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Spiral phase in a doped antiferromagnet
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The coherent motion of a hole in an antiferromagnetic described by the t-J model is discussed as-

suming that the spins show a spiral correlation function. The results are obtained from an ansatz
for the wave function and no kind of mean-field approximation has to be made. When the resulting
band is filled up for a low concentration of holes the total energy of the system can be estimated and
it is found that for any finite concentration of holes a state with spiral spin configuration is energeti-
cally favorable compared to a state with Neel order.

I. INTRODUCTION

The problem of describing the motion of a hole in an
antiferromagnetic has received considerable attention
during the last years. ' This is because one can hope to
gain some insight into the nature of the carriers responsi-
ble for high-temperature superconductivity. One model
Hamiltonian which is frequently studied in this context is
the t-J Hamiltonian:

(i j ),o

Here the S, are the electronic spin operators, ni is the to-
tal electron number operator at site i, and the sum over
(i,j ) stands for a summation over all pairs of nearest
neighbors on a two-dimensional square lattice. The
operators c; can be expressed in terms of ordinary fer-
mion operators as c, (l —n, ).

One of the questions which has been raised is that of
the modification of the spin correlation function due to a
low concentration of holes. There is by now general
agreement that the ground state of the two-dimensional
Heisenberg antiferromagnetic (HAF) has long-range anti-
ferromagnetic order. ' ' " From the Mermin-Wagner
theorem, however, one can conclude that in any finite
range of energies above the ground state there must be a
number of excited states of the order of the system size
that do not have any long-range antiferromagnetic order.
It might very well be the case that due to the introduc-
tion of mobile holes some of the these excited states are
lowered in energy to the extent that the ground state with
holes may have qualitatively different spin correlations
than the ground state of the HAF.

If one assumes that the antiferromagnetic order in the
spin system is kept fixed one can provide a simple physi-
cal picture for the coherent motion of the hole. A hole
created at some site j in an antiferromagnetically ordered
spin system will experience an effective potential due to
the formation of "strings. " ' This effective potential in-
creases roughly linear with the number of hops the hole
has taken away from the place where it was created and
the (localized) ground state IC&, ) can be determined by

II. ENERGY OF THE UNDOPED SYSTEM

We begin by defining the following two basis states at
site n:

—iq R /2

i &lR /2
e
—iq R„/2

e1
Ix &,— q.R„z2v 2

These two states form a complete set of orthonormal
states at site n. Then one obtains by straightforward
algebra

cos(q R„)
& x. I S.Iy. &

=—sin(q. R„)1

0

(4)

solving a one-dimensional Schrodinger equation. The t-J
Hamiltonian however, allows for a number of processes
by which the hole can "escape" from the string potential.
The most important one is the truncation of the strings
by the spin-Aip part of the Heisenberg exchange. Other
possibilities are hole hopping along a spiral path such
that the hole itself can absorb the spin defects it has
created ' or absorb a ground-state spin Auctuation of
the HAF while "emitting" another one at the same time.
All these processes give rise to nonvanishing matrix ele-
ments of the t-J Hamiltonian between localized states
I4, ), I4~ ) centered on neighboring sites j,j leading to
an "effective" tight-binding model. '"' It turns out that
the energies and wave functions obtained in this way can
reproduce many details of results from exact diagonaliza-
tions of small clusters' ' and other numerical
methods ' with remarkable accuracy.

This picture of hole motion can be transferred easily to
a state with a different spin correlation function provided
there is still something like a "string potential. " This cer-
tainly the case when there is a "spiral" spin correlation as
long as the wavelength of the spiral is much larger than
the lattice constant and it is the purpose of this work to
study this case.
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0
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(y„ iS„ ig„& =— i cos(q.R„)1

1

To define a state with a "spiral" spin correlation function
one first has to divide the lattice into two sublattices,
denoted by A and B. Then one can define

nEA mGB

Using Eqs. (4) and (5) one can show that

(4 iS S„i@&&= ' cos[q (R —R„)] .

where X is the number of sites in the system. If the wave
vector of the spiral q is parametrized as follows:

q cos(8)

, q sin(0) (10)

in the limit q~o one obtains the following expansion for
the energy for a state with a correlation function of the
type (8):

J 1
Eo(q) =ED(q=0)+N ——

q

which result is independent of the angle 0. The
coefticient of the term proportional to q is known as the
spin stiffness constant and the value obtained above is
just the classical one. There have been various calcula-
tions of quantum corrections ' and in general a reduc-
tion to something like 70%%uo of the classical value is ob-
tained. Since the precise value of the spin stiffness con-
stant is not particularly important in the arguments to be
presented below one can also continue with the classical
value.

III. INFLUENCE OF HOLES

Let us consider a single hole created in the state i@~&
at some site i. It is well known, that a hole created in the
Neel state experiences an effective potential due to the

Here o. „ is equal to 1 if the sites rn, n belong to the same
sublattice and ( —1) otherwise. One can see that the state

i4z & has indeed a "spiral" spin correlation function and
as q~0 it reduces to the Neel state polarized in the x
direction. In the thermodynamic limit any two states of
the type (7) with different q are orthogonal. En the fol-
lowing it will be assumed that q is nonzero but small, so
that an expansion of the energy up to iqi gives meaning-
ful results. The expectation value of the Heisenberg
Hamiltonian HH is then found to be

(+~iHH iC&~& = —N—(cos(q )+cos(q~)),J
q H q

Let us denote a state generated by taking out the spin at
site j and moving the hole v times in "forward direction"
by j,v, P &. The symbol P denotes a set of numbers
which is some way parametrize the geometry of the path
the hole has taken. Then one can make the following an-
satz for the localized state centered on the site j:

(13)

The inner sum in this expression runs over all different
paths of length v and the coefficients a are to be deter-
mined from the requirement of minimum total energy. If
for the moment the energy of the spiral state with one
hole is chosen as the zero of energy one obtains the fol-
lowing set of equations:

zta& =Es—(q)ao,
—t [(z —1)a +&+a &]=[Ea(q)—V ]a

Here z denotes the number of nearest neighbors (i.e.,
z=4) and Ez(q) is the "binding energy" of the localized
state i@~ &. The "potential" V, is defined by

V.=,g &j,v, P~ajj, v, P& .
1

z(z —1)" '
p

(15)

In the Neel state these equations are just the ones derived
previously by Shraiman and Siggia. Let us now calcu-
late the quantity V . Obviously in the first hop away
from the site j the hole will break three "almost antipar-
allel aligned" bonds. The corresponding change in the
expectation value of the Heisenberg part is given by

J—(2 cosq +cosq ) . (16)

Here it is assumed that the hole has been moved in the x
direction. In the same process three "almost frustrated"
bonds are generated resulting in an additional change in
energy of

formation of "strings. "' ' If the spiral wave vector q is
sufficiently small, one would suspect that an analogous
theory can be set up for a hole hopping in the state iN
Since the hopping hole will break bonds which are "a lit-
tle bit frustrated" and creates additional bonds which are
only "almost frustrated" it is immediately obvious that
the "string potential" will become flatter and the binding
energy of the localized states will be more negative.
Whereas the formation of a spiral state per se requires a
higher energy than the ground state of the HAF, the in-
troduction of holes lowers the energy again. If the con-
centration of holes is su%ciently high this may render the
spiral state energetically favorable. To make this more
quantitative, the first task is to calculate the dependence
of the binding energy of the localized states on the spiral
wave vector q.

If one spin is removed from the lattice this results in
the breaking of four bonds. The corresponding change in
the expectation value of the Heisenberg part is

b,EO(q)=2 —(cosq +cosq ) .
J
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J
4
—[cos2q, +cos(q„+q ) +cos(q„—q ) ] .

After averaging over the four possible paths of length
one, it is found that

bors which can be expressed in terms of the expansion
coeKcients o: . ' ' Let us try to set up an analogous
theory for a state with a "spiral" spin correlation func-
tion. One can make the following ansatz for a Bloch-type
wave function:

J
V, =—[—', (cosq +cosq ] l~(k)& =

&N
(23)

+ —,'[cos2q„+cos2q )+cos(q„+q~)

+cos(q, —
q ) ] .

In an analogous way one obtains

J
Vz = V, +—[cosq„+cosq +cos(q +q )

4

+cos(q, —
q~ )]

(18)

(19)

The dispersion relation for coherent motion can be ob-
tained from the following ansatz:

(e(k) IH, , I+(k) &

To evaluate this expression one needs to know the quanti-
ties

and similar expressions for the other Vs. Once the ex-
pansion coefficients a are known for the Neel state [e.g. ,
from a numerical solution of Eqs. (14)] the shift in
ground-state energy for small but finite vectors q can be
found by perturbation theory:

Es(q) =Es(q=O)+z g (z —1) 'a [ V (q)
v=1

—V, (q=O)] .

n, =(e, +~@,),
I,=(e,+,~a, ,~c, ),

(25)

(26)

which are actually independent of the site j. Let us first
concentrate on the overlap integrals n&. One can assume
that the states ~@ ) are normalized i.e., ns o= l. Mak-
ing use of the expansion (13) one realizes that for 5%0
one needs the scalar products of individual "string states"
with a different starting point:

(20) (j ', v', P'j~, v, P) . (27)

Using the parametrization (10) of q one finds

0 AE

Bq q=0

c) V„(q)——z g (z —1) 'tz
Bq

(21)

The quantity e which is defined by the above equations
can be evaluated numerically once the derivatives of the
potential V are known. From Eqs. (18) and (19) one ob-
tains

Strictly speaking for q&0 the only condition for such a
scalar product to be different from zero is that the hole
must sit on the same site in both states. However, the
value will be proportional to rather high powers of q un-
less certain requirements are fulfilled. Let us assume that
v') v. Then the largest contribution to the overlap in-
tegral will come from those paths where the "string" in

j~', v', P') goes from j ' to j on the shortest way possible
and then follows the string in j, v, P). For quantitative
calculations one needs the following scalar products:

t) V„(q) = ——[ —", +3(v—1)] .
Bq2 4

(22)

Again this result is independent of the angle 0. It should
be noted that whereas the expression (21) for the second
derivative of the binding energy with respect to q is only
an approximation, the fact that the first derivative van-
ishes follows rigorously from the Hellman-Feynman
theorem.

IV. HOLE MOTION
X

1

o ~

Having thus constructed localized states one can
proceed to evaluate the dispersion relation for coherent
motion of the hole. In a state with antiferromagnetic or-
der of the spins the hole can propagate because the trans-
verse part of the Heisenberg exchange can truncate the
"strings" thus shifting their "starting point" to a second
or third nearest neighbor. ' Thus there will be nonvan-
ishing matrix elements of the t-J Hamiltonian between lo-
calized states centered on second or third nearest neigh-

FIG. 1. States which contribute to the overlap (4&, +„-~&&, )
and the matrix element ( 4&, +-, ~HH ~@~ ). Here a cross denotes a
displaced spin, a small circle denotes an undisplaced spin, and
the big circle denotes the hole. The states shown in (a) and (d)
are included in ~@,. +-„), the states shown in (b) and (c) are in-

cluded in ~N, ).
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i—sin(q /2),
&= —i sin(q, /2) .

(28)
mutation relations as can be easily checked by writing
down explicit expressions for the states jI, v, P &. Adding
the contributions from the longer paths one obtains

Now let us evaluate the overlap &N,. + I4&, &. From the
scalar product of the states shown in Figs. 1(a) and 1(b)
and 1(c) and 1(d), respectively, one gets a contribution of

&c, , le, &

=~&i,o)

5& 4&. +„I+I& =2i sin(q, /2)a0a, . (29)
=2i sin(q /2) g (z —1) a a +~ .

v=O

The additional factor of ( —1) arises from fermion com- In an entirely analogous fashion one obtains

&&b. +2 l@J &
= —2sin (q /2) g (z —1) a a +2,

v=O

&4.+ + IN, &= —4sin(q„/2)sin(q~/2) g (z —1) a,a +~ .
v=O

(31)

E(j,v, P)= &j,v, PIH, ,jl, v, P&,

P, .p=jl, v, P&&j,v, PI .
(32)

Also let us decompose the Heisenberg part HH of H, J
in two parts:

~diag+ ~res
H H H

One can see that these latter overlap integrals are propor-
tional to q as q —+0. Obviously the overlap integrals be-
tween localized states centered on more distant sites will
be of even higher order in sin(q ), sin(q~). In addition
their expansions in terms of the a's will begin with even
higher indices so due to the rapid decay of this function
they wi11 be small, too. In the following quantities which
are O(q ) as q~0 will be referred to as "higher-order
terms" and they will be ignored throughout the
remainder of the calculation of the dispersion relation.

Let us now turn to the evaluation of matrix elements of
the Hami1tonian. To that end it is advantageous to intro-
duce a few definitions:

Then it is easy to see that up to higher-order terms

&e, +sl(H, +H„"")le,&

a g I
—t I'(z —1)a,+, +a, , j

+E(j,v, P)a I

x &j ', v', P'jI, v, P& . (34)

& e„,l(H, +H„"'s)le,. &

=IEQ(q)+bE0(q)+E~(q)]&~, +sl~, & . (35)

If higher-order terms are neglected the scalar product on
the right-hand side of the above equation will actually de-
pend only on j,j '. Then one can make use of Eqs. (14) to
obtain

(33)
Neglecting higher-order terms one can also show that

&j', v', P'IHII"jI, v, P&= & (&j', v', P'ls. S Ij,v, P&
(m, n)

—&j', v', O'jI, v, P&&j,v, PIS„S jI,v, P&) . (36)

Obviously in this sum only those bonds (m, n) where at least one of the two spins points in different directions in the
states Ij ', v', P'&, Ij, v, P& give a nonvanishing contribution. This is noting but some kind of "linked cluster theorem" in
the framework of the present formalism. One can introduce the following abbreviation:

&j ', v', P'IS„S
I j,v, P&, = &j ', v', P'IS„S Ij,v, P&

—&j', v', P'Ij, v, P&&j,v, PIS„S Ij, v, P& . (37)

Then from the states shown in Figs. 1(a) and 1(b) and 1(c) and (ld), respectively, one obtains the following contribution:
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n&e,. + Is, s, le, &, = ——aaa, l&f, Islx, & &x, lslx; „-& &x;Ix;+ &cos(q„)]

.J= —i —n a sin
4 0 j.

3qx q„
2

+sin cos(q )
2

(38)

The total contribution of the bond (i, i —x ) is then found to be

J . 3qx(4.+ IS, .S;IC& ), = —i —sin
q+sin cos(q„) g (z —1) a a +, .
2 0

(39)

There is a number of other bonds which contribute to (4&.+ IHH"I@ ). Ad. ding up all their contributions one obtains
the total matrix element

. J=h = —i —2 sin(&,0) 4
3qx qx ~ qy qx

2
+4sin cos(q )+sin(q„)cos +sin cos(q„)

2 ~ " 2 2

qx q„—sin cos
2 2

q q—2 sin cos
2 2

(z —1)"a a,+,
v=O

.J—i —2 sin
4

3qx . qx q q

2
+sin cos(q„)—sin

2 2 2
(z —1)' 'a,a +, .

v= 1

(40)

In an analogous fashion one obtains other matrix elements of HH'.

(4.+z IHH" N ) =2—cos(q )+cos
2

(z —1)'a a,+z+O(q ),
v=O

(41)

&ef „- -IH"" 4 ) =4—cos
J qx +qy qy+cos cos (z —1) a a +2+0(q ) .

v=0

Combining the above results one finds that the expression
for the energy (24) can be rewritten as

ever by analogy with the above calculations one can see
that their expansion in terms of the cx's will begin with
(xo(x3 so due to the rapid decay of the function u they
will be rather small and will be neglected.

E(k) =ED(q)+AE0(q)+E~(q)+ ik R~
n&e V. TOTAL ENERGY

—(2lhI, D~lsink +2lh(o, i)l»nk, ) . (43)

Strictly speaking there are also matrix elements of HH be-
tween sites like (0,0) and (0,3) which are of order q. How-

(42)
Here the sums in the numerator and denominator run
over all nonvanishing difference vectors 5 and the h& are
the matrix elements of H~'. Since the matrix elements of
H~' between second and third nearest neighbors are real,
the sums of phase factors which are multiplied by them
give just the usual tight binding harmonics. The matrix
elements of H~' and overlap integrals between nearest
neighbors however are imaginary and therefore the k
dependence of the corresponding terms in the numerator
and denominator is unusual. For example, the matrix
elements of HH' between nearest neighbors give a contri-
bution to the denominator which is given by

It is easy to see that in the case q=0 the dispersion re-
lation obtained from (42) is completely flat on the surface
of the magnetic Brillouin zone. There is by now general
agreement that for the motion in a Neel ordered spin
background this degeneracy is unphysical. ' ' ' ' ' '
Rather there is an absolute minimum of the dispersion re-
lation at the four points k=(+m /2, +~/2). Let us there-
fore accept that for q=0 the absolute minimum of the
band is at the four k points (+m/2, +sr/2) and investi-
gate the consequences of switching on a small q. As can
be seen from Eqs. (41) the matrix elements between
second and third nearest neighbors will change only to
second order in q. However the matrix elements and the
overlap integral between nearest neighbors are linear in q.
Therefore the change in the energy of the four k points
mentioned above will be linear in q. As can be seen from
(43) any nonvanishing value of h~& 0~, h~0 &~

will destroy
the symmetry between the four k points (+sr/2, +m. /2).
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In the following the cases 0=m/4 ["(l,l) spiral"] and
8=0 ["(1,0) spiral"] will be discussed. In the first case
the minimum at (m /2, m'/2) will be lowered while the one
at (

—~/2, ~/2) will be raised in energy. The two other
minima at (m/2, —~/2), ( m—/2, vr/2) will be unaffected
to linear order in q. Let us define

(Tc,Tc }

2' 2 2'2

Bln(i p) l

Bq

q =0, 0=m/4

(44)

All the matrix elements in this equation are to be evalu-
ated at q=O.

In the second case the two minima at (m/2, m. /2),
(m/2, —

m /2) will be lowered while the other two minima
at ( vr/2, ~—/2), ( vr/2, —m—./2) will be raised in energy.
Again we define

(-Tc,-Tc }

FIG. 3. Contour map showing the energy dispersion in the
whole Brillouin zone for hole motion in a {1,1) spiral state. The
modulus of the wave vector q is 0.1 and all contributions of or-
der q to the overlap integrals and matrix elements of the Ham-
iltonian have been discarded. The value of t/J= 3.

= a
91,0

77 '7T 7T 7TE ————E2'2 2'2
q =0,0=0

Blh(i p)l Bl n( ip)l=4 ' —2h
Bq

(1,1) (45)

So far we have only considered one single hole. Let us as-
sume that for a low concentration of holes the ground
state is given by filling up the band calculated above.
One can give arguments' that this is a reasonable as-
sumption provided that there is no clustering of holes
(phase separation) and no real-space pairing of holes
into pairs. A clustering of holes would probably be
prevented by the Coulomb repulsion between the holes
which is not included in the t-J model. In addition the
numerical work by Trugman has shown that a compos-
ite object of two holes has a very large effective mass and
therefore is energetically unfavorable. So the assumption
that the quasiparticle band is simply filled up for low con-
centration is at least not completely unreasonable.

Then for q=O one has four pockets around the four

v'2
gq, 0&q

2

3~v n
gq+

362v'2 v)q + 8p'

v'2 n( 16'
v'2 5 v'2 5

16' 4' p

&z~
&q &~,4'

absolute minima. This can be seen in Fig. 2 where a con-
tour map of the energy dispersion is shown as calculated
with the "effective" matrix elements given in the Appen-
dix. As a nonzero q is switched on some of the pockets
will be depopulated while others are filled up. For exam-
ple, in Fig. 3 a contour map is shown for the dispersion
relation of one hole in a (1,1) spiral background and in
Fig. 4 for one hole in a (1,0) spiral background. Depend-
ing on the degree of redistribution of "quasiparticles" the
gain in energy will have a different dependence on the
wave vector q. After some algebra one obtains the ener-

gy gain per hole for the case of the (1,1) spiral:

(Tc,Tc } (Tc,x)

(-Tc,-Tc)

FIG. 2. Contour map showing the energy dispersion in the
whole Brillouin zone for hole motion in a Neel ordered spin
background. The dispersion relation has been calculated using
the "effective" matrix elements given in the Appendix evaluated
for t /J= 3.

(-Tc,-Tc)

FIG. 4. Contour map showing the energy dispersion in the
whole Brillouin zone for hole motion in a {1,0) spiral state. The
modulus of the wave vector q is 0.1 and all contributions of or-
der q to the overlap integrals and matrix elements of the Ham-
iltonian have been discarded. Again t/J= 3.



10 712 ROBERT EDER 43

where p is the (constant) density of states per site near the minima which can be evaluated from the dispersion relation
for q= 0 (Appendix A) and the quantity rl is given by

5 g (z — ) a„a +i+3 g (z —1)" 'a a +, —8 g (z —1) a,a +z
v=O v=1 v=O

(z —1) a,a,+,
v=O

(47)

E„,=N[aq +5(bq+c)] . (49)

The coefficients b, c depend on the direction of the wave
vector q, on the ratio t/1, and on the concentration of
holes, and can be read off from Eqs. (46) and (48). The
coefficient a is independent of the direction of q and is
given by

In an analogous way one obtains the energy gain per hole
for the case of the (1,0) spiral:

6—gq, O&q & 8'AE= '
(48)—2qq+, &q & co .

8p
' 8'

Equations (46) and (48) are the key results of this paper
because they show that for any finite concentration of
holes the derivative of the total energy with respect to q
is negative, i.e., for any finite concentration of holes the
Neel order in the antiferromagnet is unstable against the
formation of a "spiral phase. " In order to evaluate the q
value that would give the minimum energy from a power
series expansion in q strictly speaking one would need the
terms of order q in the matrix elements h& of the Hamil-
tonian which are very tedious to evaluate. However it
seems quite reasonable to neglect them because of the
smallness of the bandwidth due to the coherent motion as
compared to the binding energy Eii(q) of the localized
states. For example, for q=O and t/J=5 this binding
energy Ez is 13.6J whereas the bandwidth due to the
coherent motion is only 2J. ' Therefore the contribution
of the binding energy Ea(q) to the second-order terms in

q is likely to be much more important.
Combining all the above results one can write down

the following expression for the total energy of the sys-
tem with a finite concentration of holes 5:

m, n

(51)

when t & J, which is an unphysical range of parameters
anyway.

In Fig. 5 the value of q as determined by minimizing
the expression (49) is shown as a function of the concen-
tration of holes 5 for different values of the ratio t/J.
One can see that for a larger concentration of holes the q
values are rather large so that an expansion up to second
order in q is not a good approximation any more. Obvi-
ously a more detailed calculation is required in this range
of doping. On the other hand it seems doubtful whether
the simple "string" picture still has much relevance for
hole concentrations as large as 0.1

One can also ask for a minimum concentration re-
quired to induce spiral spin correlations. Obviously in
two dimensions the modulus of the minimum wave vector
compatible with periodic boundary conditions is of order
I/i/N where N is the number of sites in the lattice. Then
one can see from (49) that the minimum concentration
which is necessary to induce a spiral with such a wave
vector is proportional to I/i/N. Thus in the thermo-
dynamic limit this minimum concentration tends to zero.
It should be noted however that one single hole is never
sufficient to induce spiral spin correlations so there is no
orthogonality catastrophe due to the formation of a spiral
in the t-J model.

Finally one might ask how the present results compare
with exact diagonalizations of finite clusters. One basic
problem is here that for a finite system states of the type
(7) with different q are not orthogonal any more. Thus
the ground state of a finite system might be a linear com-
bination of spirals with a different q. When the ground-
state spin correlation function

J J ea= ——5 —+—
8 4 2

(50)

0.8
where e is defined by (21). Within the framework of the
present approximations this equation determines the
phase diagram of the doped antiferromagnet. All the
quantities required for the evaluation of the coefficients
a, b, c can be obtained from the solution of Eqs. (14) for
q=0. By numerical evaluation it is found that for any
value of the ratio t /J between 1 and 10 and for any con-
centration of holes 5 between 0 and 0.1 the (l, l) spiral is
energetically favored in agreement with the previous
mean-field results. ' This is basically due to the large
density of states which makes sure that even for small
values of q all the holes sit in the one pocket around
(+m/2, +n. /2). It should be noted that the present ap-
proach may not be expected to give meaningful results

0.6

0.2

0.0 I

0.02 0.04 0.06 0.08 0.10

FIG. 5. The modulus of the spiral wave vector q in units of m

as a function of the hole concentration 5 for t/J=2 (full line)
and t /J=3 (dashed line). The vector q points in (1,1) direction.
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is examined for a finite system, it is found ' that
whereas for the undoped case there is a sharp maximum
at q=(vr, ~), in the doped case the values for q vectors in
the neighborhood of this point are of comparable magni-
tude. Thus the finite-size data are at least not completely
inconsistent with the results of this paper.

Igarashi, P. Horsch, G. Martinez W. Stephan, and M.
Ziegler. This work was supported by the Bundesmin-
isterium fiir Forschung und Technologie under Contract
No. 03FU2MPG6.

APPENDIX

VI. CONCLUSION

From the discussion of the coherent motion of a hole
in a spin state with a spiral spin correlation function one
can conclude that the change in ground-state energy as
compared to the case of hole motion in a Neel state is
linear in the wave vector of the spiral. Then if one makes
the (reasonably justified) assumption that the "quasiparti-
cle band" obtained in this way is simply filled up for low
hole concentrations one finds that the Neel order of the
spin system alone is always unstable.

One advantage of the approach outlined above is that
it gives a rather simple picture of the hole motion which
has given quite good results as compared to finite-size di-
agonalizations in the limit q=o. Also it provides the
wave functions for the "quasiparticle states" which can
be used to evaluate, e.g. , correlation functions. It should
be noted that the wave function (23) should have rather
unusual physical properties. For example, the "spin of
the hole" seems to be constantly rotating as the hole is
moving through the lattice. Of course one cannot con-
clude that there is indeed a spiral spin correlation of the
type (8) in a doped antiferromagnet because one also
should investigate other ways of changing the "spin back-
ground. " However, the method outlined above is in prin-
ciple always applicable as long as there is something like
a "string potential. " As has been shown above this
method always leads to a considerable reduction of the
degrees of freedom which have to be taken into account
and it is applicable whenever one can write down a wave
function for the "spin background. "
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t~& &)
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—2ta2a3
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The terms proportional to J describe the propagation by
"string truncation" whereas the other terms describe the
propagation along the spiral paths where the hole can ab-
sorb its own string. ' ' Then the two eigenvalues of the
effective mass tensor at the band minimum (~/2, m/2)
are given by
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The two corresponding eigenvectors are (1,1) and (1,—1),
respectively, i.e., perpendicular and parallel to the surface
of the so-called magnetic Brillouin zone. One can see
that the effective mass in the direction parallel to the sur-
face of the magnetic Brillouin zone is determined entirely
by the tunneling processes along the spiral paths. The
density of states per site is then
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