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We study d-dimensional ferromagnetic spherical models with power-law, J(R)-1/R + (cr & 2),
or short-range (o —=2) interactions and on-site terms of the form Ds ~U~s + Vs, and establish
that the phase diagrams for all d and o. with o. & d & 2o., may exhibit critical end points terminating
nonclassical critical lines; tricritical points may arise only for ~o. d. The phase boundary

D (T,h), where h is the magnetic field, between the noncritical, spectator phase and the ordering
and critical phase is shown to exhibit singularities at the end point with amplitudes obeying the
universal ratio laws advanced on phenomenological grounds in Part I.

I. INTRODUCTION

In Ref. 1 (to be referred to hereafter as I) the nature of
the phase boundaries in the vicinity of a critical end point
was considered. To be concrete, we may suppose that
there is a transition of Ising-like character (n= 1), in
which case two distinct phases P and y may coexist on a
manifold p in a basic thermodynamic space of three field
variables (T,g, h); see Figs. 1 and 2 of I.' For an order
parameter of symmetry O(n) with n ~2, the ordered
phase on p has a sense and may be denoted /3 (see I). In
both cases h (

—= h ~) is an ordering field for the transition,
while g is a nonordering field; " the manifold p is thus a
segment of the h=0 or (T,g) plane. For simplicity we
will consider here only the situation which is fully sym-
metric under h ~ —h.

As T increases, we suppose that the phases /3 and y for
n= 1 (or P for n ~2) approach criticality on a A, line

Ti„(g) (see I, Fig. 1), where they merge to form a disor-
dered phase Py for n = 1 (or P+ for n ~ 2). When a criti-
cal end point is present, the planar manifold p meets a
phase boundary o. which demarcates a new, noncritical
or spectator phase a, stable, say, at low g; see I, Fig. 2.
The line of intersection between p and o. in the h=O
plane r is a triple line on which all three phases a, /3, and
y may coexist for n= 1 (or phases a and /3 for n ~2).
The triple line ~ terminates where it meets the critical
line A, at the critical end point [T,= T, (g, ), g„h =0].

In I we addressed the question: What sort of singulari-
ties, if any, should be observed near the critical end point
in the function g ( T, h), which specifies the phase bound-
ary cr to the spectator phase o,? On the basis of phenome-
nological and thermodynamic considerations, we argued
that g (T, h) should display characteristic nonanalytici-
ties at the critical end point controlled by the bulk criti-
cal properties of the P, y, and /3y phases on the critical
line A, . ' ' Thus it was concluded, for example, that for
small

t = (T —T, )/T—o,
where To is a convenient reference temperature, the

phase boundary o. should vary as

g.(T, h) =g, +gi"t X ft /'— Y
-
lt /'—[h/

,'Z—J—ti rh +Ago(T, h), (1.2)

when h ~0, with Y+ —=0, and where a, /3, and y are the
(universal) critical exponents characterizing the X line.
The function b,go(T, h) contains nonsingular terms quad-
ratic in t and h and singular terms of O(h ). Further-
more, it was demonstrated that appropriate dimension-
less ratios of the amplitudes, X+, Y+, and Z+ should
have universal values directly determined by various bulk
amplitude ratios on the A, line. Specifically, if 2+, B, and
C+ are the amplitudes for the specific heat, spontaneous
order Mo( T), and susceptibility on the A, line, then the ra-
tios

X /X+ = 3 /A+, Z /Z+ =C /C+,
X+Z+ A+ C+

Y (2—ct)( 1 —a)8

(1.3)

(1 4)

together with similar expressions for the field behavior on
the end-point isotherm T =T„etc., ' should all be univer-
sal.

Now the arguments in I leading to (1.1)—(1.4), etc.,
were plausible but nonrigorous. They assumed that no
new type of criticality arises at an end point, and they ig-
nored the effects of counterphase or droplet fluctuations
that might, possibly, induce such changes and which
surely do lead to singularities in the free energy, etc. , as
the phase boundary o. is approached at or away from
(T„g,). Accordingly, I stressed the importance of
checking these assumptions and the predictions
(1.1)—(1.4), etc. , by analytic calculations for specific mod-
els exhibiting critical end points on nonclassical critical
lines. Such an analysis is presented in this paper.

Explicitly, we consider a general class of d-dimensional
spherical models, or n-vector models in the limit
n~~, ' which have either short-range couplings or
long-range, power-law interactions. These models were
originally studied by Sarbach and Fisher '' (following

43 10 635 1991 The American Physical Society



10 636 MARCIA C. BARBOSA AND MICHAEL E. FISHER 43

earlier work by Sarbach and Schneider" and by Emery )

because they displayed nontrivial tricritical points. ' We
show here that for all dimensionalities and forms of in-
teraction they also display critical lines which terminate
at critical end points (instead of tricritical points) for suit-
able values of the parameters in the Hamiltonian. This
actually contradicts an assertion of Ref. 11 to the effect
that only tricritical points occur above a certain dimen-
sionality do, equal to 3 for short-range interactions.
Indeed, the elucidation of the various types of phase dia-
grams displayed by the models is an interesting feature of
our analysis; see the figures below. For d &4, nonclassi-
cal critical end points arise; for these we show here by de-
tailed calculations that the phase boundary o. is indeed
described by (1.1), (1.2), etc., with universal amplitude ra-
tios (restricted somewhat in the light of special features of
the spherical model) given by (1.3), (1.4), etc. In higher
dimensions, the leading critical behavior is classical; how-
ever, there are corrections to scaling which are also
rejected in the phase boundary near end points. This as-
pect is reserved for a future paper to be referred to here
as paper III.'

In outline, the balance of the paper is as follows: Sec.
II describes the model and its known features following
closely Sarbach and Fisher; references to equations in
that paper are prefixed by SF. The phase diagrams real-
ized are discussed in Sec. III: see Figs. 1 —6 below. The
free energy near the X line is analyzed in Sec. IV and the
critical amplitudes are evaluated. In Sec. V the free ener-

gy of the spectator phase is discussed and the end point
parameters are determined in various regimes. Finally, in
Sec. VI the predictions (1.3) and (1.4), and their analogs
on the critical isotherm are checked and found to be val-
id. A few concluding remarks close the section. The Ap-
pendix discusses the behavior of the basic correlation in-
tegral which is needed to higher order than usual.

II. SPHERICAL MODELS
WITH SIXTH-ORDER TERMS

A. The model

J(k)= ge'" J(R) .
R

(2.4)

Specifically, we suppose J(k) has a unique maximum at
k =0, about which

J(k) =J(0)—J Ika
I

+ (2.&)

where a denotes the lattice spacing, J & 0, and 0 & o. ~ 2.
(See also the Appendix. ) The value cr =2 describes
short-range interactions; for o. (2, one has long-range
couplings with J(R)—1/R + as R ~~.

B. The free energy

where h =
~
h ~, while

+ W(m2) —hm], (2.6)

m =(s) and m, =(s') (2.7)

are the two basic thermodynamic densities beyond the
energy. The spherical field g(T, D, h) is determined by the
constraint equation

m 2
=ks TId(g)+ m

and, by minimization of m2, the equation ofstate is

g=h/m =D+ Um~+ Vm2 .

(2.8)

(2.9)

Finally, the underlying free energy and correlation in-
tegrals are defined by SF (2.8) and (2.9) as

"d"k
Pd(g) =J d ln[ [g+J(0)—J(k)]/2mks T], (2.10)(2'�)"
in which the integral runs over an appropriate Brillouin
zone, while

In the thermodynamic limit N~ ~ and the spherical
model limit n ~ ~, the free energy per spin component is
given by SF (2.6), (3.13), etc. , as

F( T,D, h) =min[ i kz T[Vd(g) (Id(g)—]
m2

Following SF, we consider a regular d-dimensional
lattice with sites i =1,2, . . . , X occupied by n-component
spins s;, and posit the Hamiltonian.

X&=—,
' g J; (s, —s [

—g [h.s; —nW((s, ( /n)],
(ij) i =1

where the "on-site" term is of sixth order, with

W= —,'D/s;/ +—'U/ /s/n+ —,'V/s;/ /n

(2.1)

(2.2)

U(0, V)0, so w=——U/2V)0 . (2.3)

The first sum in (2.1) runs over all lattice-site pairs (i,j)
The interaction energy J,"=J(R,") will be specified by its
Fourier transform

The quadratic coupling coefficient D will play the role of
the thermodynamic nonordering field g of Sec. I. The
regime of interest, which allows both tricriticality and
nonclassical end points, is

Id(g) = (2.11)

For purposes of estimation we may usually approximate
the Brillouin zone by a sphere of radius ~k~ =~./a with

C. Critical behavior

d:—0- &d, =-,'o- &d+ —=2' . (2.12)

We will consider only d )d; then Id(0)= Id is a well-—
defined positive number. The nonclassical regime is
specified by d &d &d+, and in this range one finds
(subject to some conditions explained in the Appendix)

To understand the critical behavior of spherical models
it is crucial to know the variation of Vd and Id as (~0.
This, in turn, depends strongly on the dimensionality. It
is convenient to define upper and lower borderline dimen-
sions d+ and an intermediate dimension do via



43 CRITICAL END POINTS. II. GENERAL SPHERICAL MODELS 10 637

I„(g)=I [1—pg'r +qg+o(g)],
where the susceptibility exponent is given by

y =o. /(d —cr ) ~ 1 (0 & o. & 2)

(2.13)

(2.14)

tricritical
point

while p and q are positive coefficients. The combination

I„J' '' r =1/2" ' ' I (d/2) '
( / ), (2.15)

has a universal value, while q depends on the details of
the interactions but may be estimated by

Do-

=0

inc

Id J q =y/2" 'vr farl (d/2)(y —l)m (2.16)

in which, as before, S.=m: see the Appendix. In the usu-
al asymptotic analysis of the spherical model "' only
the leading g dependence is needed in (2.13). It tran-
spires, however, that to elucidate the behavior when end
points arise requires the next correction as well.

All other critical exponents of the spherical model fol-
low from (2.13).' For completeness we quote

a= 1 —y, /3= —,', 5=2y+1,
(2.17)

A=y+ —,', v= —,'y, g=O .

These values satisfy all the scaling and, for d &d+,
hyperscaling relations. Above d+ the exponents take
their classical values [corresponding to y= 1 in (2.17)].
On the borderline d =d+, logarithmic factors enter into
the susceptibility and specific heat, ' but we reserve that
case for paper III. It will be convenient to treat d, y, and
o. as continuous variables, although the reader is free to
keep d as an integer and vary only o or, equivalently, y.

FIG. 1. Phase diagram for the general spherical model with
Hamiltonian (2.1)—(2.3) when h=0 in the regime of "simple"
tricriticality. The conditions under which this diagram applies
are discussed in the text. The location (T„D,) of the tricritical
point is marked here and in subsequent figures by an inverted
triangle. It lies on the A, line Tz(D), which is characterized by
nonclassical exponents. The k line is parabolic in shape; its ana-
lytic extension below T, is shown as a dotted line. The first-
order phase boundary D (T) below T, is represented by a bold
line; it separates a disordered P+ phase with m = (s ) =0 from
an ordered phase P with a spontaneous order Mo) 0.

D. Lambda line and tricritical point

k~ Tq(D) = [i Ui+( U 4VD)' )/2VI—d, (2.18)

as shown in Fig. 1. Note that we use the notation T&
rather than T, as in I because a new critical point, not on
the A, line, will appear in association with all end points.

In the simplest situation, studied extensively by SF, the
vertex of this parabola is a tricritical point with parame-
ters

o Dg 4

By (2.9), g approaches g, the inverse susceptibility,
as h —+0 in a disordered phase with m(h~0)=0. Criti-
cality with y~ Oe is thus confined, via (2.8) and (2.9), to a
parabolic locus given by

another phase becomes preferred, that is, has a lower free
energy than the critical phase. In that case the tricritical
point will not be realized in an equilibrium phase dia-
gram. Rather, the A, line will be cut o6'by a critical end
point at some D, &D, and T, = T~(D, ) ) T, . In the next
section we discuss when that happens and, more general-
ly, determine how the phase diagram may differ from Fig.
1. If there is a critical end point we wish to check the
predictions made in I for the behavior of the phase
boundary D ( T, h) near ( T„D,).

III. PHASE DIAGRAMS

In this section we present arguments revealing various
types of phase diagram that may appear in the model and
indicate the corresponding parameter values. We start
with a summary of the main conclusions.

(2.19) A. Overview

as indicated in Fig. 1. A first-order phase boundary
D (T,h=0), across which both mo =—limh o+m (h, T)
and Iz change discontinuously, leaves the tricritical
point with a horizontal tangent; it intersects the T=O
axis at D0=3U /16V: see Fig. 1.

For small D the critical or X line is always present.
However, at larger values of D &D, it may happen that

Recall first that a tricritical point as illustrated in Fig.
1 is always accompanied by a pair of standard tricritical
"wings" when a nonzero ordering field h is introduced:
see SF, Fig. 1 and Refs. 11 and 12. However, such a tri-
critical phase diagram is never realized when d &do (or
y &2)." Rather, when d &do one always has an end
point and the zero-field phase diagram is as illustrated
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(d —do)/o. =y ' —
—,
' =e . (3.1)

Then we define the reduced, dimensionless p coefficient
via

1/2

p=1(1—4E )
U2

2e/( 1 —2e)

q
(3.2)

noting that

—,'(1 —4e ) =2(y —1)/y

2e/(1 —2e) =(2—y)/2(y —1) .
(3.3)

schematically in Fig. 2, where E marks the end point
while C denotes a new critical point which has classical
exponents; see below and Ref. 11. When hAO this criti-
cal point extends into a smooth critical line bounding the
transition manifold, D =D (T, h), that separates the
spectator or a phase, at large D, from the ordered P
(m =+Me) 0) and disordered 13+ (m—:0) phases at low
D. Now the critical point C and its extension to nonzero
h will not be of direct interest to us beyond their clear as-
sociation with the presence of the end point E. We ob-
serve, however, that when h =0, the associated transition
below T, involves a discontinuity in mz = (s ), although
the magnetization m = (s ) remains zero in the whole vi-
cinity of C. [For h&0, of course, I is always nonzero,
and there will be an induced jump in m across D ( T, h).]

For d dp it transpires that the simple tricritical phase
diagram of Fig. 1 may always be found, but appears only
if the coefficient p in (2.13), which sets the scale of the
variation of Id(g), is not too large. To be more precise, it
is helpful to highlight the dimensionality dp=3o. /2 at
which y =2 by writing

p (po(d) = 1+2' inc '+cog+ (3.4)

where cp is a positive coefficient of order unity that is dis-
cussed below. More generally, we expect po(d) to be an
increasing function of d: see Fig. 3. It remains finite as
d —+d+ —and, indeed, can be extended to d )d+, where
it plays the same role: we discuss this in paper III.'

Conversely, whenever p exceeds po(d) and d ~do, a
critical end point arises (see Fig. 3) and the phase dia-
gram of Fig. 2 applies. This result apparently disagrees
with the statement of Ref. 11 (p. 355) that only tricritical-
ity should occur for d ) 3 ( =d o). Note also that Figs. 6
and 7 of Ref. 11 are misleading since they suggest that
the critical line which passes through C (called R in Ref.
11) displays a kink at h =0 in the full (T,D, h) space rath-
er than remaining completely smooth as h changes sign.

As stated, tricriticality exists on the borderline d =dp

When a=0 d=dp and y=2, one sees that p becomes in-
dependent of the correction coefficient q, and, in fact,
reduces to the parameter p defined by SF. Furthermore,
the factors sin(m/y) and (y —1) in (2.15) and (2.16) con-
spire with those in (3.2), so that P remains well defined in
the limit d —+d+ —,y~1+. One can easily see from
(2.15) and (2.16) that the overall magnitude of p is set by
the dimensionless combination (U /VJ )'~ . In addition,
if one adopts the scaled Kac form, SF (3.7), for J(R) with
range R p and strength Jp one finds that p varies as'
(U /VJo)(a/Ro) . Long-range forces thus lead to small
P.

Now one can report that the simple tricritical phase
diagram of Fig. 1 applies whenever p &1 and d ~dp.
Beyond that, tricriticality is always realized (for d do)
when

Do(T)

critical
paint

classical
transitions

Nonclassical
2 line

Critical
end point

I

Classical
I 1 line

(D)

=0

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ II I ~ ~ ~ ~ ~ ~

3do= 2

I

I

I

I

I

d+ =20

0

FIG. 2. Zero-field phase diagram displaying an end point on
the k line and a critical point C, with classical exponents. The
first-order phase boundary D (T) now separates the new a
phase from the ordered and disordered phases P and /3+. The
regimes of dimensionality and Hamiltonian parameters in which
this diagram applies are shown in Fig. 3.

FIG. 3. Schematic depiction of the regimes of tricriticality
and critical end points in the plane of dimensionality d and the
parameter p —( U /VJo )(a /A 0 ), defined explicitly in (3.2).
The phase diagram of Fig. 2 applies below d =dp and above

p =po(d). The simple tricritical phase diagram of Fig. 1 applies
for d ~ do and p & 1. When d )do and Po )p ) 1, more complex
tricritical phase diagrams appear: see subsequent figures. The
A,-line exponents are nonclassical for d &d &d+ but classical
for d )d+ ~ Certain purely classical transitions can occur belowd: see Ref. 11.
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for p & 1, although it exhibits nonuniversal scaling
features (as studied in detail by Sarbach and Fisher). '
The situation is di6'erent, however, on the borderline
p =pc(d) for d )do. Rather, as illustrated in Fig. 4, this
is a limiting case in which the end point coincides with
the tricritical point, while the critical point C remains
distinct at T, & T, and D, & D, . If now d is reduced to do
along p =pc(d), the critical point approaches the tricriti-
cal end point and all three merge at d =do. The same
happens at d =do if p & 1 is reduced to unity. Evidently
the point d =do, p=1 represents a special type of mul-
ticritical point which might merit further investigation in
its own right; however, we have not pursued that task.

On the other hand, if at fixed d )do the parameter p is
lowered below po(d), the tricritical point emerges pro-
gressively "from under" the u phase boundary and, as il-
lustrated in Fig. 5, a multiple point Q appears in the
(TD, h=o) plane beneath (T„D,). In the full (T,D, h)
space this new point Q is actually a quadruple point at
which four distinct phases meet, two magnetically or-
dered with m =+Mo, and two magnetically disordered
with m =—0; in the n=1 analog one could have coex-
istence of the four phases a, P, and y, and I'y at Q. As p
falls, the critical point C also moves to lower tempera-
tures and passes "over" the tricritical point, so that, as
shown in Fig. 5, D, & D, . One 6nds that T, = T, on a
locus p, (d) having the same form as (3.4) for small e, ex-
cept that the coefticient co is replaced by c, & co.

On further reduction of p the critical point moves
around the tricritical point to lower values of D„as
shown in Fig. 6: the condition D, =D, (with T, & T, ) is
attained on a locus p2(d), which again has the form (3.4),
but with a coefficient c2&c, . Finally, at some p3(d))1
the critical point C merges with the quadruple point Q
and disappears into the boundary D (T,h) of the P
phase; the phase diagram then reverts to the simple tri-
critical form of Fig. 1. The locus p3(d) for small e once

= 0

D
C do

(d)

Do

0

FIG. 5. A more complex tricritical phase diagram than Fig.
1, arising when d & do and p& 1, and including a quadruple
point Q and a (classical) critical point C in the special situation
when T, =T„which occurs whenp=pl(d) &po(d).

more has the form of (3.4) but with a new coefficient
C3 &C2.

In the remainder of this section we explain the argu-
ments leading to the conclusions summarized above and
embodied in Figs. 1 —6. Apart from noticing some new
notation and a few corresponding basic expressions for
the free energy, etc. that are introduced in the next sub-
section, a reader uninterested in the details may proceed
to Sec. IV.

d)do
p=p. (d)

h=0 d) dp p = p~(d)
&p~

h=0

D, —

D, =Dt
D —D

Do— Do

0 0

FIG. 4. Phase diagram for A=O and d & do in the marginal
case p=po(d) in which the critical end point and tricritical
point coincide.

FIG. 6. A complex tricritical phase diagram for d & do, p & 1,
as in Fig. 5, but meeting the condition D, =D„arising when

p =p2(d) &pl(d).
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B. Tricritical vicinity C. Tricriticality criterion

It is evident from the descriptions of the phase dia-
grams that the existence of a critical end point hinges on
the presence or absence of a tricritical point. The tricriti-
cal point, if realized, must have the parameters given in
(2.19), together with (=0, since it lies on the A, line. Now
if there is another value of g (and hence of m 2), say,

g )0, which yields a lower free energy at the tricritical
location (T,D, h)=(T„D„O), then the tricritical point
cannot be realized; rather, the "tricritical vicinity" near
(T„D„O)will be occupied by a new phase a. Then, as in
Fig. 2, there must be a critical end point on the A, line
T~(D) at a point (T, & T„D, & D, ) where the free energy
of the a phase matches that of the critical phase with
g=h =m=0. Accordingly, it is appropriate to focus at-
tention on the tricritical vicinity. To that end we define

T Tf D —D,
and g =

V
(3.5)

Later we will define end point deviations t and g. Like-
wise, in defining the free energy it is useful to make the
substitution

mz=m+ksTId=m+w(l+t) . (3.6)

It proves convenient and is adequate for our subsequent
purposes to adopt the expansion of Id(g) in (2.13) as if it
were an equality, provided one remembers that the term
with p must always dominate that with q. The constraint
equation (2.8) then becomes

m =w ( 1+t)( pg' r+ q g—)+m (3.7)

It follows that m vanishes on the A, line (where g=m =0).
Likewise, the minimization equation (2.9) becomes

g/V=m +2wtm+g+w t (3.g)

The free energy can be written as the sum of an analytic
piece

Fo(T,D)= ,'ksTPd(/=0;—T)+ ,'DT+ ~ UT +—,'VT—
(3.9)

aF, (g) = ——'w pg'+qg'" g'"
3+2m

(3.13)

Evidently (3.12) has a solution /=0, yielding b,F, =0,
that corresponds just to the tricritical point. If we cancel
this solution, take the square root, rescale by putting
g=g(p/q) " ', and recall (3.1) and (3.2), we obtain the
tricriticali ty equation'

( 1 4e ) /—p =g' P—( g & 0 ) . (3.14)

Consider first the case (i) e=O (or d =do with y'=2).
There are clearly no solutions unless p ) 1. Consequently,
if p & 1 we conclude that a tricritical point (with /=0)
must be realized, so confirming the conclusion stated
above in Sec. III A. Conversely, for p) 1 there is always
a solution g )0; furthermore, by (3.13), we see that
hF, (g ) is then negative. We conclude that a critical end
point with a phase diagram like Fig. 2 must occur for
d =do when p) 1. Of course, p=1 is a special situation;
in fact, as remarked before, the end point, the tricritical
point, and the new critical point C all then coincide.

Next consider (ii) the case e&0 (or d (do and ) ) 2).
The right side of (3.14) now decreases monotonically
from + oo as g increases from zero and scans all positive
values. ' Evidently there is a solution g )0 for all p )0.
Again, by (3.13) the free energy is always lowered. We
thus confirm the conclusion" that only critical end points
appear for d &do.

The last case (iii) e )0 (or d & do and y (2) is the most
interesting. Note, in the first place, that the two terms in
(3.13) now compete. Secondly, the right side of (3.14)
now has a maximum at g =(2e) " '. From that we
see that there can be no solutions if+ (P (d), where

If we specialize to the tricritical location t =g =&=0
and eliminate I between the constraint and minimization
equations we find the equation

(3.12)

while the free energy reduces to

where T=w(T/T, ), which will not concern us further,
and a potentially singular part

(d) (2e)
—2e/(I —2e)( 1 +2e) (3.15)

EF(t,g, h)=w(1+t)I —,'(I+@) pg ~qg ]

+ —,'m'V+ —,'Iwtm +(g +wt')m] V—hm,

(3.10)

U= —2, V=1 (3.1 1)

which also vanishes identically on the A, line and its para-
bolic extension. Note that the assignment

which has an expansion of the form (3.4) but with
c =2(1—ln2) =0.6137.

Tricriticality is thus ensured for p &p . However, al-
though there are solutions for g, suggesting an end point,
whenever p )p, one finds AF, )0 for p ~p, so they are
not all stable. As g increases above g, however, b,F, de-
creases monotonically. The true borderline between the
tricritical and end point regimes can thus be found by el-
iminating g between (3.14) and the equation b,F, =0.
This yields

2/(1 —2E)

corresponds only to a specific choice of units for energy,
spin, and field and yields w = 1 and D, = 1; it thus
simplifies the appearance of (3.6) —(3.9) and will be adopt-
ed below when convenient. and then

8e p
3+2m q

(3.16)
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pp(d)= 8e
3+26

—2E/( 1 —26)

(1+2e)(1+—', e), (3.17)

which has the expansion (3.4) with

c =—' —21n—'=0.7050) c (3.18)

For solutions of (3.14) with g & gp the new a phase al-
ways has a lower free energy at the tricritical location
and, hence, an end point is always present, and Fig. 2 ap-
plies. Clearly, the borderline p =po with two solutions
(=0 and g, having equal free energies, corresponds to
Fig. 4.

It should be remarked that although written as equali-
ties, the above expressions for gp(d) and pp(d) rely on
truncating the expansion (2.13) for Id(g). They are thus
quantitatively valid only for g«1 or, more concretely,
when 2e «1.

To complete the elucidation of the phase diagrams for
p &Pp(d) we turn to the task of locating the new critical
point C. The discussion of the end point vicinity is taken
up again in Sec. IV.

D. Classical criticality

u (m )=v (m ), u'(m ) =u'(m ) =2m+2t,
u "(m ) = U "(m ) =2 .

To analyze these equations we put

(pz /q y )2/( I —2e)

(3.20)

(3.21)

(3.22)

and express u" in terms of u', and then in terms of z
alone. Then (3.21) yields the criticality equation

p ~(1 z)3=K(z/y) 4 /~i (3.23)

where K =(1—2e) /(1+t) . This is readily understood
graphically. For (i) e=O there are solutions only for
(1+t)p & 1 and one then has z = ', (bP +t) for small-
Ap =p —1 and t. The restriction, in fact, corresponds to
the existence of an end point and associated critical point
only for p) 1, as previously observed: see Fig. 3.

When one has (ii) e&0 there are always solutions,
which vary as

In order to complete the justification of Figs. 4, 5, and
6 and to determine the appropriate values of p, we study
the location of the critical point C in zero field. Since this
occurs away from (=0 we expect, as mentioned, purely
classical behavior. Accordingly, we seek values of t and g
at which the solutions for g and m, which are related
through the constraint and minimization equations (3.7)
and (3.8), bifurcate, one root splitting into three, say g+,
P, and g, in the usual phenomenological or van der
Waalsian manner. The conAuence of the three roots lo-
cates the critical point. Thus, if we write (3.7) and (3.8)
as

m = u '(g} and g = U (I ) =m +2tm +g +t, (3.19)

where for brevity we have used (3.11), the conditions for
criticality are simply

z =y[(1+t)p/(1 2e)3/2]~i —2~~/21~1 (3.24)

for small p. The divergence of the exponent as e~O —is
indicative of the fact that tricriticality takes over at small
p when e=O: see Fig. 3. Finally, for (iii) e&0 there are
no solutions if p is small, but two solutions arise for p
large enough.

Now, given a solution z (and hence g, ) we can use
(3.19) for m and solve the second member of (3.20) to find
the critical value t, Th. en one can return to U(m) in
(3.19) to find g, . The algebra is involved, but finally
yields

&V pz

qy

1/(1 —2e) ) + g

2

(z~ )3/2
(3.25)

E

2/( 1 —2e)
1 pzgc=
V qy

(1—z'}, (3.26)

where we have restored the factors of U and V and put

z' = ( 1 —z}/( 1 —2e) . (3.27)

One should recall that z depends on t so that these rela-
tions are not fully explicit; however, the dependence on t
is weak and turns out not to enter in leading orders near
e=O and p=1.

We will not analyze these equations fully, but a few
limits are especially instructive. When e=O (d =dp) and
hp =p —1)0 is small one finds t, =johp, g, =kohp,
and z-hp with jo,ko)0. This confirms that C ap-
proaches the tricritical point when p ~1+.

Figure 5 illustrates the special case in which T, = T, or
t, =0. By (3.25) this condition yields the locus

2E'

p=p (d)= —'e (1+e+ ) (3.28)

p3(d) =(—9e) "(1—
—,'e+ . ), (3.30)

which once more follows (3.4) but with
c3 2 ln —', —

—,
' = —0.0978. Note that even though c3 & 0,

the locus p3(d) lies above P= 1 for small e and is expected
to do so generally. At least for e relatively small, the
merging of C and Q occurs away from T=O and, in fact,
rather close to T, .

for e small but positive; this has the form (3.4) with
c 1

= 1 2 ln
3
—0.4246 & co. On this locus one also has

z —e and g, =k1e with k1 )0.
In Fig. 6 the critical point has moved below T, and met

the special condition D, =D, or g, =0. From (3.25) and
(3.26) we find z -e and t, = —j2e with jz & 0 and

p =pp(d) = (e) "[1+0(e') ],
which again has the form (3.4) but with c2 =0.

Finally, we may use the results for z, t„and g, to
evaluate the free energy at the a f3+ critical poin-t in
terms of z. If this is matched to the free energy of the or-
dered phase P, which follows by setting g:—0, one ob-
tains an equation for the locus p3(d) on which C merges
with the quadruple point Q: see Figs. 5 and 6. This
yields
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The quadruple point in Figs. 5 and 6 lies inside the par-
abola corresponding to the extended X line (shown as a
dotted line). This is established by showing that the p+-
p phase boundary D (T) near the tricritical point lies
inside the parabola for p ) 1+c4e with c4 )0. For p 1,
however, D (T) lies wholly outside the A, parabola, as
shown in Fig. 1.

This completes our discussion of the phase diagrams.
We focus next on the A, line in order to understand the
end point region.

with exponent and amplitude

P= —,', B = 1/(2wt)' (4.8)

~Fthm —= —B lt IPlhl [1+0(lhl'"/It I'"&)] . (4.9)

Finally, on the critical isotherm (t =0) one readily finds

Further, when h~0, one finds m —mo —lhl' ~/
It I~i'+ "~~i'. In a small field beneath Ti the singular part
of the P-phase free energy is thus

IV. FREE ENERGY NEAR THE LAMBDA LINE
lhl

"+"",B,5
c pc (4.10)

hF= g'~+" ~[1+0(g'r " ~)]—hm
2(1+y)

1 V P 1 V 3+0( 4)
8 wt 6 (2wt)

(4.2)

Consider first the case h ~0 whence g=y '. With the
aid of (3.7) we find the susceptibility diverges as

y=g '=c /t'[I+o(t~ ', t)],
when t ~0+ [above Ti (D)], where the amplitude is

C+ =[2w pt(1+t)]~ .

(4.3)

(4.4)

The singular part of the p-phase free energy in a small
field then follows from (4.2) and can be written as

A+
b,F'+ ——— t' [1+0(t' ', t)]

(2 —a)(1 —a)
+—'C t ih'[1+0(t~, t, h'/t )]

(t )0) where the specific-heat amplitude is

A+ = —
—,
' ywp (1+t)/[2w'pt (1+t) ]~+'

(4.5)

(4.6)

In zero field below T&(D) one has g=g
there are only analytic terms in the free energy; thus, as is
well known, one has 2 =0, while C is undefined. On
the other hand, m =m is nonzero, and the spontaneous
magnetization follows from (3.8) as

m, =Bl t It'[1+0 (t )], (4.7)

Having established the circumstances in which a criti-
cal end point will exist, we wish to study the phase boun-
daries in its vicinity in greater detail. To that end we ob-
tain, in this section, the behavior of the free energy of the
p+ and p phases in the vicinity of the A, line T&(D). In
the following section, the free energy of the disordered cx

phase will be discussed; that will put us in a position to
determine the phase boundary D ( T, h) and to check the
predictions outlined in the Introduction.

It is convenient to measure the deviation from the crit-
ical line A, in the (T,D) plane in terms of

t=g+m t (4.1)

which vanishes on X. Now g vanishes on (and below) I,.
Thus we organize the free energy (3.10) and the associat-
ed constraint and minimization relations (3.7) and (3.8) in
powers of g. By combining (3.8) and (3.10), and neglect-
ing the additive analytic piece (3.9), the free energy be-
comes

with exponent 5=2@+1 and amplitude

[wp(1+ t )]y/(2y+ i ) (4.11)

The universal amplitude ratios (see I) follow as
/3+ =0 and

A+ C+ A+B,e=
2 T ~ 2 B5+1

= ——'y, e = = ——'y (4.12)

so that B =B 'C /B, =1 and e
= A+ 'Cs++'/B, =( ,'y) i'. It —might be remarked that
when 1 —u =y is an integer, the singular part of the free
energy above T& varies as an integral power of t, and so
cannot be obviously separated from the analytical back-
ground. However, it is clear by continuity in o (or d) and
by the association with g(T) that the assignment A =0
is appropriate.

V. CRITICAL END POINT
AND THE SPECTATOR PHASE

It is fairly clear from our discussion of the spectator
phase a in Sec. III that the spherical field g never van-
ishes in this phase. In particular, at the end point itself,
one has g, )0; by continuity, the same must hold in the
vicinity of the end point E (even if E resides at the tricrit-
ical location, as illustrated in Fig. 4). Furthermore, the
classical critical point C is separated from E (provided it
does not lie at the tricritical location, as can happen only
when d =do and p= 1). Consequently, the a-phase free
energy will be an analytic function of t, g =g —g„and h,
the deviations from the end point. This will be true
wherever the a-phase free energy is defined and, in par-
ticular, will hold on (and some way beyond) the a-p phase
boundary D (T, h). Since the p-phase free energy is also
well defined everywhere near the A,-line parabola by (4.5),
(4.9), and (4.10), etc. , the boundary itself may be obtained
by equating free energies. But this is just the situation
that was envisaged phenomenologically in I. The general
conclusions of I regarding the singularities in the a-P
phase boundary must, therefore, follow here also, provid-
ed only that proper allowance is made for the special
features of the spherical model.

While these arguments serve formally to complete the
verification of I as regards our general spherical models,
it is instructive to exhibit the parameters of the end point
and the nature of the a-phase free energy somewhat more
explicitly. Accordingly, let us return to (3.7) and (3.8),
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4

bF(t, g, h)= —hm + V g [K (t)+L (t)m ]m~,
j=0

(5.1)

where K (t) and L (t) are. quadratic polynomials given by

the constraint and minimization equations, and recall the
definition (4.1) of t .On taking the product of (3.7) and
(3.8) and reusing (3.8) one can eliminate g from the free-
energy expression (3.10) to obtain, without further ap-
proximation,

These expressions neglect correct factors [1+0(q)] with
coefficients diverging as y ~2—.Note that the ex-
ponents also diverge in this limit; that is indicative of the
behavior of the tricritical —end-point boundary at d =d0,
illustrated in Fig. 3. As indicated, corrections of order t,
itself also arise; basically, this means that p must not be
too large if (5.12) is to remain valid.

Next, (b) on the borderline d =d0 or y=2 one finds
(with some care)

Ea=kat, Ei =kit, E2=k2+k2t

+3 k3, K4 =k4

Lp = I0t L] =I] L2 l2 L3:L4=0

(5.2)

(5.3)

t, = —',(p —1) /Vw q,

2p —1 4 (p —1)
3 Vwq

' 9 Vw'

(5.14)

(5.15)

with coefFicients depending only on t. If, for brevity, we

put

=y 1w'=w(1+t), y+=y+1, I =
@+1

we have, explicitly,

k0 = —
—,
' Vtw'q, k', =

—,'y/y+ —Vl w'wqt,

k2= —,'I (1—2Vw'wqt)wt, k2 = —
—,
' Vt w'q,

ki =
—,'(y —2)/y+ —Vl w'wqt, k4 = —

—,
' Vt w'q,

i0 =l2 = I/2y+, 1, = wt /y+ .

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Now, in principle, (3.7) and (3.8) may be solved to yield
m(t, g, h); then g(t, g, h) follows directly from (3.8). On
the A, line t =g +w t vanishes identically as do m, h, and

m& and g&. The ct phase, however, is specified by a root
m (t,g, h) that does not vanish when t~O (with h=O).
On the other hand, at the end point itself we have
AF =AFT=0, by continuity of the free energy. Equat-
ing (5.1) to zero on A, (t = h =0) and canceling the vanish-

ing roots m& =0 yields the quadratic equation

m, b(t, )m, +c—(t, )=0, (5.9)

for m, =m (t„g„O), the end-point value of m . The
coefficients follow from (5.6) and (5.7) as

b =—', (y —2)/(y —1)Vw'q 4wt, —

c = —2t/Vq(1+t)+4w t

(5.10)

(5.1 1)

1!y—2
1 y —2 y+1 Vw2

3y-1 y-1 3
y/[y —2] (5.12)

—1
2 —1m, = —3 wt„g, =3V w t, . (5.13)

(y —2)'

The end-point equation (5.9) can now be solved in con-
junction with (3.7) and (3.8) to yield the end-point param-
eters t„m „and g, . (Of course, g, = w t, follows—
from t=0.) The analysis must be performed separately in

the regimes d~~d0 and is only tractable when t, is small;
however, that is really the only situation of true concern.
We quote some results as follows: first (a) for d (da or
y)2,

y —1 Vwq
' ' '

y —1

1

w2q2

(5.16)

subject to corrections of relative order t, . However, it is
not easy to give a general expression for t, itself. When

p —
p0 and e are both small, one can, nevertheless, derive

the expression

w q
(5.17)

Once the end-point parameters are determined, it is
straightforward but tedious to return to (3.7) and (3.8) to
obtain convergent Taylor-series expansions for m and
m in powers of t=t —t„g=g —g, (or, more con-
veniently, in t=g+w t ) and h . Substitution in (5.1)
then yields

F =F0(T,D)+ g (Q;, +h R, + . )g 't ', (5.18)

where FD is the analytic piece given in (3.9), while the
coefficients Q," and R," depend only on y and the parame-
ters V, w, p, and q. In fact, the leading coefficients Q;
have been computed explicitly in the regime (a) above
(d (d0, p not too large), but the expressions are lengthy
and not very informative. It transpires that to compute
the leading singularities in the phase boundary one does
not need the coefficients R; . The range of convergence of
(5.18) should be determined by the location of the classi-
cal critical point C and by the associated spinodal line in
the (T,D) plane which marks the intrinsic limit of stabili-

ty of the 0. phase.

subject to corrections of relative order p —1 where
p=&Vwp [see (3.2)]. Recall from Sec. III and Fig. 3
that a critical end point exists when d =do only if+ ) l.

Finally, (c) for d )d0 or y (2 we recall, again from
Fig. 3, that a critical end point occurs only if@ )p0(d),
given, for small e = (d —d0 )/cr, by (3.4) with (3.18).
When p —po(d) is positive but small, t, is also small:
compare Figs. 4 and 2. In these circumstances one ob-
tains directly from (5.9), and then from (3.8),
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VI. PHASE BOUNDARY
AND AMPLITUDE PREDICTIONS

In (5.18) the free energy of the a phase is represented
as a Taylor-series expansion about the end point (t„g„0)
in powers of the end-point deviations t, g, and h. Expres-
sions for the singular pieces of the free energies of the P+
and P phases for small h close to the end point are given
in (4.5) and (4.9). [Note that the total free energy F& is
obtained by adding the analytic powers of t contained in
(4.2) and the analytic background Fo from (3.9).] The
singular piece bF&, on the A, line is given in (4.10).

As already observed, the phase boundary D (T,h), or
g (t, h), can now be computed near the end point by
matching the a and P expressions in the various regimes.
The details proceed just as in I and will not be repeated
here. For completeness, however, we review the results
briefly. First, in small fields, the a-13 boundary has the
form (1.2), except that below T, (t &0) the amplitude X
vanishes identically. In addition, the amplitude Z is
not defined, since the field variation beyond the ~Ii~ term
is now proportional to ~h~'~ "~~; this feature is charac-
teristic of an O(n) order parameter with n) 1. Actually,
we could, if we chose, define a corresponding amplitude
in AI

& and D that would also then satisfy an ap-
propriate universality relation.

The nonvanishing amplitudes X+, Y, and Z+ are
simply related to the k-line amplitudes 2, B, and C+
via the coefficients Q," in (5.18). On forming the ratio
X /X+ in accord with the general predictions (1.3)
and (1.4), we find the trivial concordance
X /X+ =0= 3 /2+. Less trivially we obtain

Likewise, the predictions for =3 and:-4 in terms of 03
and B~ [see I, (5.16) and (5.17)] may be checked.

In conclusion, we have exhibited a series of nontrivial
critical end points in spherical models of general dimen-
sionality with short-range and power-law interactions.
The phase boundary between the spectator phase and the
critical phases exhibits singularities as the end point is
approached [see (1.2) and (6.2)]. The amplitudes of these
phase-boundary singularities combine to yield universal
dimensionless ratios. These ratios, in turn, are directly
related to corresponding universal bulk amplitude ratios
evaluated on the A, line that terminates at the end point.
The form of these relations obeys the general, phenome-
nological predictions advanced in I.

In retrospect, our findings are not so surprising. The
main effort required is to establish the existence and loca-
tion of end points in the spherical models. Within the
spherical-model theory no mechanism for the production
of droplet singularities [see I] was apparent previously
and none has appeared here. The O(n) 1) or spin wave
singularities at the standard spherical-model ferromag-
netic phase boundaries aff'ect the form of the spectator
phase boundary, but no new singularities of any sort ap-
pear in the spectator phase itself. The mechanism of a-13
phase coexistence turns out to be just the "classical" one
of the crossing of two separate (although, of course, ulti-
mately related) branches of the free energy; that is, of
course, in accord with the phenomenological theory. It
remains conceivable, however, that models displaying
end points with criticality described by finite n (as against
n ~ oo for spherical models) might violate the predictions
of I.

:-,:—X+Z+ /Y = —1/2(y+ 1) . (6.1) ACKNOWLEDGMENTS

In light of (4.12) and the relation (2 —a)(1—a) =y(y+ 1)
[see (2.17)] this confirms the prediction (1.4) relating =,
to Bi=—3+C+/B .

As in I, it is also interesting to study the D ( T, h) sur-
face as a function of h on the end-point isotherm T = T, .
We obtain

D.(T„I )
—D, = —(Y, «o)II l

"+""+O(h'),
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University of Maryland and to the Conselho Nacional de
Desenvolvimento Cientifico e Technologico (CNPq) for
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where the geometrical factor [see I (5.4)] is

(3D d Tge0=1—
()T ~ o, dD

(6.3)

APPENDIX: CRITICAL BEHAVIOR OF Id ( g)

The basic correlation integral is given by (2.11) and
(2.10) as

x
6+1Y

a'e,
(2—a)'+'(1 —a) ' (6.4)

which can be evaluated explicitly in terms of t, and the
coefficients Q,, The amplitude Y, is likewise found in
terms of B, [see (4.11)]. We may now check the predic-
tion

( )
adk 1

(2~)" g+EJ(k)
(Al)

where the integral runs over the appropriate Brillouin
zone X, which for a hypercubic lattice is specified simply
by —ir & ki a & ir for each component ki =(k)z
(A, = 1, . . . , d). Following (2.5) we can write

[see I (5.15)] where e2= A+B, /B +' was evaluated in
(4.12) above. One finds for our spherical models

b J(k) =J(0)—J(k) =Plkal +E(«) (A2)

(2y+ I )2y+ i/(2y +2)2y+2 (6.5)

which on using (2.17) is seen to verify the prediction.

where P=—J and E(y)=o(y ) as ~y~~0; however, we
will need to specify E(y) more closely. Accordingly, we
suppose b,J(k) is finite and bounded away from zero
everywhere in X except near the origin, where
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E ( y ) =Q ~ y I'+ o ( y ') . (A3)

One could certainly contemplate more singular terms
entering E (y); however, merely by considering changes in
the interactions J(R) at short distances, one sees that one
cannot, in general, avoid terms of quadratic order.

We desire the behavior of Id(g) when $~0 for the
range o (d (2o se"e. (2.12). In this case Id =Id(—$~0) is
well defined and so we can write the identity

G (0), G (0)- ~Q
2 3 p 3 q

Provided the new condition

(Alo)

d ) 3o —2 or o. ( —,'(d+2) (Al 1)

It remains to consider G2(g) and G3(g). Note first that
their integrands are bounded in X except possibly near
the origin, where we find, when (=0,

AId =Id( ) Id =——
«b J(k)[g+b J(k)]

=Go(g)+G2(g)+G3(g), (A4)

is met, we thus have

G (g)+G, (g) =I„p'(,+o (j), (A12)

p —1 —a

jP 'q E(q)
+Pq +Pq +E q

(A5)

(A6)

G (g)
(P q E(q)

Pq +Eq +Pq +Eq (A7)

where f denotes (2w) f d "q with ~q1 ~

& n (all k), while
where p' varies roughly as Q/P . This reconfirms the
form (2.13) for Id(g) but shows that the coefficient p as
given in (2.16) should be corrected by the addition of p'.
Since, however, even the sign of Q is not determined in
general, we may still accept (2.16) as a rough estimate of
P.

When the condition (A 1 1) is not satisfied, the leading
correction to the pg' r term is no longer of order g.
Rather, when d (3o.—2 one finds, by rescaling the in-
tegrands for G2 and G3 with Pq =jy as before, that the
term qg in (2.13) should be preceded by the new term

Now consider G, (g): add and subtract the integral
over %, the whole of momentum space outside%, and re-
scale by putting Pq =gy to obtain

sg(1/y)+(2 —a)/a mal —(3a —2 —d)/a & 0 (A13)

gl/r Qd (d —2a)/a
Go(g) =-

pd/a' (2 )d fp 1 +y

where Qd =2m / /I (d/2), while

dy+G, (g),

(AS)

p2 (2 )d — 2a —d+1 Pq
(A9)

represents the contribution from%. Now a sphere of ra-
dius ~ can be inscribed in S, while a sphere of radius
vr&d circumscribes X. Consetluently, a proper choice of
%(d, cr) satisfying 1 5/n t d makes (A9) an identity.
Evaluation of the integrals in (AS) and (A9) is simple and
leads, if G2 and G3 are ignored, to the form (2.13) for
Id(g), with coefficients p and q given precisely by (2.15)
and (2.16)

where Idq*=Qcd /P'"+ ', in which cd is a sum of
integrals depending only on d and o..

It is evident that in this case the details of the analysis
given in the main text must be changed, since the new
term will play the role of qg. In particular, any formula
involving q (or P for dWdo) needs modification. Howev-
er, the methods that have been developed continue to ap-
ply, and all qualitative features must survive. Further-
more, the universal conclusions regarding the spectator
phase boundary near the critical end point remain un-
changed.

Finally, it is worth pointing out that although (All) is
relatively restrictive when d =3 or 2, necessitating
e=(d —do)/(7 & —,

' or e) 0, respectively, it represents no
restriction at all on e when d ~ 1. (Recall that e ranges
from —

—,
' to + —,

' as d varies from d =o. to d+ =2o-: see
also Fig. 3.)
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