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We present theoretical studies of the classical ground-state spin configuration and spin waves, in
very thin ferromagnetic films, with thickness that ranges from a monolayer to a few tens of layers.
The analyses are based on a microscopic model that includes dipolar and exchange interactions be-
tween the spins, surface (or interface) anisotropy of single-site character quadratic and quartic in the
spin components, along with an external magnetic field applied at an arbitrary direction with
respect to the film normal. Issues explored include the nature of spin canting induced by surface an-
isotropy in ultrathin (few-atomic-layer) films, and in films with thicknesses of up to 100 layers.
Also, we explore the nature of spin waves in ultrathin films, in the presence of spin canting, and in
thicker films with attention to the interplay between dipolar and exchange contributions to the exci-
tation energy. Most particularly, in the thicker films, we examine the transition from the dipole-
dominated Damon-Eshbach waves to the exchange-dominated surface spin waves that emerge from

the Heisenberg model.

I. INTRODUCTION

There is currently great interest in the properties of
very thin ferromagnetic films, with thicknesses in the
range of a few atomic layers. The ferromagnetic proper-
ties of such films can differ dramatically from those of
bulk crystals of the same material. For example, ul-
trathin films of Fe can exhibit strong uniaxial anisotro-
pies,! characterized by anisotropy energies larger than
those realized in bulk Fe by roughly two orders of magni-
tude. This is, one presumes, a consequence of the low site
symmetry at the surfaces and interfaces of a few-atomic-
layer film, while in bulk Fe all atoms reside at sites of cu-
bic symmetry.? The uniaxial anisotropy can render the
axis normal to the film an easy axis. When the film thick-
ness in this case is sufficiently thin, the uniaxial anisotro-
py can overwhelm the dipolar energies, which favor
alignment of the magnetization parallel to the film sur-
faces. A consequence is that the magnetization of the
film will orient normal rather than parallel to the sur-
faces. In a recent experiment, the spins in a few-atomic-
layer film have been found to reorient, with respect to the
film surfaces, from normal to parallel, as temperature in-
creases.’ In such thin films, the spins can also be found
canted from the film normal.

One can also carry out experimental studies of (long-
wavelength) spin waves in few-atomic-layer films. Two
techniques have been successfully used in such experi-
ments. One is ferromagnetic resonance,* and the second
is light scattering (Brillouin scattering).>® Both methods
can explore the surface magnetic response of thick crys-
tals,” multilayers or superlattices possibly fabricated from
few-atomic-layer films, and isolated ultrathin films only a
few layers in thickness.®

These data are generally analyzed by applying theoreti-
cal descriptions developed for films or samples whose
thickness or linear dimensions are macroscopic; such
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theories are then applied to few-atomic-layer films.
While many features of the data on ultrathin films are ac-
counted for nicely by such a procedure,® it is clearly
desirable to utilize a fully macroscopic description of the
film.

There are in fact questions which are difficult to
answer within the macroscopic theory. For example,
light scattering studies of ultrathin Fe films have explored
the low-frequency spin-wave branch of a few-monolayer
Fe film.® As noted earlier, a macroscopic description of
this wave, in the limit k“=0, where kII is its wave vector
parallel to the film surfaces, accounts for the data very
well. Such a theory, in our view, would provide a ques-
tionable description of the dispersion relation of this
branch. The film studied in Ref. 6 is three atomic layers
thick; two-thirds of the spins reside in either a surface or
in the interface between the film and the substrate. Thus
introduction of the influence of exchange by adding the
—DV? term to the equations of motion of the appropri-
ate spin components would be inappropriate. If one
wished to examine the temperature dependence of the
magnetization of the film through the use of spin-wave
theory,® the dispersion relation of this low-frequency
branch would play a key role.

There is another issue of interest to us that has yet to
be addressed, and which cannot be addressed within a
macroscopic theory. At long wave-lengths, spin-wave ex-
citation energies are dominated by the Zeeman and dipo-
lar contributions (and in thin films, surface or interface
anisotropy enters as well). Exchange, however, plays a
minor role. In this regime, one encounters a surface spin
wave known as the Damon-Eshbach wave. The frequen-
cy of this wave lies above those of the very-long-
wavelength bulk spin waves.’ At shorter wavelengths,
spin-wave excitation energies are dominated by exchange
couplings between the spins, while Zeeman and dipolar
contributions are small. Numerous theoretical studies of
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the semi-infinite Heisenberg ferromagnet of exchange
coupled spins shows that one encounters surface spin
waves whose frequency lies below the bulk spin-wave fre-
quencies. For exchange surface spin waves whose wave-
length is long compared to a lattice constant, the
difference in frequency between the surface wave and the
lowest-frequency bulk wave scales as k[l‘ for a wide
variety of surface geometries.

It follows that one can never describe such exchange-
dominated surface spin waves by any theory that intro-
duces the influence of exchange only through the use of a
term of the form —DV? in the equations of motion; one
must have terms fourth order in the various spatial
derivatives. The transition between the dipole-dominated
Damon-Eshbach regime and the exchange-dominated re-
gime described by the Heisenberg model thus has not
been addressed in the literature. Introduction of the
—DV? term in the equation of motion, in combination
with the appropriate boundary conditions at the surfaces
or interfaces, gives an adequate description of the effects
of exchange at long wavelengths,'®!! but one never
achieves a proper account of the exchange-dominated re-
gion.

In this paper, we present a study of spin arrangements
and spin waves in thin ferromagnetic films by means of a
fully microscopic model. We begin with a film of an as-
sumed microscopic structure, chosen to be either fcc or
bece in character with (100) surfaces for results presented
here. We employ a microscopic description of the dipo-
lar interactions and exchange couplings, along with an-
isotropy in the surfaces or interfaces. There is also a spa-
tially uniform magnetic field, applied in an arbitrary
direction. We begin by finding the (classical) ground
state by means of an energy-minimization procedure. In
the presence of surface anisotropy, the spins may be cant-
ed, with a layer-dependent canting angle. Once the clas-
sical ground state is determined, we then study the spin-
wave excitations of the canted array. In this work, we
address issues such as those mentioned above, which are
difficult to address within the macroscopic approach. We
can also compare our results with the macroscopic
description of the model system, and thus delineate the
range of validity of this approach.

In the course of the analysis, one encounters certain
spatial Fourier transforms of dipole sums. The dipole
sums are long ranged, and the resulting expressions thus
converge very slowly. However, through methods dis-
cussed some years ago,'? it is possible to convert these di-
pole sums to series that converge very rapidly.

Our model is limited in some regards, of course. We
have a lattice of localized spins coupled as described
above, and ultimately we have applications to ultrathin
films of Fe in mind; Fe is of course an itinerant ferromag-
net, and one questions the applicability of the Heisenberg
model to such a material. We regard our approach as
phenomenological because of this. In our numerical
work, we adjust the strength of the nearest-neighbor ex-
change so the value of the spin-wave exchange stiffness D
is reproduced properly. We then obtain a proper descrip-
tion of the response of Fe to long-wavelength distur-
bances in the spin system, while the results for excitations
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that involve the short-wavelength response must be
viewed as an extrapolation. Also, at the time of this writ-
ing, we have virtually no data in hand that provides reli-
able information on the nature of the effective exchange
couplings within the ultrathin films, and in their surfaces
and interfaces.

II. FORMULATION OF THE THEORY

A. The microscopic model

Our model for a thin ferromagnetic film consists of N
layers, stacked to form a cubic crystal, with one atom per
unit cell, in the bulk realization of the structure. We
have two (100) surfaces that are planar, and infinite in ex-
tent. The calculations reported here are for films of fcc
and bcc structure. The Hamiltonian includes nearest-
neighbor Heisenberg exchange, dipole-dipole coupling
between spins on the lattice, and surface anisotropy that
introduces an easy axis normal to the film surfaces. The
surface anisotropy includes contributions from terms
quadratic and quartic in the relevant spin components.
We also allow for the application of a spatially uniform
magnetic field H,, of arbitrary magnitude and orienta-
tion.

The Hamiltonian for this model may then be expressed
in the form

__ 1 ATY-S(I
H=—¢ %‘,’S(I)A(I,I)S(I)
1
+§ hsl(ll)Sf(lH-Fh%(ll)s‘j(l)]
—SH,,-S(1) (1a)
1

where S(I) is the operator associated with the spin of
length S corresponding to the site I. The subscript L
denotes components of a vector normal to the film sur-
faces. For a cubic film, corresponding to a material with
bulk lattice constant a, and unit-cell volume ¥V, we may

write the real, symmetric exchange and dipole tensor
A(1,1’) in the form, for I#1’,

At LIV=2 56, 11 Dag—Mydop(1,T") . (1b)
ap s

Here, D is the spin-wave exchange stiffness constant, ex-
pressed in units of G cm?, M, is the saturation magnetiza-
tion, the sum on & ranges over the sites that are nearest
neighbors to I, and

Bap— 3R 1RHL,1")
|x(1,1")3

with x(1,1') a vector directed from site I to site I’, and

X(1,l') its corresponding unit vector. One has

Ayp(l,1)=0. We can easily allow for changes in ex-

change constants in and near the film surfaces, but since
very little unambiguous information is available on this

ds(L1)=V, (1c)
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question at this time, we set the exchange constants equal
to their bulk values everywhere.
Also, hsl(ll) and h32(ll) are measures of the strength of

the uniaxial anisotropy quadratic and quartic in the spin
components, respectively. In the calculations discussed
here, we assume the surface anisotropy to be the same on
each surface. Thus we write
hsi(ll)=hsi(8,,l+8ml), i=

1,2, (1d)

where A, is a constant, measured in magnetic-field units.
i

It is possible, of course, for there to be uniaxial anisotro-
py on interior layers of the film, particularly in the ul-
trathin films. Very little is known about this question at
the time of this writing, so we adopt this simple picture
as a model.

From the Hamiltonian given above, we may calculate
the equation of motion of the spin S(/). When this is
done, and the operators are treated classically [by replac-
ing S, (1)S,(1)+S,(1)S, (1) by 2S,(1)S, (1), for instance],
one finds

28(,0=S(L0) xH(L1) ,
where H([,1) is an effective magnetic field at lattice site /,
defined as

(2a)

H(l,t)=Hex+éEA(I,I’)-S(I’,t)
>

1

1
5 | 10+ A, 1STL 0 [8,(00)

(2b)

These equations of motion allow us to explore both the
nature of the classical ground state and the spin-wave
spectrum of the film.

B. Determination of the classical ground state

We first begin by finding the static ground-state spin
arrangement. We establish a laboratory coordinate sys-
tem, and we allow for the possibility that the spins may
be canted in a layer by layer fashion. Thus we construct
a local coordinate system in each layer, with its z axis
aligned along the direction of the spins in that layer. We
then seek the transformation between the laboratory
coordinate system, and the local coordinate system asso-
ciated with the various layers. We then linearize the
equations of motion about the equilibrium arrangement,
to generate spin waves. Since the film possesses transla-
tional symmetry parallel to the surfaces, it is reasonable

1

—lf(cosqS cosf+i sing)

V2 V2
1 . | .
= | — —7 — +
T Ve (sing cos@—i cos¢) V3 (sing cos@+1i cos¢)

— % sin@ — \/LE sinf

—1——( cos¢ cosf—i sing) cos¢ sinf
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FIG. 1. The local z axis of quantization, Z(/,), for the film
layer /,, which defines the spin orientation for this layer, in the
classical ground state.

to suppose each spin in a given layer has the same orien-
tation in the ground state. The transformations are then
a function of the angles that describe the rotation from
the laboratory system to that associated with the various
layers.

Let Z(/,) describe the z direction corresponding to lay-
er [,; the spins in this layer are thus parallel to Z(/,). As
indicated in Fig. 1, 6(/,) and ¢(/,) are the spherical polar
coordinates that define the orientation of Z(l,) with
respect to the film normal. The rotation from the labora-
tory frame to the local frame corresponding to layer [,
can then be written R ,(¢(/,))R ,(6(],)), where R g(a) is
a rotation by the angle a about the f3 axis, in the conven-
tion of active Euler rotations.!> In addition, we include a
transformation to the spin raising and lowering operators
S, (1,t) rather than the Cartesian components Sx,y(l,t).
This is generated by the unitary matrix U,

1 1
vz va °
u=|-—- L o 3)
- v2 V2
0 0 1

Hence the complete transformation between the laborato-
ry frame and the frame associated with a given layer is
T(o(,),¢())=R ,(¢(I )R ,(6())U. We shall refer
to this operator as T'(/,) in what follows. One has the ex-
plicit form, omitting reference to the layer index [,

sing sinf | . 4)

cosf
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Given a vector, such as the spin S(/,¢) with laboratory
components (S,(/,1),S,(1,¢),S,(1,t)), the relation to the
spin components of s(/,?) in the local film plane is

S(L,t)=T(,)s(l,t) . (5)
The vector s(/,¢) has the components
s,
Vvt
- L
s(l,t)= \/ES_(I’” (6)
S,(1,t)

expressed in the layer coordinate system illustrated in
Fig. 1. A similar relation holds between the magnetic
field H(l,¢), and that of h(l,t) reckoned in the layer-
dependent coordinate system.

Let (S(I,))=S2%(/,) be the equilibrium spin direction
in layer /,, and (H(/,)) the static magnetic field which
acts on the spins in layer /,, when all spins are frozen in
the ground-state spin configuration. For the system to be
in equilibrium, we require

(S(1)) X (H(1,))=S2(1,)x {H(,))=0 . 7

We should comment briefly on the regime of validity of
this approximation scheme. When we utilize Eq. (7) to
determine the classical ground state, and analyze the
spin-wave spectra as we do below, we are ignoring the
role of quantum spin fluctuations, a procedure that is ex-
act in the limit S— co. The procedure is used widely in
magnetism, and is known to work well even for modest
values of the spin S. For example, in the exchange cou-
pled ferromagnet, quantum-mechanical fluctuations are
rigorously absent in the ground state, and are present
only if magnetic dipole interactions are incorporated into
the theory. Their influence on the properties of the
three-dimensional ferromagnet was explored in the origi-
nal classic paper by Holstein and Primakoff,'* and found
to be very modest for parameters characteristic of materi-
als of interest here. Spin canting induces quantum fluc-
tuations also, but these are modest in three-dimensional
crystals even for S as small as unity, as one can see from
analyses of the classic two sublattice antiferromagnet.'
The ultrathin films of interest here are in fact quasi-two-
dimensional; this may raise concern about the use of the
classical ground state. We note, however, that classical
spin-wave theory, based on the classical ground state,
provides a fully quantitative account of the quasi-two-
dimensional antiferromagnet K,NiF,, where S=1.
There are, however, substantial corrections from quan-
tum fluctuations, ignored here, when S =1 for quasi-
two-dimensional materials.'®

Of course, the statement {S(/,)) =S%(/,) also requires
we be at sufficiently low temperature for the magnetiza-
tion at each site to be well approximated by its value at
T=0. A full treatment of the effect of finite temperatures
on the spin-wave spectrum in the presence of surfaces is
rather complex, unfortunately, as one can see from an
earlier discussion of this question.!’

We have, from Eq. (2b),
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(H()))=H,+3SAUI)21",)
<
+[hsl(ll)+hx2(ll)COSZB(IL)]COSG(IL)ﬁL, (8)

here 7, is normal to the film surfaces (Fig. 1). From Fig.
1, it is easy to see that ¢(I,) and 6(/,) are given by

(H,(1,))
tang(l, )= Gli—liﬁ (9a)
and
(H (1))
tan@(ll)=ﬁﬁ , (9b)

where (H(I,)) and (H(l,)) are the components of
(H(!l,)) parallel and perpendicular to the film surfaces.

As an explicit example, suppose the external field H,,
is parallel to the film surfaces, and to the [100] direction.
This is the direction of 1i; in Fig. 1. The ground state will
have all spins in the plane defined by the normal to the
film and H,,. Thus all the angles ¢(/,) vanish. Then Eq.
(9b) can be written

(H,(,))

tan@(lL): <Hl(ll)> >

1<I,<N . (10)

From Eqgs. (1b), (1d), and (8), and through exploiting cu-
bic symmetry, we have

(H(U ) =Ho+3 | 2z, 1) —M,d, (1,17 |siné(1])
T
(11a)
and
<D, , ,
(H (I )= — 2z, 1) —=Md |, (1,,17) |cosO(1])
i a0
(8,1, +85,1 Mh, +hy cos?6(1,)]
XCOSQ([l) . (llb)

where z(/,/]) is the number of nearest neighbors of a
site in layer /|, which reside in layer /|. By d 4(/;,1]) we
mean

dop(1,1)=Sdog(1,1) | (12)
I

Sums such as this can be expressed as rapidly converging
series, through techniques discussed some years ago.'?
We had no difficulty finding minimum-energy
configurations {6(/,)} that satisfied the above equations
for a very wide range of film thicknesses, pinning field
magnitudes hs1 and h, , and external field strengths H.,.

Our approach was to use a simple iteration procedure,
that of rotating the spins of a given layer /, into the local
field (H(I,)), until self-consistency was achieved. One
begins with a guess for the various 6(/,), substituting
them into Egs. (11), then using Eq. (10) to generate a new
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set of 6(/,). When we found a canted spin arrangement,
we compared its energy to the case where {6(I,)=m/2},
that of all spins parallel to the film surfaces. We shall dis-
cuss the results of these calculations in Sec. III.

C. Small amplitude spin waves

The equations of motion that describe small amplitude
spin waves, possibly excited from a canted ground state,
can be obtained through further use of the transforma-
tion T'(1)) introduced above.

When a spin is excited, we may write
S(1,t)={S(I,))+AS(l,t) (13a)

for the spin on site /, and for the magnetic field at site /,
we have a similar decomposition:

H(l,t)={(H(I,)) +AH(,¢) . (13b)

Since the transformation effected by I'(/,) is linear, we
have

AS(1,1)=T(1,)-As(l,1) (14a)
with
L s a0
Y A
As(l,t)= —‘/I—ES_(I,t) , (14b)
AS,(1,¢)

where as discussed earlier, the Cartesian components of
the quantities in As(7,¢) are determined in the coordinate
system oriented with z axis aligned along the direction of
the spins in layer /,. Similarly, we have

AH(l,t)=T(l,)-Ah(l,t), (15a)
where
L. un
v
O
Ah(l,t)= \/EH_(I’I) (15b)
0

We substitute these forms into the equations of motion,
Eq. (2a), noting the spins are arranged so the equilibrium
condition in Eq. (7) is satisfied. One then finds, noting
)

(H(1,))—h,(I,)sin?0(1,)

@(ku;’v’l)=[ hy(1,)sin%6(1 )

+

“'Alj_+(k||;ll,ll) _Aﬁ(k”;ll,liJ
AR (k1 1) AR _(kl,,10)

—h,(1,)sin%6(1,)
—(H(I)))+h,(1,)sin?0(1,)
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AS,(1,t) may be set to zero since this is second order in
the spin-wave amplitude,

%AS(Z,t)=(S(Il))XAH(I,t)—(H(IQ)XAS(I,t)

(16a)

or

igat—Si(l,t)=i[<H(ll))Si(l,t)—SHi(l,t)] .
Here (H(I,)) is the magnitude of the field seen by spins
in layer /, in the ground state; this is parallel to the z axis
in the coordinate system aligned with the canted spins.

Combining the various approximations above allows
one to write

(16b)

Hi(l,t)zé—z[ARu,l')-As“(l',t)]i
2

+ L (1)sin?00 (S 4 (L) +S_(1,0)], (A7)

S

where

AR IY=T Y )AL ITU,) , (18a)

S, (1)
As(l,t)=|S_(1,0) |, (18b)
0

and

hy(1)= 1Lk (1) +3h, (1))cos?0(1,)] . (18¢)

We seek solutions of the equations of motion of the
form

ik”~x(1)*iﬂ.(k”)t

S (1,1)=S4(k,1,)e (19)

The frequency Q(k;) of the spin wave is measured in
magnetic-field units. We may substitute Eq. (19) into the
equations of motion, to obtain, in a notation where the
subscripts refer to + and —, the basic eigenvalue equa-
tion

M=

BzifDaB(k”;ll,l’l)SB(k”;I’l)=Sa(k”;ll) . (0
1 1=

[

'
1

The 2X2 matrix ﬂ(k”;ll,li), whose components are
Dopky;1,11), is given by

8

Lol

(21)
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One has
oo L =ik x(LI)
Agﬁ(ku;ll,ll)—EAf,{B(l,I e .
Il
I

(22)

In the above structures, we encounter the dipole sums
6aﬁ‘3ia(1,l’)ﬁﬁ(1,l’) — ik x(L,1)
|x(1,10]?

da/j(kuilull):Voz
T
|

(23)

As remarked earlier, these sums can be converted into
rapidly converging forms, including the most slowly con-
verging sums,'? those for which /,=I|. One can then
evaluate the dipole sums to six-figure accuracy by includ-
ing roughly 100 terms. An exception is some of the cal-
culations of spin-wave spectra reported below where ka,
is very small compared to unity, say in the range of 0.01.
Then as many as 100000 terms are required to maintain
six-digit accuracy. Hence we were able to solve for the
eigenvalues numerically, for films with thickness of up to
100 layers without much effort. We discuss some of the
results in Sec. IV.

III. STUDIES OF THE CLASSICAL GROUND STATE

In this section, we present a summary of our studies of
the classical ground-state spin configuration, for various
film thickness and conditions. We have assumed the fol-
lowing about the film geometry, in the calculations re-
ported here: (i) if the film thickness is four layers or less,
we have taken the film to be of fcc character, with lattice
constant appropriate to bulk Cu, and (ii) for films thicker
than four layers, we use a bcc configuration with lattice
constant equal to that of bulk Fe. The surfaces are (100)
surfaces. The strength of the nearest-neighbor exchange
J is adjusted to reproduce, in the long-wavelength limit,
the spin-wave exchange stiffness of bulk bcc Fe, which we
take to be 2.5X 107° Oecm? The magnetic moment on
each site generates a value for 47M, equal to 18 kG,
again appropriate for bulk bcc Fe. The quartic contribu-
tion to the surface anisotropy [the term proportional to
hsz(ll) in Eq. (1a)] is set to zero for all the calculations re-
ported here.

In the absence of an external field, if hs1 for the mono-

layer is chosen large enough for the magnetization of the
monolayer to be perpendicular to the film (this occurs
when hs1 exceeds 9 kG), then as additional layers are add-

ed, one reaches a critical thickness where the addition of
one layer causes the spins to flop parallel to the surfaces.
This is the case where the critical thickness is a few
monolayers. For all film thicknesses, and no external
field, all spins were either strictly parallel or strictly per-
pendicular to the surface. For a film just below the criti-
cal thickness, addition of one layer “flopped” the spins to
the parallel configuration; the angle between the magneti-
zation and the film normal was 90° in the minimum-
energy configuration, to all significant figures (four) in the
calculation.

In Fig. 2, for ultrathin films with a surface anisotropy
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field of 31 kG in each surface, we summarize the equilib-
rium spin configuration as a function of number of layers,
for the case where an external magnetic field is applied
parallel to the film surfaces. For these films, the ex-
change interactions are sufficiently strong that the spins
in the various layers are very closely parallel. Thus we
show here only the average canting angle. With zero
external magnetic field applied, the critical thickness is
between three and four layers. That is, the three-
monolayer film has all spins strictly normal to the sur-
faces, and the four-monolayer film has spins strictly
parallel to them. Application of a modest magnetic field
parallel to the film surfaces induces substantial canting,
as illustrated. A field of only 6 kG moves the critical
thickness down to the point where in the three-layer film,
all spins are strictly parallel to the surfaces.

We have also explored the nature of the classical
ground state for films of fixed thickness, as the strength
of the easy axis surface anisotropy is increased from zero,
where the ground state has spins parallel to the film sur-
faces. There is a critical value of hs1 for each film thick-

ness, above which canting sets in. As the thickness in-
creases, the critical field increases also.

Ot-———-—————— O-——@————
80 |- A
70
® H=0
2 o O H=2kG
z & H=4kG
w O H=6kG
- 50
o
2
<
«© 40
Z
-
230— o)
<
© o
20 |- a
N
N
10}
° o
o} < TS S L
I 2 3 4

NUMBER OF LAYERS

FIG. 2. The canting angle (measured from the film normal)
in ultrathin films, with a surface (or interface) anisotropy field
h‘l =31 kG acting in each outer surface. We show the canting

angle for various external fields applied parallel to the surfaces.
For all the four-layer films, the canting angle is strictly 90°.
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Before we present our results, we recall the results of
an analytical description of surface anisotropy induced
spin canting, for the semi-infinite ferromagnet.'®* In
present notation,!® for semi-infinite Fe with bulk lattice
constant a, the critical value of hsl is given by

he =4mM,(1+£) (24)

where £=(D /mM,a3)!/%. For bulk Fe, we have £~26,
SO hscl ~486 kG, a value considerably larger than the sur-

face anisotropies reported for various Fe ultrathin films.
It is possible to extend the treatment of Ref. 14 to apply
to a film with N layers, separated by the distance a, /2. If
we assume each outer layer is subjected to easy axis an-
isotropy of the identical strength, and treat the film as a
continous rather than a discrete set of layers, we find Eq.
(24) is replaced by

§tanh% +1

In Fig. 3, for a 100-layer bcc film, we show the canting
angle as a function of layer number, when the film is sub-
jected to easy axis anisotropy (applied equally to both
surfaces) of various strengths. From the numerical work,
we find the critical field to be 452 kG; the expression in
Eq. (25) gives 467 kG, which is quite close. Right at the
critical field, the spins are all arranged parallel to the sur-
faces. Canting is induced near the surfaces when the crit-
ical field is exceeded; the spins twist so that, in the film
center, they are more nearly parallel to the surfaces. If
the surface anisotropy field exceeds the critical field by
only a rather small amount, the canting can be very ap-

g =4mM, . (25)
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FIG. 3. A plot of the canting angle as a function of layer
number, for a 100-layer bce film subject to surface anisotropy of
easy axis character, of various strengths. The anisotropy is ap-
plied equally to both surface layers. The external field is zero.
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preciable in the surfaces. For surface anisotropy fields of
500 kG, just 10% above the critical field, the canting an-
gle in the surfaces is 36°.

In Fig. 4, we plot the critical surface anisotropy field
required to induce spin canting, as a function of film
thickness. It is assumed the anisotropy is applied equally
to both surfaces. The solid line is the prediction of Eq.
(25), which accounts for trends rather nicely, though h;1

is overestimated a bit. The discrepancy is greatest, as ex-
pected, for the thinner films. For five layers, Eq. (25)
gives 62 kG as the critical value of hsl, while the micro-

scopic calculation gives 41 kG, which is substantially
smaller. For one through four layers (these are fcc films
as mentioned earlier), the numerical work gives 9, 14, 23,
and 32 kG, respectively, while Eq. (25) gives, beginning
with N =2, the values 29, 35, and 40 kG. Thus, for the
few-layer films, the microscopic treatment appears to be
required for accurate results.

We next turn our attention to the spin-wave excitations
of the films such as those explored in the present section.

400

300

(kG)

h

200

100

fo) L | L | L 1 L 1 L
(0] 20 40 60 80 100

NUMBER OF LAYERS

FIG. 4. Numerical calculations of the critical surface anisot-
ropy field to induce spin canting, as a function of film thickness
(dots). It is assumed that the anisotropy is applied to both sur-
faces equally. The solid line is a plot of the prediction of Eq.
(25).
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IV. MICROSCOPIC STUDIES OF SPIN WAVES
IN VERY THIN FILMS

In this section, we present a summary of our studies of
spin waves in very thin films, addressing some questions
raised earlier. We saw in Sec. III that in the ultrathin
film with easy axis anisotropy and no external field ap-
plied, the classical ground state is one with spins either
normal to the film surfaces, or parallel to them. Applica-
tion of an external magnetic field parallel to the film sur-
faces induces spin canting, and ultimately pulls the mag-
netization over, until it becomes parallel to these sur-
faces. In a very elegant experiment, Dutcher et al. ex-
plored the variation with external field of the lowest-lying
spin-wave mode, for a three-monolayer Fe film on
Cu(100).® Brillouin scattering was used to measure the
field dependence of the spin-wave frequency of this study.
As the magnetic field approaches the critical value, where
the spins just become parallel to the film surfaces, they
find the frequency of the mode vanishes, to increase
roughly linear with field at higher fields.

In Fig. 5, for our model of a three-layer Fe film, we
show our calculation of the field dependence of the low-
lying mode. The dots are the data points of Ref. 6. The
theoretical curve, calculated for the parameters indicated
in the figure caption, bears a close resemblance to the
theoretical curve in ref. 6, calculated from macroscopic
theory. The authors of Ref. 6 argue that the presence of
the quartic terms in S, (/) in Eq. (1a), in addition to the
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FIG. 5. The magnetic-field dependence of the k;=0, low-
frequency spin-wave mode of our model of a three-monolayer
Fe film. We assume the parameters hxl and hs2 of Eq. (1d) have

the values 30.9 and 1.68 kG, respectively. We chose 47M,=18
kG, and the exchange constant D such that D /a3=1918 kG,
with a;=3.6X10"% cm. The Landé g factor is 1.95, following
Ref. 6. The dots are the data points of Ref. 6.
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quadratic terms proportional to hs[’ are required to ob-

tain both the zero field frequency and the critical field at
which the mode goes “soft.” We agree, and the ratio of
h:2 to hs1 we require is very similar to that used by these
earlier authors.

Some ultrathin ferromagnetic films have anisotropy of
easy plane rather than easy axis character. That is, the
direction normal to the plane is a “hard axis,” and the
magnetization thus lies within the plane of the film. In
such a configuration, application of a magnetic field nor-
mal to the film will drive the lowest spin-wave mode
“soft” at the critical field that tilts the magnetization out
of the plane. We know of no such study of soft spin
waves in ultrathin films of this nature, but in a very in-
teresting experiment, Demokritov and co-workers have
explored this phenomenon in bulk crystals that are
quasi-two-dimensional easy plane ferromagnets.?°

To set the scale for the spin-wave frequencies in Fig. 5,
we recall that the three-layer film has three normal modes
at k;=0; the remaining two are of “optical” character,
with frequencies influenced by interplanar exchange cou-
plings. For our model, these frequencies are 7.68X 10
kG (2.10X 10* GHz) and 23.0X 10° kG (6.28 X 10* GHz),
respectively. They thus lie very far above the low-lying
mode whose frequency is displayed in Fig. 5. This means
that to a very excellent approximation, the three-layer
film is a quasi-two-dimensional system at room tempera-
ture and below, in the sense that the two high-lying
branches have excitation energies so large, they will have
little influence on the thermodynamic properties of the
film. The description we provide here of the field varia-
tion of the canting angle gives us a mean-field description
of a second-order phase transition, and its associated soft
mode. Since, as just remarked, the system is in fact
quasi-two-dimensional, the physics of this transition may
be richer than this picture implies. We hope to look into
this question further.

In Fig. 6, we show the dispersion relation of the lowest
spin-wave branch, as a function of the wave vector k“, for
the three-layer film modeled in Fig. 5. The propagation
direction is parallel to the externally applied magnetic
field. For the range of wave vectors illustrated, the
dispersion relation has a quadratic dependence on wave
vector, with curvature influenced only modestly by the
external field. The anomalous nature of the dip in fre-
quency calculated for the external field of 4 kOe is an ar-
tifact with origin in round-off error, so far as we can tell,
owing to the difficulty in determining, to high accuracy,
the classical ground state near the critical point of phase
transition. While Fig. 6 shows the dispersion for only
one direction of propagation, to very high accuracy we
find the dispersion curves isotropic.

The behavior in Fig. 6 is very different from that real-
ized in films with macroscopic thickness. In bulk fer-
romagnets, with Zeeman, dipolar, and exchange cou-
plings included, the limiting frequency of a spin wave de-
pends on the angle between the wave vector and the mag-
netization, as the wave vector approaches zero. This is
true also for the initial curvature in the dispersion rela-
tion. For the Damon-Eshbach surface spin waves in
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FIG. 6. The dispersion relation of the low-lying spin-wave
branch of the three-layer film, for the case where the propaga-
tion direction is parallel to the external field. The curves are la-
beled with the value of the external field. It is assumed the film
has fcc structure, and we use the parameters employed in Fig. 5.

macroscopic films, similar statements apply. The fre-
quencies we calculate for the low-lying branch are quite
isotropic, as just remarked, even in the domain of fre-
quencies where dipolar and exchange contributions are
comparable. We presume the origin of this behavior is
that for such thin films, the effective dipolar fields gen-
erated by the spin motion are quite uniform over the film.
We now turn to an issue raised in Sec. I, which is the
evolution in the character of the surface spin waves with
decreasing wave vector, as one makes the transition from
the exchange-dominated regime, at large wave vector, to
the case of small wave vectors where the excitation ener-
gy is dominated by the Zeeman and dipolar contribu-
tions. For this purpose, we shall study spin waves in a
model film with 100 layers and a bce structure. We have
artifically reduced the strength of the exchange by a fac-
tor of 20, causing the exchange modes to drop in frequen-
cy; this allows us to explore the interaction between the
surface waves and standing spin waves. Surface anisotro-
py will be set to zero, so all spins lie in the plane parallel
to the surfaces. An external field of 1 kG is applied
parallel to the [100] direction, that of fi, in Fig. 1. We
shall confine our attention to propagation for which k, is
perpendicular to the magnetization, that of fi, in Fig. 1.
In Fig. 7, for wave vectors k“=k"ﬁ2, which range in
magnitude from zero to the surface Brillouin-zone bound-
ary value of 7/a, we show the dispersion relations of the
six lowest-lying spin-wave modes of the film. The scale in
the figure is such that at all wave vectors shown, save the
regime very close to k;=0 where detail is not resolved,
the exchange energy is the dominant contribution to the

Ko/ 2

FIG. 7. The first six lowest-lying spin-wave branches for a
100-layer bec film, with no surface anisotropy. We have de-
creased the strength of the exchange from that relevant to Fe
films by a factor of 20. The lowest-lying curve describes the two
nearly degenerate exchange-dominated surface spin waves, and
we then show the four lowest-lying standing spin-wave reso-
nances of the film. An external field of 1 kG is applied parallel
to the [100] direction.
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FIG. 8. The lowest six spin-wave branches for the film ex-
plored in Fig. 7, for wave vectors near the center of the surface
Brillouin zone.
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excitation energy. The lowest-lying branch describes the
exchange-dominated surface waves; there is one mode lo-
calized on each surface, so this is a twofold degenerate
branch. Strictly speaking, one should speak of an even
and odd parity branch, but for the range of wave vectors
emphasized in the figure, the overlap between eigenfunc-
tions localized on the two surfaces is very small. We
have the four lowest-lying bulk waves illustrated in the
figure also. These dispersion relations agree well with an-
alytic expressions derived for a model which ignores the
influence of dipolar couplings.

Before we turn to an examination of the behavior of
the waves for small k|, we recall the description provided
by the macroscopic theory of long-wavelength spin
waves, within which the role of exchange is ignored. In
the bulk, for any wave vector that lies in the plane per-
pendicular to the magnetization, the spin-wave frequency
is independent of wave vector and, in magnetic-field
units, equals [H . (H,, +47M)]'/%. For a film of thick-
ness d, for each choice of ku’ we have a single surface spin
wave (not two as in Fig. 7), whose frequency Q (k) is®

0.10

~

T T T T T T
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(26)

Q (k)= [(H +27M; )2_4772M32e72klld]1/2 .

S
This wave is often referred to as the Damon-Eshbach
wave. In the thick film limit k“d >>1, we thus have
Q. (k) )=H,,+27M_; here the eigenvector of the surface
wave is localized near one of the two film surfaces. As
k,—0, the frequency (k) drops to the long-
wavelength bulk spin-wave frequency
[H, (H, +47M,)]'/?. For all values of k;, the surface
wave frequency Q,(k;) lies above the long-wavelength
bulk frequency.

It is interesting to inquire, as remarked in Sec. I, how
the transition between these two regimes occurs.

In Fig. 8, we show the behavior of the lowest six
branches of the film explored in Fig. 7 for wave vectors
near the center of the surface Brillouin zone. At the
smallest wave vectors, we see the trajectory of a mode
that follows Eq. (26), beginning at k=0 at the frequency
[H(H,. +47M,)]'/?, and initially rising linearly with
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k. There are repeated hybridizations with modes whose
dispersion curves it crosses. This branch begins to flatten
out as if it were to approach the asymptotic frequency
H,, +27M; (see the third branch from the bottom, near
k,ay/2~0.020), but its frequency is lifted upward past
the asymptote by the influence of exchange. At the larg-
est wave vector in the figure, one can see that the two
lowest-frequency branches are beginning to converge, to
form the pair of surface spin-wave modes displayed in
Fig. 7. In essence, as the wave vector increases, the
Damon-Eshbach wave of magnetostatic spin-wave theory
disappears into the forest of standing spin-wave modes,
while the bottom two normal modes slowly evolve into
the exchange-dominated surface waves, with increasing
wave vector.

It is interesting to examine the variation with wave
vector of the eigenvectors associated with the various
spin-wave modes just discussed. The eigenvectors are
displayed in Fig. (9)—(11) and the direction of propaga-
tion is k; =k 0,, equivalently expressed in terms of phase
factors as ¢, =0 and ¢,=ka, /2.

In Fig. 9(a), we show the eigenvector at ¢, =¢,=0.
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The lowest mode is the “uniform mode,” with frequency
(H. (H, +47M,)]'?. As k;—0, the Damon-Eshbach
surface mode in fact degenerates into the ‘‘uniform
mode” of ferromagnetic resonance theory.?! The next
few modes then have the appearance of standing spin-
wave modes, in which the “zero slope” boundary condi-
tion appropriate to the absence of pinning is utilized.

The “uniform mode,” which we recognize as the long-
wavelength limit of the Damon-Eshbach wave, has a
dispersion relation that is initially linear in wave vector,
as suggested in Eq. (26). By the time ¢,=0.002 (with
¢,=0), the lowest branch has crossed the next highest
branch, as indicated by the eigenvectors illustrated in
Fig. 9(b). In Fig. 10(a), the ‘“uniform mode” is now
higher in frequency than the two lowest standing-wave
resonances. The quotes have been added to the phrase
‘“uniform mode,” because we see some modulation in the
profile of the spin-wave eigenvector. With increasing
wave vector, this character becomes more pronounced, as
we see from the eigenvector with ¢,=0.020. The
Damon-Eshbach wave has eigenvector influenced impor-
tantly by its mixing with bulk spin waves.
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FIG. 10. The same as Fig. 9, except we have eigenvectors for (a) ¢, =0.000, ¢,=0.006 and (b) ¢, =0.000, ¢, =0.020.
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FIG. 11. The same as Fig. 9, except we have eigenvectors for (a) ¢, =0.000, ¢,=0.032 and (b) ¢,=0.000, ¢,=0.300.

For ¢,=0.032, the low-lying modes all have the char-
acter of standing wave resonances; the Damon-Eshbach
wave has dissolved into the sea of standing wave reso-
nances. It should be noted that in this regime of wave
vector, where both dipole and exchange influence the ex-
citation energy importantly, the modes are not described
by eigenvectors with well-defined parity. This is a conse-
quence of the dipole-dipole interactions.

With further increase in wave vector, the two modes of
lowest frequency evolve into the surface spin waves of the
pure exchange model. We illustrate this in Fig. 11(b). In
the pure exchange problem, we should have even and odd
parity modes. Examinations of the two highest-
frequency modes shows that there remain appreciable
quantitative departures from even or odd parity charac-
ter; this far into the zone, the dipolar interactions still as-
sert themselves. The two lowest modes, the surface
waves, show dramatic asymmetries. This could be nu-
merical error. The modes lie very close in frequency, and

in such a case the diagonalization routine may provide a

linear combination of the correct eigenvectors for each
frequency, believing the modes to be degenerate. The
effect may be real; the frequency splitting between the
two modes is small, and the eigenvectors of the pure ex-
change problem may readily be mixed by the residual di-
polar interactions, to generate the asymmetric forms
shown in Fig. 11(b). We found it difficult to discriminate
between these two possibilities in a reliable manner.

It should not prove difficult to use eigenvectors and ei-
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