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I present a simple numerical technique for evaluating the low-temperature expansion for discrete
statistical systems. I begin with a recursive procedure on finite lattices to count the states of a given

energy. Comparing these numbers on different lattice sizes, I extract coefficients for the infinite-
volume series. I test the method with the three-dimensional Ising model, obtaining the expansion of
the average energy through terms involving 34 excited bonds.

Some time ago Binder' presented a recursive procedure
for finding exact solutions to the three-dimensional Ising
model on a finite lattice. Recently Bhanot and Bhanot
and Sastry have further investigated these methods and
studied the analytic structure of the partition function in
the context of finite-size scaling.

In this paper, I will adapt these recursive methods to
extract the initial terms in the infinite-volume low-
temperature expansion for the model. Here I obtain all
terms involving 34 or less excited bonds. This series is
slightly longer than previously presented, but remains
somewhat shorter than the more usual high-temperature
expansions. Nevertheless, the method pursued here is
somewhat difI'erent and perhaps interesting in its own
right.

The amount of work to evaluate either high- or low-
temperature series grows exponentially with the order.
For this reason, it is useful to mechanize as much of the
calculation as possible. With the method presented here,
no explicit reference to diagrams is needed, and the com-
puter directly gives the desired coefIicients. As with oth-
er methods, however, the work still grows rapidly with
order, and it appears to require an unreasonable amount
of computer time to extend the expansion beyond the or-
ders presented here.

I will center my discussion on the three-dimensional Is-
ing model, although the technique is also directly applic-
able to low-temperature expansions for any discrete sta-
tistical model. While I discuss the procedure in terms of
a low-temperature series, one could, in principle, find the
high-temperature expansion by working on the dual mod-
el. In particular, the low-temperature expansion for the
three-dimensional Ising model is equivalent to the high-
temperature series for the three-dimensional Z2 lattice
gauge theory. Unfortunately, I do not know how to gen-
eralize these ideas to models with continuous variables.

In Refs. 1 and 2 and below, exact values for the density
of states are found for reasonably large lattices. For ex-
ample, the largest system considered here has 162 spins.
This system has 2' =5.8X10" states. To enumerate
them all would take astronomical time. The recursive
method adapted from Ref. 1 allows one to find the exact
number of states of any given energy. The 4 Ising model
was solved exactly a few years ago by Pearson, who

made extensive use of symmetries to reduce the counting
of the 2 states to a feasible calculation. The methods
presented here are not directly applicable to the calcula-
tion of Pearson because he used periodic-boundary condi-
tions, which do not meld well with the recursive pro-
cedure.

For discussion I consider the Ising model on a finite
three-dimensional simple cubic lattice. On each site i is a
spin s, E I+1 I. The energy of this system is

H= g(1—s, s ),

where the sum is over all nearest-neighbor pairs of spins.
The partition function is

s,. =+1

Here I3 represents the inverse temperature. I have nor-
malized things so that two adjacent parallel spins contrib-
ute 0 to the energy, and two antiparallel neighbors con-
tribute 2. I refer to those bonds connecting antiparallel
neighbors as excited. While this model has not been
solved analytically, it is generally accepted that there is a
second-order phase transition at P-0.2217 separating a
disordered phase from a magnetically ordered low-
temperature phase.

Let X(k) denote the total number of distinct states of
our system which have k excited bonds. The partition
function can then be rewritten

where I have defined
—2/3

As the temperature decreases, /3 becomes large and p be-
comes small. Thus at low enough temperature the first
few terms in the expansion in Eq. (3) will be the largest.
The numbers X(k), then, are the coeKcients in the low-
temperature expansion for the partition function. On a
finite system this expansion terminates at the order which
equals the total number of bonds. On my 162-site model
(to be specified later), the total number of bonds is 504,
and thus no more than 504 integers are required to speci-
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fy the solution.
Actually, rather than the partition function itself, we

are more interested in the expansions for quantities such
as the average energy per site. Thus I define

E= g He ~ =—p ln(Z) .
1 H 2

VZ, , V a~

Here V denotes the number of sites in our system; I
divide this out so that E will have a finite infinite-volume
limit. Given the coefficients N(k), it is straightforward to
rearrange the series to give an expansion for the energy
itself

The coefficients Ek should have a finite limit as the sys-
tem volume goes to infinity. It is these numbers that I
pursue in the following. I note in passing that it is not
difficult to show that these infinite volume coefficients are
all integers.

I begin by reviewing the recursive procedure for deter-
mining the numbers N(k). Starting with a small lattice, I
add additional spins to form a larger lattice. I build my
lattice up starting from a single layer in the first two di-
mensions, and add spins to build up successive layers on
top. In this process, I need to know the number of states
of a given energy and with given spins on the top layer, to
which I attach the additional ones. I define a counting
index M (k, S) which denotes the number of states with k
excited bonds and with a specified set S of exposed spins
on the top. For a partially filled layer at height z, the
spins in S consist of the additional spins on this layer and
the still uncovered spins of the previous layer. For our
hypercubic lattice the number of spins in the set S is the
number of spins in one transverse plane of the system and
is constant throughout the construction.

Now consider adding one additional spin to the lattice.
Denote the counting index as M'. The added spin covers
one of the old ones, which can be either parallel or anti-
parallel to the added one. The recursion relation giving
the count is

M'(k, S)=M(k h, S)+M(k ——b, ', S') .

Here the first term represents the case when the covered
spin has the same value as the additional one, and thus
the top spins are the same. The second term comes from
when the covered spin is antiparallel to the additional
one, and thus the covered spins S' differ from S only in
having the spin at the location of the additional one
Aipped. The numbers 6 and 6' denote the number of ex-
cited bonds appearing in the addition of the spin. These
shifts are easily calculated, although the details of their
values depend on which spin is being added and the
desired boundary conditions of the system. To initiate
the procedure, enumerate explicitly the states for a single
layer of the system. In this case all the values in the ar-
ray M are 0 unless the number of excited bonds in the set
S itself is exactly k, in which case M(k, S)= l. The
overall scheme reduces the enumeration of the 2 states
of the system to a loop of length VX2, where VT

denotes the number of spins on a transverse slice of our
lattice.

For large systems, the counts become quite large in-

tegers, and for an exact evaluation one may need to use
high-precision integer arithmetic. For the results
presented here, however, I consider systems small enough
that double precision Aoating point numbers contain all
needed counts without any roundoff error. Nevertheless,
the recursion always adds positive numbers; thus, if one
only needs approximate results, floating point calcula-
tions will not accumulate excessive roundoff errors.

Note that with this method, the boundary conditions
in the transverse direction are quite arbitrary. It is, how-
ever, quite awkward to obtain periodic boundaries in the
third coordinate. To build up a periodic lattice, one
would need to keep the counts for all possible values of
the bottom plane as well as the top. Then the final lattice
can be closed up with periodic boundaries. However, this
requires substantially greater storage and computer time.

To extract the infinite-volume low-temperature series
from these counts, I compare two different lattice
volumes. Taking the expansions for the total energy on
each of these lattices, I take the difference of these series
and divide by the change in the volume. This will give
the correct series up to an order where finite-volume
effects set in. These can come from several sources.

First, if the surface of the lattice changes between the
two systems, then I could have surface effects. To avoid
this I take cyclically periodic boundaries in the transverse
direction. Thus all surfaces are at the longitudinal ends
of the lattice and are invariant as I lengthen the lattice in
that direction. To make the longitudinal ends appear just
as a cold continuation of the lattice, I place layers of
spin-up spins above and below the system.

Second, if I consider exciting an ordered lattice, some
excitations will involve groups of spins which can tell
that the lattice is indeed finite. Since the algorithm easily
allows us to make the longitudinal direction as long as
needed, these problems are serious only for excitations
sensitive to the finite transverse size. If our transverse
system has each site at least n steps away from its period-
ic image, any such excitation will involve at least 2n ex-
cited longitudinal bonds. Here a simple trick using the
symmetry of an infinite lattice under permutation of the
axes greatly extends the order to which we can push the
series. Introducing separate couplings for the x, y, and z
directions, we consider expanding the energy simultane-
ously in the three couplings. In the infinite-volume limit,
the coefficients in this series will be invariant under per-
rnutation of these directions. Thus we can calculate the
energy series on a finite lattice, and for a particular term,
replace it with one corresponding to the smallest number
of excited longitudinal bonds. This will make the series
correct as long as some direction involves less than 2n ex-
cited bonds. In this way we obtain the final series for the
symmetric lattice up to order 6n.

Clearly it is desirable to have each spin as far as possi-
ble from its image. With a simple periodic n by n lattice,
we have Vr=n and can obtain the series up to order 6n.
I now introduce a variation on helical boundary condi-
tions wherein a site is separated from its image by at least
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n spins in all directions, but the total number of spins is
considerably less than n .

A two-dimensional lattice with helical boundary condi-
tions can be thought of as a ring of Vz- spins where the
neighbors of each spin are the two adjacent spins and two
more spins x steps up and down the chain. One turn of
the helix has length x, and the helix starts repeating after
Vz spins. Conventionally such boundary conditions are
quite convenient for vectorization, as neighbors are al-
ways a fixed distance away in computer memory. Usual-
ly Vz. is taken to be a multiple y of x, so we can loosely
speak of an x by y lattice. Here, however, it turns out to
be convenient to have a fractional number of helical turns
in one period of the entire lattice. Indeed, I will take
y = Vz-/x to be near a half integer.

On such a lattice, finite-size effects are related to closed
paths which wrap in some way around the helix. For ex-
arnple, one such path is to jump to the next turn in the
helix, and then return to the starting point in x single
steps along the helix. This will involve x+1 bonds.
Another closed path is to keep jumping forward the in-
teger part of y turns of the helix, and then do a few addi-
tional single steps to return home. This requires
[y]+(Vr —[y]x) steps. Here the square brackets mean
the greatest integer less than or equal to y. A similar
path does one more jump along the helix spins before re-
turning in single steps, and has [y+1]+([y+1]x—Vr)
steps. If I wish to obtain results to comparable order to
those from an n by n periodic lattice, I must have all
these possible paths with length greater or equal to n.
The minimal solution to these constraints is not unique,
but a simple choice is Vr = [(n +1)/2] and
x =2[(n +1)/2] —1. For some explicit examples, a
helix of five spins with three spins per turn mimics a 3 by
3 periodic lattice, eight spins with three per turn mimics
a 4 by 4 lattice. For short, I will denote these as 3 by —',

and 3 by —', lattices. Finally, 5 by —", , and 5 by —", lattices
give results to the same order as 5 by 5 and 6 by 6 period-
ic lattices, respectively. The latter 18-site lattice is used
for the results presented below, and gives the infinite-
volume low-temperature series through 34th order.

As computer time and storage requirements grow ex-
ponentially with the transverse volume, this use of pecu-
liar boundaries gives a substantial saving. For example,
consider the 18-site lattice arranged helically with a
period of 5. This gives the series correct through 34th or-
der in p. A simple periodic lattice would require 6X6
sites for the same order; the elimination of 18 spins saves
a factor 2' =65 536 in memory. This order would have
been impossible without this trick. On the other hand,
the next size lattice, which gives the same results as a 7
by 7 periodic system, has 25 sites, and is probably im-
practical to work with.

The above method works quite well for smaller lattices,
but as the size increases it requires rather large amounts
of memory. If a transverse slice has Vz- spins and we are
interested in keeping track of all lattices containing up to

V~+ 1
k excited bonds, then we need to store 2 k variables,
where the extra factor of 2 is because we need both the
old and new counts for the recursion.

With periodic transverse boundaries, a small change in
the procedure substantially reduces the memory require-
ments but at a fairly large penalty in computer time. In-
stead of adding a single spin at a time, consider adding a
whole layer. Then the inner loops become much longer,
being over both all values of the layer and all values of
the covered one. Nevertheless, by adding the whole layer
at once, I can make extensive use of symmetries in this
layer. In particular, with my transverse helical periodic
boundaries, the counts for some given set of top-layer
spins will be the same for any cyclic permutation of this
layer. It is also the same for the bits of the top layer tak-
en in reverse order. Thus we only need to store the count
for a standard form for each set of possible layers related
by one of these symmetry operations. This saves a factor
of somewhat less than 2V& in memory. (The saving is
somewhat less because some configurations of the top lay-
er are invariant under certain symmetries. ) For example,
with the 18-site transverse lattice discussed below, instead
of having to keep counts for 2' =262144 top layers, I
only need keep track of 7685 standard forms.

One final trick saves an additional factor of nearly 2 in
computer time. Consider a given longitudinal size z and
suppose I have obtained the number of states for any
given energy and all possible top layers for the lattice. I
can turn this lattice upside down on top of itself and then
loop over the top plane, which is now in the middle of a
sandwich. In this way I find the number of states on a
lattice of longitudinal size 2z —1 ~ Using the counts from
the previous layer for the top of the sandwich, I obtain
the final counts for a lattice of size 2z —2.

I have tested these methods on the simple three-
dimensional Ising model. Working on an 18-site helical
lattice with period 5, I built up on a cold boundary five
layers in the longitudinal direction. Using the above
tricks, I obtained the state counts for longitudinal sizes
up to 9 and including up to 34 excited bonds. Pro-
grammed in C, this calculation required approximately a
day on a Sun Microsystems SPARC station SLC. The
time required grows rapidly with system size; to obtain
the series through 28 excited bonds on a 5 by —", by a 7-
site system only requires about two minutes.

With the boundary conditions chosen, only states with
an even number of excited bonds appear in the final
count. At intermediate stages in the calculation, there
are configurations with odd numbers of longitudinal exci-
tations. The single zero-energy state is simply the state
with all spins up. This state is nondegenerate because of
the cold walls. The next states have six excited bonds
and correspond to a single spin down in a sea of up spins.
The number of such states is just the number of sites on
the lattice.

I then manipulated these counts to obtain the series for
the average energy. Taking the difference of these expan-
sions for two longitudinal volumes, and then dividing by
the change in transverse volume gave the low-
temperature series for the average energy per spin. To
take advantage of the above-mentioned symmetry under
permutation of directions, I evaluated this series while
keeping separate track of excited bonds in the three
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different directions, and restricted the counts to consider
only up to ten excited longitudinal bonds. Combining
these counts gave the final series coefficients in Table I.
One simple consistency check on these numbers was to
repeat the calculation comparing longitudinal size z=9
with 8, and z= 8 with 7. Comparing z=7 with z= 6 gave
finite-size corrections at 34th order, as expected.

Note that the series starts out alternating in sign. The
sign of the 12th order term can be understood because
there are no connected clusters of Aipped spins with ener-
gy 12; so, this coefficient is entirely due to the excluded
volume available to two isolated Aipped spins of energy 6
each. As expected, all the coefficients are integers.

In Ref. 4 all excitations of up to 11 Aipped spins were
studied. Their analysis agrees with the numbers in this
table, and by adding to their treatment the rather simple
enumeration of the 12-spin diagram with 32 excited
bonds, all numbers in Table I are verified.

To summarize, I have presented a simple mechanical
technique for evaluating the coefficients for low-
temperature expansions in discrete statistical models.
The method requires no explicit diagrammatic analysis. I
illustrated the method on the series for the average ener-
gy per site of the three-dimensional Ising model. With a
modest amount of computer time, I found this expansion
to 34th order in e ~. This series could be manipulated
in standard ways to find the specific heat or free energy,
and summation methods could be used to determine
properties of the critical point for the model. As the
series is somewhat shorter than those available for the
strong-coupling limit, this will presumably not add much
to our knowledge of this transition. Nevertheless, the

TABLE I. The coefficients of the low-temperature series for
the average excitation energy per site for the three-dimensional
Ising model on a simple cubic lattice.

order k E

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

0
0
0

12
0

60
—84
420

—1056
3756

—11 220
37 356

—118 164
389 220

—1 261 932
4 163 592

—13 680 288
45 339000

technique is simple to implement and applicable to many
other models.
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