34 31 32

=0. (16)

We expand each of these determinants via the Laplace
theorem in terms of the minors of the first two and the
last two lines. We obtain two equations,

We note that [b,(34)/6(12)] is redundant, since we
have

[b,(12)] + [b,(14)] +[6,(23)]

+[A.(34)] —25(13)b.(24)=0 (17)

or

b, ( 34) —b, (23 )b, ( 14)+5(24)b, ( 14)
b, (?2) [b,(12)]

(11) and

6(12)h(23)+ 6(12)b (14)+b (23)b (34)

6(12)b.(34)—b.(24)b(13)+b,(23)b(14)=0 . (12)

This last relation is invariant under the scale transforma-
tions of b,(ij) and is generally more valid than the
coordinate-dependent derivation given above. Finally,
we note that this relation is analogous to the more famil-
iar relation cos +cos p+cos y = 1, for direction cosines
of a 1D line in 3D.

For future reference, we now calculate the sets of b, (ij}

+b, (34)b,(14)—[6(13)] —[b,(24)] =0 .

(18)

Equations (17) and (18), together with Eq. (12), constitute
a set of three equations to be solved.

(4) We now solve these equations. Consider the follow-
ing linear combinations of the three equations: Eq. (17)
plus two times Eq. (18) plus two times Eq. (12); Eq. (18)
minus two times Eq. (12); Eq. (17) minus two times Eq.
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[6(12)—h(34)] +2[6.(14)—b, (23)] =0, (20)

2[6 ( 13)—b, (24) ]

+ [b,(12)+b, (34)—6(14)—5(23) ] =0 . (21)

Equations (20) and (21) imply

b(12)=b(34) =b(14)=b(23) =x,
b (13)= b, (24) =y,

(22)

where x, y are some real numbers to be determined.
Equations (19) and (22) then result in 2x —y =0, which
is solved as

(18) plus two times Eq. (12). These lead to the following
three equations:

[b (12+b (14)+b (23)+h(34) ]
—2[5(13)+b, (24) ] =0, (19)

IV. CONCLUSIONS

We have shown that octagonal quasicrystals will not
admit structures with continous phasons. This means
that there can be no model of the Frenkel-Kontorova
type for these quasicrystals. We note that a similar result
has been previously shown for pentagonal quasicrystals.
In light of these two results, it is tempting to conjecture
that twelvefold quasicrystals will also not admit con-
tinous phasons, " and if that is true we may well have to
contend with the icosahedral case in our search for a
dynamical model exhibiting continuous phasons (barring
the more complicated 2D space groups that, unlike the
6vefold, eightfold, tenfold, and twelvefold cases, are not
based on quadratic irrationalities).

There is of course another possibility; it is conceivable
that this "no-go" theorem is Aawed because some subtle
physical property has been missed in what appears as a
mathematically rigorous formulation of the relevant
physics. Perhaps a different formulation of the idea of
continuous deterministic phasons would allow us to es-
cape the current constraints. To the best of our
knowledge, this has not yet been shown to be the case.
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