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Nonlinear dynamics in a double-chain model of DNA
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We investigate numerically the mechanics of a simple lattice model of DNA. The model consists
of two linear-mass chains connected by a Morse potential representing the hydrogen bonding be-
tween the sugar-phosphate backbones. Eft'ects on discrete breather-type solutions caused by ran-
dom noise and mass defects, representing interaction with the local environment, are studied.

I. INTRODUCTION II. THE MODEL

Although an understanding of the chemical changes
involved in transcription and replication of DNA and
RNA rests on fairly secure footing, ' the dynamics of
these processes are still being examined. This is due in
part to the complexity of the problem and the probability
that nonlinear vibrational modes are somehow involved.
Several rather simple models have been proposed
which seek to explain the open states of DNA and RNA
as nonlinear excitations along the chain which stretch or
even break the hydrogen bonding between the sides of the
chain. Although it is not established that open states of
DNA initiate transcription or replication, since open
states appear randomly along chains which are not repli-
cating, it does seem plausible that open states do play
some nucleative role in the replication process, especially
in the melting regime. Improvements have been made in
many of these models as additional complications such as
more realistic potentials and discreteness effects are taken
into account. One such model which has met with some
success in predicting a correct melting temperature for
DNA using reasonable bonding parameters as input is
due to Peyrard and Bishop. They examined the statisti-
cal mechanics of a model consisting of two chains of
masses connected linearly along their length and connect-
ed via a Morse potential between the two chains. This
paper investigates the dynamics of their model by numer-
ical simulation. In addition, the effects of various mass
defects representing interaction of the chain with its sur-
roundings are studied. Additional studies along these
lines, including finite-temperature effects, may be found
in Refs. 8 —10.

In Sec. II the model and details of the simulation are
discussed. Solutions for the model using the technique
outlined by Remoissenet" for a discrete chain are con-
sidered in Sec. III along with questions of stability. Sin-
gle mass defects are introduced into the model in Sec. IV
and the effect these defects have on coherent anharmonic
phonon ("breather" ) solutions are examined. Similar
studies are done for multiple mass defects in Sec. V. The
final section summarizes the results of the previous sec-
tions.

V(u„—w„)=D [ exp[ —a (u„—w„) ]
—1] (2)

The parameters a and D were chosen to correspond to
realistic values for the interchain hydrogen bond in the
DNA molecule.

The variable changes x„=( u„+w„) /v'2 and
y„=(u„—w„)/&2 separate the Hamiltonian into in-

phase and out-of-phase components. Only the out-of-
phase motion stretches the hydrogen bond. The Hamil-
tonian for out-of-phase motion leads to an equation of
motion

m 8 y„ /"dt k(y„+,+y„,—2y„—)
—2v'2Da exp( —&2ay„)[exp( —&2ay„)—1]=0 .

(3)

All figures shown were generated by time stepping
through the integration of the full equations of motion
for the connected chains using a fifth-order Runga-Kutta
method. ' For cases where the initial conditions are sym-
metric between the top and bottom chains, this is
equivalent to solving the in-phase equation of motion, Eq.
(3). Energies were calculated directly from the model and
were conserved in all cases (except the random noise
cases discussed below) to better than 0.001%%uo. The

The model consists of two chains of masses connected
by linear springs along their length with the addition of
nonlinear coupling between masses of each chain (Fig. 1).
The Hamiltonian for the system is

H=X„—,'m (u„' +w„' )+—,'k[(u„—u„, )

+(w„—w„&) ]+V(u„—v„),
where u is the top chain displacement from equilibrium
and w is the bottom chain displacement. Here k
represents the linear coupling strength along the top and
bottom chains. The corresponding velocities are U' and
w'. The Morse potential was chosen to represent the
(multiple) interchain hydrogen bonding for the model
DNA.
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FIG. 1. Simple model of DNA with nonlinear interchain connections.

masses are constrained to move only in the vertical direc-
tion and the ends of the chains were left free in order to
more accurately reAect biological conditions. The effect
of also including longitudinal motion has been examined
recently by Muto, Lomdahl, and Christiansen.

III. SOLUTIONS AND STABILITY

Remoissenet" has shown that the Hamiltonian (1)
above leads, in leading nonlinear order and using a
multiple-scale expansion method, to a nonlinear
Schrodinger equation with discrete breather solitary
waves of the form

y„(t) =e 3 sech' cos(Kn 8 —At) —2am 2 sech y

+(a 2 ~e /3)sech y cos[2(Kn 8 At)]—, (4)

where

3 = [(u, —2u, u, )/2PQ]

y=e(nP —V, t)/L, ,

A=(eu, /2P)(Vg+eu, )'i +co,

K =~+ e( u, /2P),

P =(k8 /2m')[cos(~8) —(k Imago )sin (~E)],

Q =(coo/2') [4a —2a /[3+(16k/mcoo)sin (a.P/2)]

(5a)

(5b)

(5d)

(5e)

co =coo+4(k/m)sin (~Z/2),

coo=4Da /m,
a = —6&2a /e,
P=7a /3e

(5f)
(5g)

(5h)

(5i)

(5j)

Here V =(kE/me@)sin(~E/2) is the group velocity,
L, =2P/(u, —2u, u, )', is the breather width, 8 is the
lattice spacing, x is the linear carrier wave vector, u, is
the envelope velocity, u, is the carrier wave velocity and
e is an arbitrary scaling parameter which controls the
(coupled) amplitude and width of the breather. The pa-
rameters a, D, and k determine the strength of the cou-
pling.

The numerical simulation used these so1utions as initial
conditions and found them to be reasonably stable for a
wide range of coupling parameters including the biologi-
cally significant values D =0.33 eV, a =1.8 A ' in the

=4Da y„—6&2Da y„+(28/3)Da y„. (6)

When the amplitude is increased to the point that the
first nonlinear term in the expansion 15% of the linear
term, the breather does not maintain its initial shape but
radiates energy, settling into a quasistable breathing
shape different from the initial one. For e resulting in
amplitudes which cause the first nonlinear term to exceed
roughly 25% of the linear term, the breather splits into
two breathers traveling in opposite directions (Fig. 2).

The carrier wave vector, ~, controls the shape of the
breather. For the case 0&K & 1, coefficients in the non-
linear Schrodinger equation are in the correct range for a
breather solution. '" Other signs and values of ~, giving
rise to other types of nonlinear pulses such as "dark" sol-
itons, asymmetric envelopes etc. , were not examined.

The parameter ~ also has the largest effect on the ve-
locity of the breather. Initial velocities were determined
from derivatives of the initial positions of the masses. Be-
cause the expression for the velocities is not symmetric
about the center of the breather, breathers cannot be
launched with zero velocity. Larger values of a (with the

Morse potential and linear spring constant k =0.003
eV/A . Values examined ranged from 10 to 0.5 for a; 10
to 0.2 for D and 20 to 0.003 for k. It is important physi-
cally that for the biological parameters quoted above the
breathers are very narrow and discrete lattice pinning
effects are expected. ' Pinning was seen in our simula-
tions and for this reason slightly larger values of the pa-
rameters were chosen for most of the simulations so that
effects not dominated by pinning could be examined. It
remains to be seen whether discreteness effects will ulti-
mately dominate biological conditions in realistic poten-
tials and environments.

Equation (3) is not integrable in closed form with the
result that the anharmonic phonons described by Eq. (4)
are not true solitons and decay into other modes eventu-
ally. The amplitude of the breathers describe in this pa-
per decreases by approximately 25% over a time interval
of 100 time units (10000 steps at intervals of 0.01).

The adjustable parameter e in Eq. (4) determines the
maximum amplitude and also the width of the initial
breather. The masses in the chain were launched with
velocities corresponding to derivatives of their position
and as a consequence, e also has some effect on the veloc-
ity of the moving breather. The Morse potential can be
expanded for small y as

—2&2Da exp( —&2ay„)[exp( —&2ay„)—1]
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of less than 13%.' This may however be deceptive in re-
gard to the importance of examining mass defects along
the chain. Although open and closed states can be seen
in DNA and RNA molecules in the absence of other mol-
ecules, replication processes depend on the interaction of
the DNA with large proteins called DNA polymerases. '

These proteins wrap around the DNA chain covering up
to 70 base pairs of the chain. The polymerase molecule
does not bind equally strongly to each base pair so that
the e8'ect could be similar to large, varying mass defects
along the chain. Assuming the mass of the polymerase to
be distributed equally along 70 base pairs could amount
to a mass defect of as much as 15 times the pair mass per
base pair.

In order to examine the role of large mass defects along
the chain, single mass defects varying between 0.25 and 4
times the original mass were placed at the center of a
breather and the time evolution was followed. Any de-
fect greater than approximately +10' of the original
mass was a sufhcient disturbance to cause the breather to
split up relatively quickly (Fig. 3). Breathers with defects
less than approximately 5%%uo appeared to be stable for the
time scales examined.
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FIG. 2. A nearly stationary breather as an initial condition
(a) and at 48 time units (b) showing the splitting in the case of
large initial amplitude. Displacement represents the displace-
ment of the top, u, and bottom, m, chains from equilibrium with
an arbitrary equilibrium separation of 0.25. Parameter values
are k =1.0, ~=0.1, D=1.0, m =1.0, a =1.5, and @=0.2.
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restriction 0 &a. & 1) cause more initial velocity asym-
metry and therefore greater breather speeds along the
chain.

Stability of the breathers was tested upon the introduc-
tion of random noise both as a simple initial condition
and also in the case of continuous application of random
noise. In the case of initial random noise, the breathers
were as stable as nonperturbed initial conditions. This
was true up to the point where random noise began to
mask the breather shape. Energy was conserved in all of
these cases. Stability was also tested for the introduction
of random noise every 20 time steps, approximately
representing a chain in contact with a thermal bath. A
quantitative measure of stability is dificult but in these
cases the breathers appeared quite stable for reasonably
long time runs, typically 100 time units. Energy was not
conserved exactly in these trials. The effects of thermal
noise on single and double chains has been extensively ex-
arnined by Muto, Lomdahl, and Christiansen.

IV. SINGLE MASS DEFECTS

Mass inhomogeneities along the DNA molecule due to
the base pair sequence are small, constituting a variation
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FIG. 3. A nearly stationary breather as an initial condition
(a) and at 74 time units (b) showing breakup due to a mass de-
fect of m =4 located at the center of the chain. Displacement
represents the displacement of the top, u, and bottom, ur, chains
from equilibrium with an arbitrary equilibrium separation of
0.25. Parameter values are k = 1.0, I(.=0.1, D = 1.0,
m =1.0, a =1.5, and @=0.01.
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A more quantitative approach for examining the rela-
tionship between linear defect modes and breather modes
is to calculate single-particle velocity power spectrums.
This was done using the maximum entropy method' to
find the single particle power spectrum of the center (de-
fect) mass on the chain. Linear theory predicts for a sin-
gle mass defect in a linear discrete chain with free bound-
ary conditions that lighter defects will give rise to
discrete (local mode) frequencies above the band of (ex-
tended) normal modes. '

Assuming the (linear) coupling to be complicated
enough (more than one linear coupling or second
nearest-neighbor interaction) so that the normal mode
band does not extend to zero frequency, heavier defects
will give rise to frequencies below the band. For only
nearest-neighbor linear interactions, the heavier impurity
modes occur in the band as resonances. The band of
linear normal mode frequencies for a linearized Morse
potential is given by

co= [(k lm)(A, —2 cosP)]'

where A, =2+4Da Ik.
Linear modes for single mass defects on the double-

chain system were examined by displacing a single mass
defect by a small distance and finding the single-particle
frequency spectrum.

Frequencies for breathers without defects were found
to lie within the linear band of normal modes. When sin-
gle mass defects were added to the breather, there was
some interaction of modes as can be seen in Table I.
Starred values are the larger of the pair when two fre-
quencies were observed.

The following interpretation seems plausible. For
lighter mass defects, the linear defect modes appear along
with the breather mode with both shifted slightly down-
wards in frequency. It would thus seem that breathers
with the lighter defect frequency do not exist. For the
case of a heavier mass defect, the breather frequencies be-
come locked with the defect frequency for any significant
mass defect. Evidently breathers with frequencies equal
to heavier mass defect frequencies are available. This is
in agreement with arguments presented in a paper by
Kosevich and Kovalev for a one-dimensional model of
the Frenkel-Kontorova type. ' They examine anharmon-

ic localized modes and the effect on them by isotopic de-
fects and conclude that a finite minimum energy is need-
ed to excite a self-localized mode near a light impurity
but not near a heavy defect. Identical calculations can be
carried out for the present-double chain system showing,
at least in the continuum approximation, that a finite
minimum energy is needed for light impurity local modes
to exist but not heavy impurity local modes. Minimum
energies calculated for light defect impurity modes in a
continuum approximation fall well above predicted
breather energies in the present model, so that a single lo-
calized mode containing both breather and light impurity
is not possible.

V. MULTIPLE MASS DEFECTS

Multiple mass defects of two times the original mass
were placed on both top and bottom chains for varying
lengths of chain with a breather centered on the defect
region. Uncentered mass defects covering half of a
breather were also studied. In all of these cases the ener-

gy of the portion of the breather originally inside the de-
fect region remained trapped in the region (Fig. 4). Trap-
ping due to discreteness effects has been excluded in this
and all of the following cases by the choice of parameters
a =1.5, D =1.0, and k =1.0.

Multiple mass defects of varying magnitude (50 to 0.5
times the original mass) were placed along a 40 mass
length of chain with a breather centered in the defect re-
gion. For defects greater than twice and less than half
the original mass, the breather remained trapped in the
defect region, bouncing back and forth between the boun-
daries of the region with very little energy transmitted
outside of the region. This is in agreement with the re-
sults of Techera, Daemen, and Prohofsky. ' For regions
with weaker defects (defect mass ratios 0.5 to 2) the
breather was not trapped. Some reAection of energy and
some modification of breather shape was noticed when
the breather penetrated these weaker defect regions (Fig.
5). The value of e (and therefore the amplitude) did not
appear to change the trapping of the breather in defect
regions up to amplitudes large enough to cause breakup.

Breathers were also launched on chains with 40 con-

TABLE I. Single-particle vibrational frequencies of the center defect mass in the chain for small am-
plitude (linear) vibrations and for breather plus defect.

Mass
ratio

0.85
0.90
0.95
0.98
1.00 (no defect)
1.02
1.05
1.10
1.15

(f) linear
defect

0.6050
0.5880
0.5880
0.4550 and 0.5830
0.4650 and 0.5760
0.4850 and 0.5720
0.4870* and 0.5660
0.4790
0.4640

(f) breather plus
defect

0.4820* and 0.6010
0.4820* and 0.5850
0.4890
0.4900
0.4900
0.4880
0.4860
0.4770
0.4630
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FIG. 4. Trapping of a portion of a moving breather in a de-
fect region. Mass defects of m =2 are loaded on both chains
from mass 50 to 60. (a) is initial condition and (b) is at 70 time
units. Displacement represents the displacement of the top, u,
and bottom, m, chains from equilibrium with an arbitrary equi-
librium separation of 0.025. Parameter values are
k =1.0, K=0.95, D=1.0, m =1.0, a =1.5, and a=0.01.

FIG. 5. Penetration of a moving breather from an area of
slighter defects into a region of no mass defects. Defects of
m =1.1 are on both chains from mass number 25 to 35. (a) is
initial condition and (b) is at 78 time units. Displacement
represents the displacement of the top, u, and bottom, m, chains
from equilibrium with an arbitrary equilibrium separation of
0.025. Parameter values are k =1.0, ~=0.95, D = 1.0,
m =1.0, a=1.5, and t =0.01.

secutive mass defects of 2 and 0.5 times the original mass
only on the top chain. In these cases a breatherlike wave
with a modified shape remained trapped in the defect re-
gion and a low amplitude pulse of greater (linear) speed
with almost no interchain stretching was expelled from
both sides of the defect region (Fig. 6).

A sinusoidally varying mass defect of m [1
+0. 1 sin(coax ) ] was also placed on the chain with a
breather as initial conditions. When the wavelength of
the defect region is much smaller than the width of the
breather, the breather remains stable with small changes
in its structure. A defect region of large wavelength rela-
tive to the breather width will also result in stable breath-
ers with a coherent "particle like" motion, well described
by perturbation theory or energy arguments. In the in-
termediate regime, where the defect region wavelength is
of the same order as the breather width, there is a
modification of the breather shape. In this case the
breather oscillates irregularly between several stable
shapes (Fig. 7). This intermediate regime is difficult to
describe analytically and is perhaps the most qualitatively
significant effect of combining disorder and nonlinearity.

Sinusoidally varying defect regions of large wavelength

with smaller variances m [1+0.01sin(coax)] do not trap
moving breathers, whereas regions with larger defects
m [1+O.1 sin(coax)] do trap breathers (Figs. 8 and 9). As
the breather propagates some energy shifts periodically
between potential and kinetic energy while maintaining
constant total energy. For defects of +0.01 this variation
in energy from kinetic to potential is larger than the total
energy difference between regions with defects of +0.01
m and regions of —0.01 m. For defects of +0. 1 m the
variation in energy from kinetic to potential is smaller
than the total energy difference between regions with de-
fects of +0. 1 and —0. 1 m. Thus breathers have the re-
quired energy for propagating into weak mass defect re-
gions but not into strong defect regions. It is also in-
teresting to note that the breathers remain trapped in re-
gions of higher mass (and therefore higher energy) but
break up when initially placed in regions of lower mass.
This is the opposite of what might be expected and is pos-
sibly due to the absence of appropriate energies for
breathers in the lighter regions which start out with ener-
gies corresponding to a heavier region, as in the case of
single mass defects discussed above.
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FIG. 6. A moving breather placed on a chain with mass de-

fects of m =0.5 only along the top chain at time zero (a) and 70
time units (b). Displacement represents the displacement of the

top, u, and bottom, w, chains from equilibrium with an arbi-

trary equilibrium separation of 0.025. Parameter values are
k =1.0, ~=0.5, D=1.0, m =1.0, a =1.5, and @=0.01.

FIG. 7. Breather moving in a small wavelength, sinusoidally
varying mass defect of m = 1.0+0. 1 sin(3x) at initial (a) and 84
time steps (b). Displacement represents the displacement of the
top, u, and bottom, w, chains from equilibrium with an arbi-
trary equilibrium separation of 0.025. Parameter values are
k=1.0, ~=0.95, D=1.0, m =1.0, a=1.5, and a=0.01.

VI. CONCLUSION

The stability of discrete breather solutions representing
open states on a two chain model of DNA with a Morse
potential for interchain coupling was examined numeri-
cally. Breather solutions were found to exist for coupling
parameter values believed to be of biological significance.
For these values discrete lattice pinning effects predom-
inate. The majority of the simulations were performed
with slightly larger parameter values in order to examine
effects not dominated by pinning.

Stability of the breather solutions was tested under
conditions of initial random noise and also conditions of
periodically applied random noise. In both cases the
breathers were found to be stable over long time spans for
moderate amounts of noise.

Single-particle frequency spectrums were examined for
cases of single mass defects added to the chain. Large
single defects either smaller or larger than the original
masses caused the breather to break up. Smaller single
mass defects which have magnitudes less than the origi-
nal Nass were found to form separate discrete frequencies
in addition to the breather frequencies. Small defects

with magnitudes larger than the original mass couple
with the breather to form discrete frequencies lower than
the defect-free breather.

Cases of multiple mass defects were also examined.
Breathers were found to be trapped in defect regions
which are wider than the initial breather. Breathers were
also found to be trapped in regions where the mass de-
fects varied sinusoidally with large wavelength by +0. 1

m but were not trapped in regions where the defects
varied by +0.01 m. For sinusoidally varying defect re-
gions with wavelength smaller than the breather width,
the breathers were not trapped.

Real DNA molecules and their interactions with their
environment are vastly more complicated than a simple
mass chain model can represent. Longitudinal motion
along the chain and effects of the secondary structure of
DNA, for example, has not been included here. Howev-
er, it is clear that nonlinear self-focusing of energy pro-
vides a possible mechanism for the initiation of open
states of DNA involved in melting and replication pro-
cesses. It is also interesting to note from the present re-
sults that self-localized coherent states are affected by
small mass defects and in fact cannot be sustained in the
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FIG. 8. Moving breather trapped in a long wavelength,
sinusoidally varying mass defect of m =1~ 0+0. 1 sin(0. 16x) at
initial (a) and 96 time units (b). Displacement represents the
displacement of the top, u, and bottom, u chains from equilibri-
um with an arbitrary equilibrium separation of 0.025. Pararne-
ter values are k =1.0, a=0.95, D =1.0, m =1.0, a =1.5, and
@=0.01.
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presence of large defects. Thus a mechanism exists
whereby small inhomogeneities representing genetic cod-
ing can affect the dynamics of opening and closing of the
double-chain system. The present model is thus a step to-
wards understanding some of the nonlinear dynamics
which may be occurring along the chain during or
preceding the processes of chain opening and closing
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