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The properties of directed paths in random media are explored, with emphasis on the low-

temperature phase. Scaling arguments, numerical simulations, and exact results are all utilized.
Some of the results presented concern the existence of large-scale low-free-energy excitations in the
low-temperature phase, sample-to-sample entropy variations which are much larger than the free-

energy variations, and concomitant sensitivity of the optimal configuration to temperature changes,
analogously to spin glasses. Nevertheless, it is argued that at fixed temperature, the possible states
of a directed path in an infinite system with one end fixed are simply parametrized by its average
orientation. Possibilities for the behavior in high dimensions are examined and some of the patho-
logies of the system on Cayley trees are discussed.

I. INTRODUCTION
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Thermodynamic phases in which quenched random-
ness plays the dominant rather than a subsidiary role are
still, in general, poorly understood. In the best studied
case of spin glasses, the behavior of the ordered phase is
highly controversial. ' It is thus important to try to un-
derstand simpler models which share some of the compli-
cating features of spin glasses. The simplest nontrivial
model that exhibits a randomness-dominated phase is a
directed path (or directed polymer) in a locally random
potential in D =d + 1 dimensions with Hamiltonian

2

ous partial pieces of information are known about the
random directed-path models. In transverse dimensions
d )2, it has been proven that there exists a high-
temperature "free" phase in which the disorder is ir-
relevant at long length scales and the directed path exe-
cutes a random walk in y as a function of x. However, it
has also been proven that this phase cannot persist to low
temperatures. In dimensions d ~ 2 and for low tempera-
tures in d )2, the directed path instead exhibits a
"pinned" phase in which the dominant competition is be-
tween the elastic stiffness and the random potential with
thermal fluctuations playing a subsidiary role. In one
dimension, exact results for some of the exponents are
known —in particular, the wandering exponent g defined

by

with y the d-dimensional transverse coordinate represent-
ing the displacements of the directed path which cost en-
ergy given by the first term in Eq. (1.1).

The second term is a random potential that we take to
be Gaussian with short-range correlations:

([y(x)—y(x')] ) —~x
—x'~ ~

is found to be given by

g(d =1)=—'

(1.3)

(1.4)

V(x, y) V(x', y') =5(x —x')1 (y —y'), (1.2)

where I decays rapidly for separation larger than a
short-distance cutoff a, and the overbar denotes averag-
ing over realizations of the random potential. Discrete
versions of the model with either x or y or both restricted
to a lattice are also of interest: in the continuum, it may
be necessary to impose a cutoff in the x direction, for ex-
ample, by a (t) y/c)x ) term, however, a natural such
short-distance cutoff is also provided by the scale a in the

y direction.
This model, and others closely related to it, arise in

many contexts, both in equilibrium statistical mechanics
and dynamical problems which exhibit structures similar
to the transfer-matrix representation of Eq. (1.1). Vari-

(bS )-LL . (1.5)

This is in contrast to the variations in the free energy

Bethe-lattice (actually, Cayley-tree ) and hierarchical
versions of Eq. (1) have also been studied analytically and
numerical work' '" in d) 1 has been carried out. In ad-
dition some general results on the thermal fluctuations of
y have been derived. ' Nevertheless, a more comprehen-
sive understanding of the behavior, particularly in the
pinned phase, is lacking.

In this paper we will present several conjectures, sup-
ported by numerical and other evidence, for the behavior
of the random directed path in various dimensions. One
of the main new results is that the sample to sample vari-
ations in the entropy ASL =SL —SL for a string of length
I. are normal in the pinned phase with
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(gF )~-L» (1.6)

with 6=2(—1 & —,'. This behavior is very similar to that
of the low-temperature phase of spin glasses conjectured
earlier by us. The fact that for large L, ~b.S& ~

is typical-
ly ))~bFI ~

has various interesting consequences, which
make the pinned phase highly nontrivial.

We also discuss additional properties of thermal Auc-
tuations and sample-to-sample variations in both the
high- and low-temperature phases. Various possibilities
for the behavior in high dimensions are discussed and cri-
tiqued in this paper, as are (briefiy) some very recent pa-
pers.

The remainder of the paper is organized as follows: In
the next section some properties of the high temperature
phase are summarized, and in Sec. III the main conjec-
tures and results for the low-temperature phase are intro-
duced. Section IV discusses various subtle properties of
the low-temperature phase, particularly the uniqueness of
the "state" of a system and sensitivity of the state to tem-
perature changes. Analytical and numerical results in
one dimension are given in Sec. V, which support the
general picture of Sec. III ~ Finally, Sec. VI discusses pos-
sible behavior in higher dimensions and critiques the ap-
plicability of results on the Cayley tree. Some new calcu-
lations on the Cayley tree are relegated to the Appendix.

II. HIGH-TEMPERATURE FREE PHASE

F I 1/2~ —d/2 L (2 —d)/4
R (2.1)

In dimensions d) 2, this is small at large length scales
and one concludes that the thermal averaging of disorder

In the high temperature or weak disorder phase, which
only exists for d&2, a simple argument shows that the
directed path behaves like a random walk on long length
scales, i.e., the disorder is irrelevant. '

To avoid the effects of ends, we consider a directed
path of length L with periodic boundary conditions in the
x direction and d-dimensional cross section 8" with
periodic boundary conditions also in the y directions. If
we choose O'-L ' then in the absence of disorder the
behavior is roughly the same as in a section of length L of
an infinite system, at least as far as the scaling properties
we are interested in. Consider a typical configuration of
the directed path in the absence of disorder. The typical
lowest-order perturbative effect of the random potential
will be to change the energy of this configuration by a
random amount of order L' due to a sum of a large
number of independent terms. If we now average over all
the configurations of the unperturbed path, this will
strongly suppress the overall contribution to the free en-
ergy since it is the average of a large number of at-least-
somewhat independent contributions. A very crude esti-
mate is to consider each segment of the path as running
freely over the 8 " possible positions, yielding a suppres-
sion factor of 8 " from the central-limit theorem. A
simple, but more convincing multiscale argument yields
the same result. Thus we may guess that the typical ran-
dom contribution to the free energy is of order'

renders it irrelevant. Rigorous results of Imbrie and
Spencer show that this argument is essentially correct.
Indeed, they find that with probability one for large L the
total free energy in this regime is independent of the reali-
zation of the disorder up to O(1), with random correc-
tions of the form Eq. (2.1). A similar argument' shows
that both the entropy and energy will have small sample-
to-sample variations of the same form as Fz. The pres-
ence of the disorder also produces nonrandom contribu-
tions of order L to the entropy, energy, and free energy.

Note that if we had used a directed path with one or
both ends fixed instead of periodic boundary conditions,
there would be a random O(1) contribution to the free
energy and other thermodynamic quantities arising from
points within distances of order a ~/T from the fixed
ends. ' These would dominate over the bulk contribu-
tion Eq. (2.1) for dimension d ) 2.

From the irrelevance of the disorder, we thus see that
the transverse fluctuations of the directed path will scale
the same way as for a free random walk with g= —,'. It is
useful, however, to decompose the wandering in the pres-
ence of randomness into two parts, the thermal Auctua-
tions

Cr(x —x')—:( [y(x) —y(x') ] ) —(y(x) —y(x') )

and the part caused by the disorder,

C, (
—x )—= (y( ) —y(x ))'.

(2.2)

(2.3)

C~ —fx —x'/ (2.4)

with

1 2 —d= —+R (2.5)

Higher moments of (y(x) —y(x')) can be shown to
scale as the appropriate power of g~, and so we can con-
clude that a typical configuration of the disorder (sample)
will have a random thermally averaged displacement on
length scale L typically growing as L . The fluctuations4
about this mean are thus much larger than the mean for
dimension d) 2 since gr )g~.

More detailed discussion of the propreties of the high-
temperature phase is contained in Ref. 13. This phase

In the absence of disorder, (y(x) —y(x') ) is zero; how-
ever, even a small amount of randomness will give some
bias to the wandering of a directed path, yielding a
nonzero C~.

A simple estimate' again yields the correct results.
On small length scales with y -a, a perturbative calcula-
tion will yield a CR proportional to the mean-square dis-
order V, i.e., reduced by this amount from the thermal
fluctuations. On longer scales, we must take into account
the renormalization of the disorder due to thermal Auc-
tuations. From the comparison of the random part of the
free energy, ' Eq. (2.1) with the thermal free energy T, we
expect that the effective Vl —I ' "' . Renormalizing to
scale L and then calculating the perturbative effects of
the renormalized disorder, we thus expect a fraction VL
of the fluctuations to contribute to Cz, implying that
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will occur for weak disorder or high temperatures in di-
mensions d&2. Note, however, that there is really only
one parameter in the problem since we can rescale the x
coordinate in such a way as to make the temperature or
the potential strength Axed. For our later purposes it is
more convenient to do the latter and to measure the tem-
perature in units of

Te —[I &2 —d]1/3

where

i'= fl(y)d y .

(2.6)

(2.7)

Note the appearance of 2 —d powers of the length which
corresponds to the critical dimension of d, =2 discussed
above. For discussing the exact results in one dimension
in Sec. V we will use a di6'erent rescaling.

III. LOW-TEMPERATURE PINNED PHASE

In the preceding section, we saw that even at high tem-
peratures (or weak disorder) the effects of the disorder
grow with length scale for d ~ 2 and a perturbative treat-
ment is inappropriate. We expect that this will also be
true for low temperatures in any dimension. Indeed a
renormalization-group calculation shows that in the mar-
ginal case of two dimensions, the e6'ects of disorder grow
logarithmically with length scale. ' In d =2+@ dimen-
sions, an unstable critical Axed point is found, presum-
ably separating the high- and low-temperature phases. In
this section we discuss the properties of the low tempera-
ture phase.

As for any low temperature phase, it is natural to start
by considering the ground-state properties. As originally
conjectured by Huse and Henley, the typical displace-
ments in the ground state also grow with a wandering ex-
ponent g:

By choosing a=yL /L, we conclude that the distribution

Prob[F1 (yI )]=Prob[FI (0)+ ~yL ~
/(2L)] . (3.3)

We can thus see that the function FI (y&) is the sum of a
parabolic part, which is the same as in the absence of dis-
order, and a random part, which is a function of yi with
a distribution independent of yL, but of course, in gen-
eral, containing nontrivial correlations. If we conjecture
that the typical variations of this function are of order L
as yI varies over distances of order L, this implies that
the minimum of Fl (yI )—which will be attained if we re-
lax the boundary condition on yL —will typically occur
for a value of yl such that yz/L-L . Since with a
free-boundary condition, we expect ~yI ~

-L ~, and so this
yields an exact equality between the exponent

8=2/ —1 . (3.4)

Fl -L (3.5)

Indeed, we will see that this result is required for con-
sistency.

It is instructive to examine the form of the correlations
of

1 (yg)'
@L(yL)=FL(yL)—

2 L (3.6)

as a function of yI and L. ' In particular for yI »L~,
we expect the optimum paths will be roughly indepen-
dent of those with yL

~ L ~ except near their common ori-
gin, as shown in the illustration in Fig. 1. ' Thus we ex-
pect that the characteristic scale of

[Note that the same argument can be used for the mid-
point of a directed path fixed at y=0 at both ends. ] We
also expect that the sample-to-sample variations in the
free energy bFI =FL FL with F—I =minIFI(yL )] are of
the same order so that

C~(x)=([y(x') —y(x'+x)] ) —~x~ ~, (3.1)
C'L, (ys. ) —@s.(0)-L' (3.7)

=
—,
'

l
a I

L +a [y'(L ) —y'(0) ] . (3.2)

where the thermal average ( ) now represents the
ground-state-energy minimization. We expect that the
displacements will be at least as large as in the free phase
so that g&-,'.

In order to be more precise we impose the boundary
condition that y(0) =0 and consider the displacements of
the other points. At a distance x, we then expect that
typically y(x)-x~ in the ground state. It is useful to
consider terminating the system at distance x =L, and
consider the properties as a function of the boundary
condition, y(L) =yI, in particular, the ground-state ener-
gy [=free energy at T=O] Fl (yl ).

The distribution of FL (yi ) for the continuum model is
strongly constrained by the independence of the random
potential V(x, y) for different values of x. If we make a
change of variables to y'(x)=y(x) —ax for any constant
vector a, the probability distribution of the random po-
tential, as a function of y, is the same as it was originally
as a function of y. ' The free energy also has the same
form except for an extra piece

for yL »I ~. Indeed for yI -cL ~ with c a large constant,
we already expect the C&L(yL ) to be approximately in-
dependent (with correlations decaying, as we will argue
later, as a power of yL). From this one could obtain a

0

FIG. 1. Lowest energy (optimal) paths from the origin to
each point along the vertical line x =L for d= 1. From Kardar
and Zhang (Ref. 15).
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contradiction if the sample-to-sample variations were
larger than -L, since the minimum of FL(yL ) would
then be further from the origin than the presumed L~.
Thus L must set the scale for both the variations of I'L
for a given sample and the variations between samples.
This argument assumes a form of scaling for Pl (yL )

roughly like that found in one-dimension (see below).
For yL «L, by contrast, we expect @l (yI ) —@L (0)

to be much smaller and independent of L. The most like-
ly form is a power-law behavior independent of L:

(3.8)

For consistency, the scaling relation

(3.9)

must hold. As we will see below, for the one-dimensional
case, o is the exponent that can be directly computed, as
can the correlations in 4r (yL ) for small separations.
Numerical evidence' in 10 also bears out the scaling
form: The function

(3.10)

with the transverse lengths scaled by L ~ and free energies
scaled by L tends to an L-independent limiting probabil-
ity distribution (which is manifestly stationary in g) for
large L. The variations of P(g) —P(g') are of order unity
for ~g

—g'~ ))1 and of order ~g
—g'~ "for ~g

—g'~ &(1.
Note that although we have used the invariance prop-

erties of the distributions Eq. (3.3) that arise from the 6-
function correlations in the disorder along the directed
path, universality should imply that the results for large
L will be insensitive to short-scale correlations.

In Fig. 1 the schematic form of the minimal-energy
paths through the origin are sketched as a function of
their end points yL. Note the tree structure. ' The op-
timal paths to two ends points a distance AI -L~ apart
will typically be joined up to a distance of order (by&

)'~&

from the end. We will return later to further conse-
quences of this picture.

Two very recent papers'" on the one-dimensional rnod-
el have conjectured a result (based in one case on the re-
plica method' ) for the distribution of @~ for large L,
which has correlations of @I(yL) of the form Eq. (3.8)
even for yL ))L~. The argument given above of approxi-
mate independence, which might quite possibly be made
rigorous, casts serious doubts on these conjectures.

A. Thermal Auctuations

We now consider the behavior at small positive tem-
peratures, which we expect will hold, qualitatively, at all
temperatures in the pinned phase.

The most important observation is that, as for most
low-temperature phases, the temperature is formally ir-
relevant. Indeed, a comparison of the thermal free-
energy scale T with the characteristic scale of variations
of the zero-temperature free energy L implies that the

renormalization-group eigenvalue of temperature is

(3.11)

C,(L)—= &y', ) —&y, )', (3.12)

with fixed left boundary condition, will be of order
Tz . This is dominated by the larger values of z since
o. &2. For z))L~, on the other hand, low free-energy
minima are unlikely since the y /L term in Eq. (3.6) for
F~(yI ) dominates the random term. Thus the dominant
scale for the thermal fiuctuations will be ~y

—y ~

—L~,
where the minima occur with probability T/L, yielding

Cr(L) —TL ~ —TL, (3.13)

i.e., gz-= —,', the same as in the unpinned phase. '6 Note
that other moments of yL will scale in a diferent manner
since the correlation function Cr (as often happens for
random systems) is dominated by rare events that occur
with probability T/L . Thus the mth moment (for even
m) is

which is negative unless g( —,'. The case g= —,
' is marginal

and we will return to it later. For the present discussion
we assume g) —,'. We thus expect that for a given end
point yi, the directed path fixed at the origin will have a
preferred configuration with free energy FL (yl ) and
qualitatively similar behavior to that at zero temperature
but with fiuctuations about the preferred configuration.

Although it is formally irrelevant, the temperature
nevertheless aA'ects some of the correlation functions in a
nontrivial way. For example, the thermal correlation
function Cr Eq. (2.2) vanishes at zero temperature. Thus
its low-T behavior is controlled by the dangerously ir-
relevant thermal Auctuations, similar to the behavior in
other low-temperature phases, particularly random
ones.

If we remove the restriction that the directed path end
at yL, we can in principle calculate the thermal Auctua-
tions in yI in terms of the free energy Fi (yi ). (We can
similarly consider the midpoint of the directed path. )

This free energy wi11 have some absolute minimum at y
and then vary on a scale —

~y
—y ~

(we have dropped
the L subscript) for a &(y ((L~. The only appreciable
contributions to the thermal fluctuations will come from
y's for which FI (y) FL(y ) (—T. For y near y, one ex-
pects many such "active" minima, giving rise to local
contributions to the entropy. However, for larger y, the
minima are unlikely to be close in free energy to the abso-
lute minimum since the characteristic scale of
Fi (y) FI (y ) —~y

——y ~

&& T. From the structure dis-
cussed earlier, each factor-of-2 scale in y will be approxi-
mately independent. Therefore we may consider the
probability that there is an active minimum in a range
say ~y

—y ~

—z. This will, naively, be of order T/z
since the depth of the mininurn will be uniformly distri-
buted on scales «z, except for the constraint that
arises from choosing the lowest minimum (at y ) as the
reference. For z «L~, the contribution to the mean-
square thermal fluctuations
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(3.14)

&(y —
&y &)'& —3&(y —

&y &)'&'=O . (3.15)

As we will show later, special cancellations occur in these
quantities, which are nevertheless useful in constraining
possible interpretations of the results.

An alternative definition of 0 could have been given in
terms of the probability pT(L) that there exists a second
path with free energy within order of T of the optimum
I'L (y ) and with end point separated by ~y

—y ~

—L ~,

via pT(L) —T/Le. The argument leading to Eq. (3.13)
and the exact result' imply that this definition also yields
the scaling law 8=2(—1.

B. Entropy variations

From the above discussion, we can see that there will
be local contributions to the entropy from small-scale
fluctuations of the directed path. These will give rise to a
finite temperature correction to the free-energy density.
On long scales, however, the fluctuations will be rare and
not contribute appreciably to the entropy. The sample-
to-sample variations in the entropy hSL, can be estimat-
ed by assuming that the small scale contributions to SL
from widely separated regions are approximately in-
dependent of each other. They will then give rise to a
normally distributed random contribution to hSL of or-
der

(3.16)

To check that ASL is dominated by the small-scale fluc-
tuations, we can estimate the contribution from fluctua-
tions of scale l with associated displacements -l&. We
have

bS2 —y
L Tdl
l l~ l

(3.17)

arising from L/I approximately independent sections of
length l, which will contribute O(1) to S if they are ac-
tive: this occurs with probability —T/l . Each scale is
approximately independent of scales twice as large or
small, yielding the dl /l factor. The integral is dominated

for m )o., while for m &o. the moments are dominated
by small scale fluctuations and are thus independent of L.
The result for the second moment CT of Eq. (3.13) can be
derived exactly using the same statistical invariance of
the Hamiltonian that we used in deriving the scaling law
0=2(—1. The mean-square correlation function CT is
found' to be identical to that without disorder, which
can be seen by adding a field h (x) conjugate to y (x) to
the Hamiltonian, changing variables as in Eq. (3.2), and
then differentiating with respect to h (L ). This deriva-
tion, however, does not elucidate the important physics
that underlies the result.

Unfortunately, one cannot calculate all other moments
[e.g., Eq. (3.14)] exactly; only the combinations of corre-
lation functions that are equal to derivatives of the auer-
age free energy with respect to the h (x) can be ob-
tained, ' for example,

IV. SENSITIVITY TO BOUNDARY CONDITIONS,
"STATES,"AND SENSITIVITY

TO TEMPERATURE CHANGES

From the illustration in Fig. 1 and the discussion
above, we have seen that the ground state (and preferred
"state" at positive temperature) is sensitive to the bound-
ary condition at the end. We do not, however, expect
this sensitivity to be too extreme. To see this let us con-
sider two minimal paths from the origin to two points at
a distance L separated by AyL-L~. Typically, these
paths will be joined at a distance of order a fraction of L
from the origin. What is the probability that, instead,
they are only joined up to a separation point a distance
x, «L from the origin? The hypothesized scale invari-
ance of the tree in Fig. 1 suggests that given that the
paths have not joined at distance l there is some probabil-
ity p, (l) that the paths still have not joined at distance
l/2. Since the typical separations of paths that have not
yet joined at l are order l~, the definition of p, appears
scale invariant so we expect p, to be roughly independent
of length scale. It should also be true that at widely
separated length scales, the probabilities are nearly in-
dependent. Thus the probability that x, «L will be
roughly given by

Prob(paths separate before x, )

k ln(L/x )-(p )

k ln(1/p, )

x
(4.1)

with some constant k yielding a power-law dependence
on x, /L with possibly a non-trivial exponent,
p= —k lnp, .

If, on the other hand, the pair of end points are
separated by a much larger distance b,yL =eL with a a
nonzero angle, then the expected separation will occur at
a finite distance x, -a ' " ~', since at this separation,
ax, and the random component of y (a, ) are comparable.
In this case, however, the free-energy density of the paths
generally differs because of the radically different bound-

by small scales, supporting the previous conclusion, Eq.
(3.15).

In spite of the larger variations of the entropy implied
by Eq. (3.16), we still expect, since the controlling fixed
point represents the zero-temperature pinned phase, that
hI'L-L «ASL as long as 0& —,', which is believed to
hold in all dimensions. This implies that the energy vari-
ations at positive temperature must also be of the form
EEL -L ' but with contributions to the free energy that
almost cancel the entropic contributions T ASL. This be-
havior occurs because it is the coarse-grained free energy
that is minimized by the optimum coarse-grained path of
the directed path (with only rare large-scale fiuctuations
around it), while the energy and entropy are not indepen-
dently optimized. The small-scale fluctuations determine
the coarse-grained free energy.

We will present numerical evidence in Sec. V in sup-
port of this conjectured behavior for the one-dimensional
case.



43 DIRECTED PATHS IN A RANDOM POTENTIAL 10 733

ary conditions —thus we can hardly expect the paths not
to differ over a positive fraction at their length.

For the intermediate case with AyL =yL& with y))1,
a similar argument implies that the paths will typically
separate at a distance x, —y

' " ~'L. Note that this re-
sult suggests a form for the decay of the correlations of
the free energies @L (yI ) introduced in the previous sec-
tion: the correlations between the free energy of paths
with different end points will be at least as large as the
mean-square free-energy variations of the section of the
path over which they overlap. Thus we expect that the
truncated correlations

+. yi+». C i yL) (@I).
20/( i —g)

—[x, (hyL )]— (4.2)

for Ay~ ))I
We now return to the general problem of separation

probabilities and define P, (x„L,hyl ) to be the probabili-
ty that two minimal paths with a common origin that ter-
minate at a distance L at end points separated by AyL
first separate at a distance less than x, . We conjecture
that for anyPxed x,

lim P, (x„L, b,yL =CL )=0
I.~ oo

(4.3)

for all constants C and all A. (1. This implies that in the
appropriate thermodynamic limit, given an average angle
and a constraint that it must pass through a given point
(e.g. , the origin), there is, with probability l, a unique
ground-state path.

It is useful to estimate the form of the decay of the
probability P, in Eq. (4.3). For A, ) g (i.e., greater than
typical end-point separation, we expect that, from similar
arguments to above, P, —[x, /L" '~" ~']i', as L~~.
For A, (g, on the other hand, so that the end-point sepa-
ration is small, the probability will decay rapidly even for
x, -L/2. A simple guess is that this probability is just
given by the probability that nearby "leaves" (separated
by L ) of the tree are connected to different primary
branches. This is of order L /L~. So for A, (g, we con-
jecture that P, -L ~(x, /L)~, as L ~ ~.

At positive temperature, we can consider, instead of
ground-state paths, the correlation functions of the sec-
tion of the directed paths between the origin and x, as a
function of the boundary condition at x =L. The analo-
gous statement to Eq. (4.3) is that with probability one,
the correlation functions involving only points with
x (x, at a fixed temperature are, in the limit L ~ ~ with

AyL =CL' ', the same for the two boundary conditions
for all C and positive e. Nevertheless, we will see that the
configurations are extremely sensitive to temperature
changes.

The relative insensitivity to boundary conditions far
away is directly analogous to that predicted (by us) for
spin glasses with short (or finite) -range interactions. '

The sensitivity to temperature changes was also predicted
for spin glasses. ' ' The random directed path is the
simplest random system with a non-trivial randomness-

dominated low temperature phase in which related issues
arise.

A. Replica-symmetry breaking

Several recent papers'"' have argued that some kind
of "replica-symmetry breaking" or "existence of many
states" occurs in the random direct path. Indeed, it has
been claimed that the very existence of low-lying excita-
tions on long length scales is equivalent, in some
undefined sense, to "many states. " Thus far, however,
there has been no real definition of "replica-symmetry
breaking" in finite dimensions, either here or for spin
glasses, ' and certainly none that is related to the ex-
istence, in any well-defined sense, of "many states. "
Indeed, it appears quite likely that this much ballyhooed
but ill-defined concept will turn out not to have physical
consequences in finite-dimensional systems of a qualita-
tively different nature from those that we have discussed
here and in earlier papers on spin glasses. ' If, on the
other hand, there do really turn out to be many states in
spin glasses in some finite dimension, it is still unclear
what the special properties of the infinite-range model
would have to do with this. Indeed difticulties of inter-
pretation of "replica-symmetry breaking, " etc. , already
occur for spin glasses on Bethe lattices. '

For the case at hand of the random directed path,
some definition of many states is needed that differs from
the conventional ones appropriate for bulk systems. This
is because the directed path occupies an infinitesimal
fraction of the space in the thermodynamic limit. For ex-
ample, if neither end of the directed path is constrained,
then in a large system with both ends of the directed path
taken to infinity, it will pass infinitely far from the origin
(or any other prechosen point) with probability one.
From arguments like those given above, this is true no
matter what sequence of boundary conditions is used to
define the thermodynamic limit. Thus, in the usual sense
of bulk systems there is no "state" of an infinite system
with a directed path passing through any prechosen finite
region of it.

Some other definition is therefore needed to address
the questions analogous to those in spin glasses. In the
above discussion, we have chosen a particular such
definition by fixing one end of the directed path at the
origin. It was concluded that, nevertheless, there is still a
unique "state" of the directed path for each macroscopic
angle.

It is not inconceivable, however, that with some other
definition, or alternate consistent picture of the behavior,
many states with the same macroscopic angle might
somehow exist. It seems to us to be incumbent upon
those who so believe to come up with such a definition
and scenario rather than just claiming, ' ' in effect, that
the large-scale low-free-energy excitations appearing in
the present picture are different "states. " For the case of
spin glasses in which there are precise definitions of
states, ' the presence of such large-scale excitations cer-
tainly does not imply many states, ' but perhaps large-
scale low-free-energy excitations are all that "replica-
symmetry breaking" implies.
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B. Sensitivity to temperature changes

We now return to concrete questions and consider
what happens to a given sample (i.e., configuration of the
random potential) as the temperature is changed by a
small amount, AT. For definiteness, we again consider a
path fixed at the origin but free at its other end, a dis-
tance L, away. With a given end point yL, we can esti-
mate the effect of a small temperature change on the free
energy:

Fz ( T +b T, yL ) =FL ( T, y L ) —6T SL ( T, y L ) . (4.4)

where SL is the entropy. If we consider two different end
points with hyL-L~, then for a finite fraction of their
lengths, the two direct-path configurations at tempera-
ture T will typically not overlap as discussed earlier.
Thus, from the above arguments we expect that

FL ( T + b T, yL + b yL ) FL ( T +—5T, yL )-L bT L '—
(4.5)

perature variations (for 8)0), we expect that the statisti
ca/ properties of the coarse-grained Hamiltonian at finite
temperature will be the same (up to an overall free-energy
scale) as those at zero temperature. However, the actual
coarse-grained Hamiltonian, which can be minimized to
obtain the optimal configuration of a specific long but
finite directed path, will not be similar to the coarse-
grained version of the microscopic Hamiltonian of the
same system at zero temperature. This divergence of the
renormalization-group Rows under small temperature
changes has been studied explicitly for hierarchical spin-
glass models by Bray and Moore.

V. RESULTS IN ONE DIMENSION

In this section we present various analytical and nu-
merical results for directed paths in one transverse di-
mension that lend some support to the general picture
presented in the previous sections.

A. Analytic results

where the second term arises from the random local con-
tributions to the entropy difference between the two
paths. [We have ignored temperature-dependent prefac-
tors that can depend on the small scale details of the
model. Note that in addition SL(T,yL ) will contain a
nonrandom piece linear in L that corresponds to the
change in the average free-energy density with tempera-
ture. ] We thus see that when b, T)L '~ the change in
the free-energy difference Eq. (4.5) is comparable to the
original free-energy differences, and the expansion in AT
breaks down. With the end point free to adjust to mini-
mize the free energy, we thus expect the optimal displace-
ment of the end of the directed path at temperature
T+AT to be virtually independent of that at tempera-
ture T, provided

V(x, y), V(x', y') =5(x —x')I 5(y —y'), (5.l)

where I = JI (y)d y and the limit a~0 is taken. This
model is only well defined at positive temperature, and
infinite contributions to the free energy from small-scale
Auctuations need to be subtracted. It can readily be seen
that the thermal fluctuations provide an effective short-
distance cutoff in the y direction at

1/(2 —d)
T3

(5.2)
KI

a T

It is convenient to consider a continuum model with no
cutoff in either direction, i.e., with correlation function of
the Gaussian random potential

aT))L, ' '". (4.6)
and a concomitant cutoff in the x direction,

We can turn this around to conclude that directed paths
of length L at temperatures T and T+AT will, if

aTK2

bz-— (5.3)

L»L, -(ST)-'"'"-" (4.7)

have optimal configurations that differ radically. (In
these expressions [Eqs. (4.6) and (4.7)] there are prefac-
tors whose values are unknown, but our numerical work
in one dimension (Sec. V) suggests they can be surprising-
ly large. )

This temperature sensitivity of the low-temperature
phase of random directed paths appears at first sight
quite remarkable and is analogous to similar effects in
spin glasses. ' ' It has important consequences for the
equilibrium of such systems as they are cooled, which
we will not delve into here.

In a certain sense, the temperature sensitivity is like an
infinite sequence of infinitesimal first-order phase transi-
tions. From a renormalization-group point point of view,
it can be readily understood in terms of the scale and
temperature dependence of the effective Hamiltonians
that govern the system. ' Since the zero-temperature
random-directed-path fixed point is stable against tem-

Note the appearance of 2 —d in Eq. (5.1); this is related to
the irrelevance of weak disorder in dimensions d) 2 as
noted earlier. The cutoff-free model is therefore only well
defined in dimensions d & 2. We will thus concentrate on
d= 1.

In one dimension, for length scales smaller than b&, the
thermal Auctuations with displacements of the directed
path &az- effectively average out the random potential.
The effects of the random potential only become impor-
tant for scales L ))bz-, it is hence this limit we are in-
terested in. As we will see, the zero-temperature limit,
which is believed to dominate the behavior, is thus rather
subtle because of the T dependence of the cutoffs. [For
fixed L, it will turn out that we must measure displace-
ments y in units of (I /vT)'~ and energies in units of T
to take the limit T~O, at fixed L. ] The advantage of
the continuum model is that some exact results can be ob-
tained, in particular the exponent o. from which the oth-
er exponents can be extracted by the scaling laws dis-
cussed in the previous sections.
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In 1+1 dimensions, we can straightforwardly derive a
differential equation for the restricted partition function
Z(x,y) for a given realization of a directed path ending
at distance x at a displacement y. This is simply

Z(x y)—=e (5.4)

with, in the earlier notation F(x,y) =F„(y, ) for a path
starting at the origin. We obtain, after integrating, the
transfer operator from x to x +dx over y (x),

BZ
Bx

T B Z
2K By

V(x,y)Z
T

(5.5)

For the free energy up to distance x, we then have

BF T BF 1 dF +V x,yBx 2K Qy Ic By
(5.6)

Taking one derivative and defining

2 BF
K By

we obtain

T B2u Bu 2 BV
2K By

~ Bg K

(5.7)

(5.&)

which is Burgers's equation with conservative noise.
Some properties of this equation are known, in particular
the invariant distribution

by the scaling laws Eqs. (3.4) and (3.9). These exponents
have been conjectured by Huse and Henley on the basis
of direct numerical calculations at zero temperature for a
lattice model. The numerical calculations thus provide
supporting evidence for the universality of the exponents.
The exponents have also since been derived by other, for-
mal, methods such as via Bethe ansatz for a system of
parallel directed paths with short-range interactions
whose scaling behavior can also be predicted on the basis
of the general scaling arguments given in this paper. (See
also Ref. 17.)

It would, of course, be highly desirable to be able to
obtain further results directly from the Burgers equation
with noise; unfortunately, at this juncture, this does not
appear to be easy.

The scaling laws have recently also been derived from
the replica method for a single directed path using some-
what questionable assumptions. ' Note, however, as
mentioned earlier, that some of the other results obtained
by this method appear to be erroneous.

B. Entropy variations

In order to test our expectation that the entropy and
energy variations diverge faster with L than the free-
energy variations we have examined a 1D model using
the transfer-matrix technique. The model is on a lattice
with Hamiltonian

2
0 = y {V(x,y)+E, y(x+1)—y(x)l), (5.13)

P„{F(y)I—exp —C Jdy
&F (y)

Bg
(5.9)

with C=T /2I K. At this point, however, it is not
known how to solve Burgers's equation with noise for a
fixed initial condition, nor how to calculate correlation
functions involving more than one different "time" x.
Indeed, even the relevance to the problem at hand of the
invariant measure is somewhat problematical. For-
tunately, a natural interpretation is available in terms of
the discussion of Sec. III. '"

For separations hyL much less than L, we expect the
correlations in the free energy FI (yI ) of paths from the
origin to end points yL to be independent of L, with

where the random potentials { V(x,y)I are independent
and distributed uniformly in the interval (0,1), x and y (x)
are integers, and the nearest-neighbor displacements are
restricted to satisfy ly(x+1) —y(x)l (1. We work at
temperature T=1 and the step energy of E, =4 was

102

FL, (yi. ) (5.10)

and

=2
3 (5.11)

g —l
3 (5.12)

Thus we conjecture that, in general, the distribution of
such AFL's will be independent of L and be given by the
explicit distance independent invariant measure Eq. (5.9).
From this we conclude that in one dimension the statis-
tics of FL (yI ) as a function of yL are just those of a ran-
dom walk, so that o. = —,'. Somewhat surprisingly, this is
true even for separations smaller than the effective
thermal cutoff ar given by Eq. (5.2). From cr we obtain
the results

IO io4 {05

FIG. 2. Sample-to-sample variances of energy, entropy, and
free energy for directed paths of length I. on a lattice with one
end pinned at temperature T=1. The slopes of the solid lines
on this log-log plot are —,as expected for (hF), and unity, as

expected for large I, for (b E), and (AS) . See text for precise
statement of the model and parameters used.
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bF(Ty, L)=F(Ty, L) F(T y, L)—. (5.14)

We have measured the correlation between AI' at T=1
and T=2 for E, =5, constructing the correlation func-
tion

[b,F(l,y, L)b,F(2,y, L)]
[KF(l,y, L)] [6 F(2,y, L)]

(5.15)

0.6—

chosen to maximize the relative entropy variations for
small L. Systems of size up to 800000 in the y direction
were studied with periodic boundary conditions imposed
in the y direction. For each y, the free energy
F(T=1,yo=y, L) and the expectation values of the en-

ergy E, and the entropy 5 were calculated for strings of
length L with one end fixed at y and the other end free.
The variances (mean-square fluctuations) of these three
quantities are shown in Fig. 2 on a log-log plot, along
with the expected asymptotic slopes of 28= —,

' for (b,F)
and unity for (ES) and (AE) . Note that at the largest
length of L =61000 the variances of the energy and en-
tropy exceed that of the free energy by roughly 1 order of
magnitude, and so the free-energy differences are near
cancellations of significantly larger energy and entropy
differences, as expected. Note also that the entropy vari-
ance does not exceed the free-energy variance until
L =25, even though we have chosen parameters that
nearly minimize the position of this crossing. As argued
above, a consequence of this stronger divergence of the
entropy variance should be sensitivity of the state to tern-
perature changes. Thus we have compared the free ener-
gies at two different temperatures in the same sample.

Let F ( T,y, L ) be the free energy of a string of length L
in a given sample at temperature T with one end Axed at
y and the other free at L. The deviation of this from its
average over samples is

Lo
L

(5.16)

The behavior in Fig. 3 is not of this form, but it could be
headed for such a decay law at somewhat larger L, albeit
with a surprisingly large Lo. Understanding of the
source of the large length scales that appear must await
further progress.

VI. PINNED PHASE IN HIGHER DIMENSIONS

In dimensions d +1 greater than 1+1, there are no ex-
act results for the low-temperature phase. As discussed
in Sec. II, we do, however, expect a pinned phase for
strong disorder or low temperatures in dimensions d) 2.
In exactly two dimensions, the disorder is marginally
relevant ' ' and the system will always be in the pinned
phase with the behavior dominated by disorder for length
scales larger than gT-exp(4~T /I x.).

The exponent 0 that characterizes the pinned phase
has been calculated numerically by various authors for
d=2, 3, and 4 dimensions. The recent numerical results
of Kim and Kosterlitz" for a related growth model (see
also references cited therein) are consistent with their
conjecture 9=1/(d +2), although we see no reason to
believe that this result is exact. Another approach that
gives an estimate of 0(d) is the Migdal-Kadanoff approxi-
mate renormalization group. As discussed by Derrida
and Grif5ths and by Halpin-Healy, this is an uncon-
trolled approximation for d-dimensional Euclidean lat-
tices, but is exact for certain hierarchical lattices. We
have performed numerical calculations on such hierarchi-

which is shown in Fig. 3 on a log-log plot. This correla-
tion function should decay to zero at large L, rejecting
the system's sensitivity to temperature changes. The
length scale on which this happens would naively be of
the order of that where the crossing of (AS) and (b,F) in
Fig. 2 occurs (L =50 for these T,E). In fact, the decay of
G~(L) is seen to be much slower, but does appear to be
accelerating on this log-log plot at the largest lengths
studied. For large L, a simple expectation is that the
states at the two temperatures overlap strongly only near
the pinned end over some length, Lo. This would result
in an asymptotic decay of the correlations as

40
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FICx. 3. Correlation GF(L), as defined by Eq. (5.15), between
the free energies of directed paths of length L at two tempera-
tures differing by a factor of 2. See text for precise definition of
the model and parameters used.

FIG. 4. Free-energy exponent L9, multiplied by D =d +1, as
calculated within the Migdal-Kadanoff' approximation as a
function of D. This is a semilogarithmic plot. The exponents
are exact (up to numerical solution of the fixed-point equations)
for the Berker hierarchical lattices.
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cal lattices to calculate 0. We show 0D, where D =d + 1,
versus D on a semilog plot in Fig. 4. It is clear that 0
does not vanish here for any finite D but it appears that it
may behave as 0-(1nD)/D for large D. The (Berker)
hierarchical lattices ' for which this is the exact 0 do
have loops on all length scales, and thus they may
represent more accurately the large but finite D real lat-
tices than does the Cayley tree or Bethe lattice (discussed
below), which has no such large loops.

It can be seen that there is a tendency for 0 to decrease
with increasing dimensions. A lower bound of zero is im-
plied, at least for a positive temperature phase, by the re-
quirement that the thermal eigenvalue A, T= —0 be non-
negative.

If 0 were negative, thermal fluctuations would be
relevant and no pinned phase could exist except at zero
temperature. Indeed, it appears extremely unlikely that
such a situation would exist at all. First, note that the
elastic energy cost of a directed path with a uniform an-
gle giving rise to a displacement L' is only of order 1,
independent of L. If 0 were negative then small-scale dis-
tortions that give rise to energies of order unity would
dominate over the large-scale contributions to the energy
and thus control the optimal position of the directed
path, apparently leading back to g= —,

' and 8=0. Thus
we expect that even at zero temperature, 0 ~ 0 and g ~

—,'.
This result may well be provable. An important question
is whether 0 is strictly positive in any finite dimension but
asymptotically vanishing as d ~ ~ (as in the above
Migdal-Kadanoff approximation) or whether there is an
upper critical dimension for the pinned phase d, above
which 8 vanishes and g= —,'. The remainder of this sec-
tion is devoted to this equation.

A. High-dimensional limits'

For many conventional critical phenomena one of the
most productive routes to understanding the critical be-
havior has been to analyze some high-dimensional limit
and then attempt to expand about it, for example, by e
expansions about an upper critical dimension. This pro-
gram has been attempted for various systems with
quenched randomness and appears to work well for prop-
erties of phase transitions from entropy-dominated disor-
dered phases to energy-dominated. ordered phases. For
example, the critical behavior of random exchange, ran-
dom field, and spin-glass magnets can be analyzed in e ex-
pansions about 4 or 6 dimensions. Even there, how-
ever, some crucial features are missed, for example, the
critical dynamics of random-field Ising magnets. In
other random systems, the situation is much worse; it ap-
pears that there may well be no useful high-dimensional
limit of the phase transitions at all. Examples are the
quantum-mechanical localization transitions for either
noninteracting fermions or interacting bosons. '

What we are faced with in trying to understand the
pinned phase of random directed paths is something rath-
er different: the properties of a phase (rather than a tran-
sition), which is dominated in a nonperturbative way by
the randomness. The best studied problem in this class is
the ordered phase of spin glasses about which there is still

a great deal of controversy, ' particularly about whether
there is an upper critical dimension above which the or-
dered phase of spin glasses becomes equivalent, in some
sense, to the infinite-range Sherrinton-Kirkpatrick model.
We have previously argued that this is not the case.

An important issue that arises for both spin glasses and
random directed paths ' is which models are appropri-
ate to analyze the high-dimensional limit, and concomi-
tantly which properties of these models should be taken
seriously as predictions for the behavior of systems in
large but finite dimensions. For the random directed
path there is currently only one candidate model that
may in some sense exactly reproduce the high-
dimensional limit: the directed path on a Cayley tree,
studied recently by Derrida and collaborators. ' Before
summarizing the picture that emerges from these studies,
it is worth considering the successes and failures in other
problems of models on relatives of the Cayley trees that
have no boundaries, i.e., Bethe lattices.

Generally, the thermodynamic properties of conven-
tional phase transitions in high dimension are well ap-
proximated by those on Bethe lattices, since in high-
temperature expansions the scarcity of loops in high di-
mensions is well approximated by the absence of loops on
the Bethe lattice. The properties of ordered phases (and
also correlation functions) fare rather more poorly.
Indeed, various pathologies are found on Bethe lattices,
notably the presence of infinitely many infinite clusters
for percolation (which does not occur in any finite dimen-
sion), and the exponential decay of two-point correla-
tion functions at criticality, which must be interpreted
with great care. The status of more subtle random prob-
lems on Bethe lattices, such as spin glasses ' and localiza-
tion, are still controversial, although certain pathologi-
cal features definitely occur.

B. Random directed paths on a Cayley tree

We now describe the model of a random directed path
on a Cayley tree, properties of its solution, following Der-
rida and collaborators, ' and problems that arise.

0—

l

0
FIG. 5. Randomly branching Cayley tree. The lowest-energy

path is shown by the bold line; the lowest-energy path that
branches off from the ground state at a given distance from the
origin is shown by the dotted line.
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EI VOL -L—
where the ground-state-energy density is defined by

Eo= lim (EI /L) .
g —+ oo

(6.1)

(6.2)

In the case 0=0, L is replaced by lnL arising from com-

The tree is arranged as shown in Fig. 5 with the root
(which we take to be the origin) at the left with branches
up and down as one moves to the right. The simplest
case has only twofold branchings. The directed path is
fixed at the root and has a free boundary a distance of L
steps along the tree. Its energy is the sum of the random
potentials V(x,y) (with mean zero and variance I ) of all
the bonds it traverses.

For analytical calculations it is more convenient to
consider a randomly branching tree that has a probability
dx/b of a twofold branching in distance dx along each
branch. There is a random potential with 5-function
correlations in x at each point along the branches so that
the typical random potential of a section of a branch
grows as the square root of its length. Derrida and
Spohn (DS) have investigated various properties of this
system. They find that it has two phases. the high-
temperature free phase occurs for T ) T, . Below the
phase transition at T„ the model exhibits a pinned, al-
most frozen, phase in which the directed path coincides
with the single optimal path on the tree with nonzero
probability in the limit L~~. In the whole of this
phase, the free-energy density f is equal to the ground-
state-energy density Fo thus the system does not have ex-
tensive entropy. Indeed the entropy turns out to be of
order unity arising, with high probability, primarily from
alternate paths along the tree which branch off from the
ground state at small distances from the root. This can
be seen explicitly via computation of the distribution of
overlaps of paths on identical copies of the tree.

To understand the low-temperature phase; it thus
suffices to study the ground state and its low-energy exci-
tations. The exponent 0 can be defined by considering
the width of the distribution of ground-state energies EI
for systems of length L. DS have shown that the distri-
bution of EI —EI attains a limiting form as L~ac with
width of order unity: i.e., 0=0. If we interpret up and
down steps on the tree as steps in some direction on a
finite-dimensional lattice, then the symmetry of the tree
immediately implies that the distribution of steps in the
ground state is the same as a random walk along the tree,
so that g= —,'. The energy variations are thus consistent
with the scaling law 8=2(—1. Note that, in general, the
structure of the tree implies that (y (x) ) is independent
of temperature. Extension of the model to include small-
scale loops (up to a finite maximum size) allows for
some entropy at positive temperatures, but preserves, be-
cause of the basic tree structure, the features that yield
g= —,

' and 8=0.
Another feature of random directed paths on the

Cayley-tree is the finite-size correction to the ground-
state energy with a free-boundary condition at the far
end. Unless there are exact cancellations from the effects
of the two ends, we expect, in finite dimensions, that

binations of l from each factor of 2 in length scale l
away from the origin. This nonrandom logarithmic
dependence on L is found for the Cayley tree by DS. '

So far so good. A closer examination of some of the
properties on the Cayley tree unfortunately reveals vari-
ous pathologies. The most obvious of these is an immedi-
ate consequence of the tree structure: if we fix both ends
of the directed path, the path is totally constrained (or,
with small-scale loops allowed, constrained at long scales)
and hence will have a higher energy density than the un-
constrained ground state: This cannot occur in finite di-
mensions. More subtle are the properties of the uncon-
strained ground state itself.

In addition to the ground-state energy of the whole
directed path to the right of the origin, it is instructive to
also consider the ground-state energy of sections of the
ground-state directed path. We define E(x',x;L) to be
the energy of the section of the ground-state
configuration between distances x' and x of the origin,
with the other end of the path free at a distance L. In the
Appendix, we calculate the asymptotic behavior of this
quantity. For L ))x ))b (the mean branching distance),
we find that the distribution of E(x,x ) is L independent,
with, for example,

E (O, x;L)—Fox ~E (O, x) —eox -x '~ (6.3)

E(x,x +l) —col-l'i (6.4)

Again, the difference between this result and that for the
total energy variations suggests that the role played by
the constraints at the end of the directed path is much
more special on the Cayley tree than on real lattices.

We now study excitations from the ground state.
Specifically, we consider the minimal energy of paths that
branch off from the ground-state path at position x as
shown in Fig. 5. A simple argument shows that if the
ground-state path has anomalously low energy (which,
from the above discussion, it typically will), the side
branches will be typical; i.e., they will have essentially the
same distribution for large x as ground-state paths in a
system of length L —x. Thus the lowest-energy path
branching off from the ground state at a distance x from
the root will typically have energy b,(x)—x'~ above the
ground state.

By examining the distribution of E (O, x;L) in more de-
tail, we can understand why the entropy is finite at low

with negative mean value and variations of order x ' —a
somewhat surprising result in light of the expectation
that I9=0.

This behavior —which suggests an alternate definition
of 0 with value —,—is incompatible with the structure on
a real finite-dimensional lattice discussed in the earlier
sections. Specifically, if the last portion of length x of a
much longer directed path had energy that varied by an
amount of order x ', alternate paths would exist with
g=(1+8)/2= 4 rather than —,'. Further calculations on
the Cayley tree (as in the Appendix) show that the energy
of sections of length l ((L at distance x much greater
than l from either end actually has a normal distribution
with
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temperatures. From the Appendix we conclude that the
probability that the difference in energy b, (x) between the
ground state and the minimal side branch at x is of order
one (or smaller) is of order 1/x . Thus the probability
that there are no low-energy branches beyond a distance
x is bounded by

Prob(b(x'))c for all x')x))1—O(x '~
) (6.5)

of the nodes of the tree are thus unlikely to lead to the
correct form for the long-distance correlation functions
due to difficulties in exchanging the L ~ ~ and d ~~
limits. They may, however, yield the correct high-
dimensional expansion for the free-energy density and the
transition temperature, although even this has not been
convincingly demonstrated.

for all finite c. Since higher-energy branches will only
contribute amounts of order e to the entropy, we
can conclude that, at low temperatures, the entropy
arises almost entirely from branches in the part of the
tree nearest to the origin, leading to a total entropy of or-
der one. This behavior is again very different from that
expected on any real lattice, for which all the way along
the minimal path we expect there to be some low-energy
"detours" of all possible sizes.

This difference can be seen by examining the source of
contributions to the low-temperature thermal Auctua-
tions of a section of the directed path,

Cz (x,x';L) =—( Ey (x)—y (x')] ) —(y (x)—y (x') )

(6.6)

where y (x) is the number of up steps minus the number
of down steps out to a distance x. For x =0 the dominant
contributions will come from the active branches that
branch off near the origin, yielding, since the minimal
paths on these side branches are virtually independent of
each other for large x',

Cr(0, x';L) —Tx',

which is the same form as the exact result for finite-
dimensional continuum models. For ~x —x'~ &&x &&L

Cr(x, x', L)—Tix —x' (6.8)

valid again both for the Cayley tree and real lattices. In
this case, however, the source of the behavior is very
different: On real lattices, we expect a significant contri-
bution from active detours between x and x', while on
Cayley trees there will typically be no active branches be-
tween x and x', so that all the dominant contributions
will arise from the branches near the origin. Unfor-
tunately, higher-order correlation functions of the Quc-
tuations of the y's are needed to see this difference direct-
ly, these cannot be computed exactly in finite dimensions.

On the Cayley tree, the side branches near the origin
give rise with high probability to low-free-energy excita-
tions with end points separated by 0 (L ~). This behavior
is not possible in finite dimensions for g) —,, as it would
give rise to a Cz that grows more rapidly than L. It also
suggests that the nontrivial "overlap" function P(q)
found for the Cayley tree (which arises from these exci-
tations) cannot exist with g) —,'.

Because of these and other related differences, it ap-
pears unlikely that the Cayley tree represents a sensible
high-dimensional limit, at least as far as the correlation
functions and exponents in which we are interested are
concerned. The expansions of Derrida and Cook which
insert finite sections of high dimensional lattices in place

C. Can g= —' in high dimensions?

We now turn to the general question of whether it is
consistent to have a low temperature phase with g= —,

' in

sufficiently high dimensions. At this point we must dis-
tinguish between whether or not logarithmic terms ap-
pear, particularly in the free-energy variations. It is hard
to rule out, on any general grounds, behavior such as

W- L '~ (lnL )~, (6.9)

FI (yt ) Ft '"-InL+V lnL— (6.10)

with a deterministic logarithmic part and variations only
of order v'InL . ' ' Thus the variations of b Ft (yl ) with

with g positive, although we do not know of any reason
to expect this. We thus restrict the discussion to con-
sideration of pure 8'-L ' behavior in a pinned phase.

Since this phase is, by assumption, dominated by the
randomness, the amplitude of the wandering should go to
a constant as T~O. We therefore expect that, in some
sense, the distribution of free-energy variations will be
scale independent even at zero temperature since with
g= —,', 8=0. In this marginal case, however, there are im-

portant subtleties.
We first consider a system of width 8'-L ' with, say,

periodic boundary conditions in both directions. Here
there are no end effects, and so we expect the distribution
of AFI to be scale independent. However if instead, as
we have done all along, we fix one or both ends in a wide
strip of length L, there will be end effects that raise the
energy for a fixed end, and lower it for a free end. By
fixing only the left end, we can then consider both of
these effects by examining the zero-temperature energy
Ft(yl ) as a function of the other end point yt. The
statistics of the stationary (in yI ) distribution of the non-
deterministic part of the free energy Nt (yl ) [Eq. (3.6)]
will yield, by the arguments of Sec. III, the behavior of
the minima of Fl (yl ). For consistency with g= —,', we ex-
pect that on each length scale there will be minima of NI
that differ by of order unity. Thus if we first consider the
absolute minimum of FI, there will be typically one other
such minimum at distance of order 1, another at distance
of order 2, 4, etc., with typically a comparable number in
a given excitation energy range in each factor of 2 in
length scale. By the assumption of scale invariance, how-
ever, there will also be secondary low-energy excitations
at each length scale above the primary excitations; these
will on average be a factor of 2 higher energy above the
ground state. For a typical end point yl, on the other
hand, the energy will be much higher: essentially a factor
of order unity higher for each length scale, yielding
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fixed yL will be of order v'lnL (as will variations in the
minimum due to fixing the other end), but the differences
between low-lying minima will be much smaller; for ex-
ample,

implying

hLLT
lnZ (hL )

—lnZ(0) = (6.14)

Z ( h I ) =—Tr exp( PH + h I y L)—
has the same distribution as

(6.12)

min IFL(yL )I — min IFI (yI )I =O(1) . (6.11)
IyL I

)« ' '
1yL I

«I ' '

In order for a low-temperature phase with g= —,
' to ex-

ist, one would need to have temperature be marginally ir-
relevant at the zero-temperature fixed point, or alterna-
tively a fixed line might exist at low temperatures,
perhaps with some continuously variable exponents (such
as p from Sec. IV). We will now consider the consistency
of these possibilities.

It is again useful to consider the thermal fluctuations,
for small T, about the ground state of a system of length
L. From the above picture, the number of excitations
with energy of order 1 grows as lnL. Thus, naively, it ap-
pears that the temperature will be marginally relevant. A
better argument is certainly needed to make this convinc-
ing: this would first have to address the consistency of a
zero temperature 0=0 fixed point with the above, or
perhaps some other, structure. If this were possible, then
a low-temperature renormalization-group expansion
might be attempted. The simplest possibility is an unsta-
ble zero-temperature fixed point with the flows running
off to high temperatures. This is inconsistent, however,
with the proof of Cook and Derrida that there must be a
phase transition in any dimension.

An alternative possibility is a fixed line with tempera-
ture exactly marginal. At positive temperature, structure
roughly like that described above has been found to occur
(at least in a d =2+@ expansion) at the crit' cal point'
separating the high and low temperature phases. ' ' It
is, of course, unstable to any small temperature change.
Nevertheless one might conjecture that it could expand
into a critical low-temperature phase in high enough di-
mensions with a transition analogous to the Kosterlitz-
Thouless transition separating this critical phase from the
high-temperature phase.

The third possibility of marginally irrelevant tempera-
ture suggests behavior qualitatively like the low-
temperature phase with 0& 0 considered in earlier sec-
tions. This does, however, give rise to problems.

We consider, as before, the thermal fluctuations with
one end fixed at the origin and the other free. The mean-
square thermal fiuctuations CT(L) are likely to be dom-
inated by the rare configurations for which there is a
thermally active path with end point differing by -L '

from the lowest free-energy one. If, as expected, the
probability of this occurring is of order T/L —T, then
this yields the correct result CT(L) —TL. The higher-
order truncated correlation functions are more prob-
lematical, however. From the invariance properties of
the distribution of disorder Eq. (3.3), it follows that'

On a lattice, there may be correction terms that are
smaller by powers of L; however, the cancellation of the
naively expected leading TL L ~ part of Eq. (6.15)
should still occur. This cancellation is straightforward to
see for 8)0. The contribution to CT '(L) involves the in-
tegral over the density of states p(b, ) for scale L excita-
tions,

CT'(L)~ I db p(b) sech
0 2T

——sech
3 4

2 2T

=0+0 ( T /L ) . (6.16)

For 8)0, p(b. ) is constant for 6 ((L giving rise to the
cancellation above. Higher-order cumulants similarly
cancel, and, collectively, these conditions give rise to a
series of equalities for the moments of u —= sech (b, /2T).
If we consider, for the 0=0 case at hand, only a single ex-
citation, then these series of moment conditions should
completely specify the distribution of the bounded vari-
able u. Since the integrals for the 0=0 case are no longer
dominated by atypically small 6, one can see that the
only distribution, which satisfies the condition, is

p(u)du 0- du

u 1 u
(6.17)

which is not normalizable. This problem can be fixed for
0)0 by changing slightly the form of the distribution for
u close to zero; i.e., cutting it off for large 6, giving rise
only to correction terms. For 0=0, however, this is not
legitimate since the characteristic scale of the distribution
p(h) is the same as the part that dominates the moments
of u. Thus, within the approximation of only a single
dominant excitation, we appear to have arrived at a con-
tradiction for 0=0.

Further work is clearly needed to see whether a con-
tradiction can be obtained without this assumption, but it
appears that some very special correlations would need to
occur in order to yield a consistent picture of a pinned
phase with 0=0. At this point, it is tempting to conjec-
ture that in any dimension, 8'I /L ' ~ ~, as L —+ ~.
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APPENDIX

so that all truncated correlations, which can be obtained
from derivatives of the average free energy, are equal to
those for the nonrandom system. In particular,

CT '(L) = ((yL —
(yL, & )'& —3((yL, —

(yL, & )'&'=o .
(6.15)

hl LT
Z (0)exp +

2KT
(6.13)

In this Appendix we derive some results for the ground
state and excitations on the Cayley tree following a vari-
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ant of the method of Derrida and Spohn (DS). We fol-
low here the notation of DS, which differs from that used
in the bulk of this paper. We consider a randomly
branching tree with t denoting the distance from the
leaves of the tree. Each branch of the tree has a probabil-
ity dt of a twofold branching in any interval dt. At every
point on the tree there is a random potential with correla-
tions

x =x —ct, y =y —ct,
and define

(A8)

G, (x ) =G, (x ct—), (A9)

—,'a„a+ca m+m —w =0, (A10)

and similarly for H. The fixed point w(x) then satisfies
the equation

v(t)v(t )=rfi(t —t ) (A 1)

along one branch and no correlations between branches.
We are interested in the ground-state energy E(t) of a
path ending at a root a distance t from the leaves, but free
at the leaf end. We define G, (x)=Prob[E(t)) —x]; this
is the zero-temperature limit of the quantity used by DS.
A differential equation for G is straightforwardly derived

with the boundary conditions w ( + ~ ) = 1, w ( —oo ) =0.
It can be seen that m tends exponentially to these limits.
Thus on a scale (in x) much larger than one, w is essen-
tially a step function.

From Eq. (A4), we find that H satisfies a linear equa-
tion; it can be written in a convenient form for the densi-
ty

aG I=—8 G+b(G —G),2

at 2
(A2) g(x,y; t t) =8 8—H, (x,y; t ), (Al 1)

when the G arises from the minimizing over two
branches when they split.

We will also be interested in keeping track of the ener-
gy of sections of the ground-state path far away from the
root. In particular we define E (t, t) to be the energy up
to time t of the path that has minimum energy with its
root at time t. The joint probability

H, (x,y;t)=Prob[E(t)) —x and E (t, t)) —y] (A3)

—2 f H, (z,y, t )B,G, (z)dz, (A4)

where here and henceforth we have rescaled "time" and
energy to set I =b = 1. Note that y and t are merely car-
ried through as parameters in Eq. (A4); this is because
the branch, which has lower energy at a split, is only
determined by the total energies up to that point, but not
by how that energy is divided among the earlier times.
We must supplement Eq. (A4) with an initial condition at

H~ (x,y; t ) =G, [min(x, y) ];

then keeps track of the requisite information. In a simi-
lar way to the derivation of Eq. (A2), one finds that

aH 1

at 2
=—8 H H+2G (x—)Ht

y1eldmg

=—B„g+&2B,Q+ [2w (x ) —1)g= (A12)

with initial condition

g(x,y;0) =5(x —y )B w (y ) . (A13)

P(x,y;0) =&(x —y)$0(x), (A14)

with

If y is large and positive, the fiow under Eq. (A12)
amplifies the initial peak in g by an almost constant
amount 2m —1=1, moves it to the left with velocity
c =v'2, and smears it out. When the peak gets past 0, it
rapidly decays. Thus at long times t —t, the conditional
probability distribution with x -0 (which corresponds to
a typical ground-state energy up to t) will be peaked at
values of y that are large enough that the decay of the
peak does not dominate. This implies that the typical en-
ergy E (t, t) cot will be lar—ge and negative for t t-
large.

It is instructive to solve an approximate problem with
2w —1 replaced by 1 for x) 0 and —~ (i.e., an absorbing
wall) for x (0. In order to conserve probability we must
change the initial condition to

t and y then enter through this initial condition.
We are primari1y interested in the behavior very far

from the leaves. In this limit, G, (x) approaches a moving
steady-state form,

Po(x)=2xe

the steady-state solution to the linear equation

X/0=0,

(A15)

(A16)

G, (x)=w [x —m (t)],
where

m (t)=et+0(lnt), (A7)

with X the linear operator on [0, oo ] with 2w —1 re-
placed by unity in Eq. (A12). We will henceforth drop
the tildes on x and y. The long-time behavior of g under
X can be found straightforwardly from

with "velocity" c =&2, which is just the negative of the
ground-state-energy density, eo. For our purposes, it can
be seen that we may drop the lnt correction to m (t); this
is equivalent to taking a distribution of energies on the
leaves of the fixed-point form w (x). We may now change
variables to

dk
hatt(x, y; t) =2J sin(kx)sin(ky)

0 VT

x " 'P(y).
Integrating over x yields the distribution of the contribu-
tion E (t+ t, t ) to the energy of the minimal path ending
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at t+ t from times less than t:

h(y, t)—:Jdx P(x,y, t)

e 'Il+O(lyt, y /'t ) j
2 1

&2' t'" (A18)

where the e — factors have canceled, leaving
diff'usivelike behavior. The typical y is thus —&t, which
is large, as guessed above. Because of this domination at
large times by large y, the approximation of replacing X
by L can be shown to be asymptotically correct in the
limit t —+ ~ and y —&t. For y of order one (with a tail
extending to negative y) there will be a small extra weight
in h totaling —I/t

We thus see that the contribution to the energy of the
minimal path at distances more than t from the root will
typically be of order &t lower than a typical minimal
path that ends at a distance t from the root. Paths
branching off from such anomalous sections of the
ground-state path, as in Fig. 5, will, on the other hand,
have typical minimal energies (their distribution can also

be calculated). This implies, as claimed in the text, that
low-energy side branches will only be common near the
root. The probability of finding such a branch a distance
t from the root will be of order t, essentially just the
probability that the minimal branch has typical energy.

Similar techniques can be used to evaluate the contri-
bution to the energy of sections of the minimal path far
from the origin, i.e.,

(A19)

with

(A20)

This found to be simply Gaussian with variance given
by I ~t t '~. No—te that for a non-Gaussian random po-
tential, the distribution of the energy of such sections of
the minimal path will still be Gaussian, but with variance
given by that of the integral of the random potential con-
strained so that the energy density is equal to that of the
ground state paths.
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