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By using effective-medium approaches, we obtain the onset of the electrical-resistivity rounding,
above the normal-superconducting transition, associated with inhomogeneities of the mean-field
critical temperature T, at scales larger than the superconducting correlation length. These results
are compared with available data in single-crystal and single-phase (to within 4%) polycrystalline
YBa,Cu;0,_5 samples. This comparison shows that the measured resistivity rounding cannot be
explained by these types of local T, inhomogeneities. Complementarily, our calculations allow us
to check some proposals on T,, inhomogeneities associated with local sample strains or oxygen-
content variations. The interplay between T,, inhomogeneities and superconducting order-
parameter fluctuations (SCOPF) leads to the conclusion that in the mean-field-like region (MFR)
above the superconducting transition, the T, inhomogeneity contribution to the measured resistivi-
ty rounding in high-quality (single-phase) cuprate oxide superconductors is negligible. In contrast,
our analysis confirms that in the MFR these effects may be explained quantitatively on the grounds
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of the Lawrence-Doniach theory for SCOPF.

I. INTRODUCTION

In summarizing, in 1978, the effects of fluctuations on
the measured electrical resistivity p™(T) above the super-
conducting transition in metallic films—effects which
have been actively studied for the last 10 years—
Kosterlitz and Thouless concluded that the onset of the
observed rounding of pM( T) “may alternatively be a re-
sult of film inhomogeneities.”! However, no quantitative
or qualitative justification of that alternative was present-
ed then. In fact, in conventional low-temperature super-
conductors (LTSC’s), these possible inhomogeneity effects
on p™(T) above T,;, the temperature at which p™(T)
around the transition has its inflexion point (see below),
have received relatively little attention, although they are
often invoked in many works on the critical behavior
around T,;. This is in contrast with the continued atten-
tion to the interplay between other superconducting as-
pects and inhomogeneities in LTSC’s, including the be-
havior of the p™(T) offset (below T,;).>>

In high-temperature copper oxide superconductors
(HTSC), the dilemma between sample inhomogeneities
and thermodynamic fluctuations above T,; was stated by
Bednorz and Miiller in their seminal work,* although
they formulated the alternative a way opposite to that
done by Kosterlitz and Thouless for LTSC’s: After indi-
cating that the observed rounding of p™(T) above T,; in
La-Ba-Cu-O compounds may be of percolative nature,
Bednorz and Miiller conclude that “the onset [of the
pM( T) drop] can also be due to fluctuations in the super-
conducting wave functions.” Since then, the rounding of
pM(T) above T,; in HTSC’s has been measured in a wide
variety of polycrystals, films, and single-crystal samples,
and the results are fairly well explained in terms of fluc-
tuations of the superconducting order-parameter ampli-
tude (SCOPF) in layered superconductors.>® However,
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as is still the case for LTSC’s, very often it is suggested
that inhomogeneities may play an important role in
pM(T) rounding, mainly in polycrystalline samples. In
fact, because of the smallness of the superconducting-
correlation-length amplitude £(0) of HTSC’s, on the or-
der of interatomic distances, all the magnitudes may be
sensitive near T,; to different types of inhomogeneities,
even when these inhomogeneities exist at small scales.
Indeed, as £(0) in HTSC’s is typically two orders of mag-
nitude smaller than in LTSC’s, SCOPF effects will be cor-
respondingly much more important in the former materi-
als.>~7 It thus seems evident that the interplay between
inhomogeneities and SCOPF effects is a topic of consider-
able interest, the resistivity above T,; being probably one
of the best magnitudes to probe such an interplay.

To the best of our knowledge, until now the inhomo-
geneity influence on pM(T) above T,; in HTSC’s only has
been quantitatively studied in an important but particular
case:>$ the spatial inhomogeneities at scales larger than
&E(T) (here with its geometrical meaning) associated with
the orientational mismatch between sample domains (for
instance, grains, polycrystallites, or untwinned regions)
or with the presence of nonsuperconducting domains (for
instance, due to compositional inhomogeneities or even
sample porosity). In the mean-field-like region (MFR)
above T,;, where the analysis was done, the characteristic
length of these domains was supposed to be much larger
than &(T) and also temperature independent. These
effects lead to an enhanced apparent resistivity (or,
equivalently, to a reduced cross-section area of the sam-
ple) and, consequently, strongly modify the amplitude of
the p™ rounding effects, characterized by the excess or
paraconductivity Ao (see below). In contrast, this type of
inhomogeneity does not affect, at least in the MFR, the
temperature behavior of Ao. These temperature-
independent inhomogeneities explain very well the Ao
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differences between polycrystalline and single-crystal
samples.>®

There exists another important class of inhomogeneity
that may also affect the electrical resistivity near the su-
perconducting transition: the compositional or structural
inhomogeneities [also at any scale larger than &£(0)]
which, in contrast with those alluded to above, may
modify spatially the local mean-field critical temperature
T, By local we mean a sample domain with a charac-
teristic dimension larger than the superconducting-
correlation-length amplitude in the mean-field region,
where our results will be applied, and smaller than any
morphological or structural macroscopic dimension as,
for instance, the grain size (in polycrystalline samples) or
the untwinned domain size. One of the most common
and perhaps well-known sources of critical-temperature
inhomogeneity is the presence of local strains. In the
case when the whole sample is under an external uniform
pressure, the dependence of the critical temperature on
strain was first observed by Kammerling Onnes and co-
workers.® The T,, dependence on local strains was later
invoked by Testardi as a possible alternative mechanism
to fluctuations for explaining the observed rounding of
p™(T) in LTSC films.” As noted before, HTSC’s should
exhibit enhanced sensitivity to localized inhomogeneities
because of their short coherence lengths. In this regard,
it has been recently proposed, for instance, that when
dealing with local strains modifying the Cu-O, interplane
spacing, such as lattice dislocations, the local T,
enhancement can be of the order of T, itself both in Y-
and La-based compounds.!® Another possible source for
a spatially varying T, is stoichiometric inhomogeneity.
For instance, since the oxygen-vacancy content has an
effect upon T,,,!! variations in the oxygen-vacancy order-
ing may lead, as suggested by different authors,!? to an in-
homogeneity in T,

In this paper we will use the mean-field approaches of
the effective-medium theories (EMT’s) to determine the
onset of the rounding of the sample average resistivity as-
sociated with inhomogeneities of the critical temperature
in HTSC’s. These results will be confronted with avail-
able experimental data on the resistivity rounding in ei-
ther single-crystal or polycrystalline YBa,Cu;0,_5 sam-
ples in order to check (i) if any Gaussian T,, inhomo-
geneity alone may explain the observed rounding of
p™(T), (i) if the proposed T, inhomogeneities, associated
with local sample strains or local oxygen content, are
compatible with the measured p™(T) rounding, and (iii)
the interplay between SCOPF (an intrinsic effect always
present) and T,, inhomogeneities (a nonintrinsic effect) at
scales larger than £(T'), and their relative contribution to
the measured paraconductivity.'®

II. RESISTIVITY ROUNDING ASSOCIATED
WITH A T,, GAUSSIAN DISTRIBUTION

In this section, we will calculate the rounding of the
effective (sample average) resistivity p® T') associated with
the presence of spatial inhomogeneities of the normal-
superconducting transition temperature. These inhomo-
geneities may be characterized through the local mean-
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field-like critical temperature T,,. As noted in the Intro-
duction, by local we understand here fixed-volume re-
gions of the sample with characteristic dimensions larger
than £(T), but smaller than the typical sample domains
(grains, twinnings, etc.). T,, may be defined through the
local resistivity p(T) by

p(T,)=0, (1)

in the absence of fluctuation effects. Note that even in the
case of homogeneous samples (the same T,,), we do not
have a direct experimental access to T, but its use facil-
itates the formulation of the interplay between inhomo-
geneities and fluctuations effects.

The main hypothesis of our mean-field approach is to
assume a spatial Gaussian distribution of T, character-
ized by the mean value of the critical temperature T,

and by the standard deviation AT,,: At a sample temper-

ature T around T, there will be a volume fraction P(T)
of the material which has become a superconductor (the
corresponding local T is above T), given by

|T_ TCOI

1+erf
er AT,

=1
P(T)=~ (2)

In this equation, erf is the error function, and the minus
(plus) sign is for T'> T (T < T,o). Note that P(To)=1;
i.e., at T,y half of the sample has become a superconduc-
tor.

At this point it will be useful to relate T,,, a nondirect-
ly measurable temperature, to some accessible charac-
teristic temperature of the p™(T) behavior. As noted in
the Introduction, we may use T,;, the “geometrical” tem-
perature where p™(T) around the transition has its
inflexion point, i.e., is defined by’

d*pM(T,p)
dT?

To relate T,; and T, we must realize that the main drop
in p™(T) will occur when there exists a superconducting
percolative path through the sample. For a three-
dimensional (3D) continuum system, this percolation
threshold corresponds to a volume, here superconduct-
ing, fraction close to 15%.!* We can then introduce the
percolative critical temperature T,, by P(T,.)=0.15.
The important point is that since T,;~T,,, we get, from

=0. (3)

cpr
Eq. (2),
1 | TcI - TCOI
0.15~= |1—erff | —— s 4
> er AT, (4)
or, equivalently,
TC,—TCO:O.GATCO . (5)

Note that if T, inhomogeneities are neglected (AT ,,==0),
we obtain T_;~T,,, as first proposed in Ref. 5. Indeed,
this conclusion must be seen as an approximation, since
T., is never experimentally accessible directly. More-
over, we have checked that for any T, inside T,,£AT,,
the main conclusions of this paper remain the same.
Here AT,;, the upper half-width of the resistive transi-
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tion, is defined by dp/dT(T,+AT,)=1dp/dT(T,).
Note also that both T, and T,; may strongly differ from
T., the temperature at which resistivity becomes non-
measurable, i.e., p™(7,)~0. This is so because, whereas
T,; and T, concern individual grains, twin domains, etc.,
T, concerns the overall sample and, therefore, may be
highly sensitive to intergrain or interdomain links.

Equation (5), which imposes a constraint between T,
and AT,y can be used to make some very useful order-
of-magnitude estimates of the possible T,, enhancements.
For instance, assuming 7,.,>~90 K and AT,,~= T, as pro-
posed in Refs. 10 and 12 for Y-based compounds, Eq. (5)
yields T,,~150 K. This is obviously against experimen-
tal evidence. Assuming again T,,~AT,, and imposing
T.;=90 K for Y-based compounds, we obtain T,,~55 K.
No bulk measurements (such as heat capacity or magnet-
ic susceptibility) have ever shown such low bulk critical
temperatures with respect to the resistive ones for
YBa,Cu;0,_5 compounds. These qualitative estimates
suggest that on the grounds of our plausible assumptions,
the local T,, enhancements induced by strains or varia-
tion in composition are much weaker than has been put
forward. These estimates do not rule out the possibility
of T,, inhomogeneities playing an important role on
pM(T) above T,;. To check this possibility quantitatively,
we must first obtain the sample average resistivity p*(7T')
from the local T, distribution and a given profile for the
local resistivity p(T) and then compare it with p™(T). In
Secs. IT A and II B, we are going to analyze two different
cases: the presence or not, simultaneously with the T,
inhomogeneities, of an intrinsic p-rounding effect, such as
that associated with SCOPF’s.

A. Resistivity rounding due to 7., inhomogeneities alone

If the only rounding mechanism is a T, inhomogenei-
ty, then the Jocal resistivity will only take the values p=0
[for a volume fraction P(T)] or p=py [for a volume frac-
tion 1—P(T)], where pp is the normal-state resistivity.
The effective resistivity of the sample will be calculated
using the mean-field approaches of the effective-medium
theories (EMT’s). Their use requires P(7) in Eq. (2) to be
far from the percolation threshold. As a representative
EMT, we shall use the symmetrical Bruggeman’s mod-
el,'> which in our case yields

pt=pp(T[1—3P(T)] . (6)

It is worth remarking that provided p®XO0.6pg, the
differences in p*(7) given by other EMT’s, like the
Claussius-Mossotti model,!> are only a few percent. In
fact, the above constraint on the resistivity values will be
taken here as a practical criterion for the low-
temperature limit of the applicability of the above model
[Eq. (6)]. Note again that Egs. (2) and (6) contain two
main parameters, namely, T,., and AT,, Both are, in
principle, unknown, but must, however, be correlated by
Eq. (5). The possibility of a T, spatial inhomogeneity ex-
plaining by itself the resistivity behavior in the MFR
amounts to checking whether Eqgs. (2) and (6) fit the mea-
sured resistivity with 7., and AT, as free parameters but
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with the constraint of Eq. (5). This comparison is done in
Sec. II1.

B. Resistivity rounding due to the simultaneous
presence of T, inhomogeneities and SCOPF

We now deal with the simultaneous presence of an in-
trinsic rounding effect, i.e., thermodynamic fluctuations
of the superconducting order-parameter amplitude
(SCOPF), and a nonintrinsic effect, i.e., a spatial variation
of T.y,. Note here that the interest of this scenario is not
only due to its implications on the p™(T) rounding above
T,.; in HTSC’s, but also because it concerns the general
topic of the interplay between intrinsic and nonintrinsic
rounding effects near critical phenomena.'® Since the T,
inhomogeneities studied here act at scales larger than the
correlation length, we will assume that they do not
change the nature of SCOPF’s themselves. (A different
case is, for instance, two-media materials in which the su-
perconducting medium is near and above the percolation
threshold, and where the structure of SCOPF’s with wave
vectors larger than the percolation length is modified.!”)
As our approach will be applied to copper oxide super-
conductors, which are layered materials, we introduce
the SCOPF through the Lawrence-Doniach (LD) ap-
proach,!® which we have recently shown to be very well
adapted to these materials.>® Introducing the excess con-
ductivity Ao by

o=op+Ao, (N

where o is the background or noncritical part of the

conductivity (o0p=1/py), LD theory gives, for the

fluctuation-induced excess conductivity in the CuO, lay-

ers (ab planes),18

—1/2

Bip
€

ALp
Ao .

Here €=(T—T,y)/T.p, Bip=[2.(0)/d,]? d, is the
effective distance between adjacent ab superconducting
layers, and £.(0) is the amplitude of the superconducting
correlation length in the c direction. In the original LD
theory, A p=e?/16%d,, where e is the electron charge
and 7 is the reduced Planck’s constant. In more recent
versions of LD theory, the amplitude 4;p may depend
not only on an effective interlayer distance, but also on
the interplane coupling,'®?° or even on the number of
components, 1, of the order parameter.?! For instance, in
the version of Ref. 21, A, =(e2/16%d,)rn, where r is a
factor associated with pair-breaking effects, which equals
1 for s-wave pairing. It is worth remarking that in this
approach, for n =2 the amplitude 4 is twice the origi-
nal LD value. Let us also remember here that our previ-
ous analysis of the paraconductivity in HTSC’s strongly
suggests that one other possible intrinsic rounding effect
on pM( T), that associated with the scattering of normal
excitations by SCOPF’s, is negligible.® This is also found
in the theoretical treatment of Ref. 21. Thus we will use
the LD SCOPF effects as the only intrinsic p*(T) round-

ing.
Because of the simultaneous presence of intrinsic and

1+ (8)
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nonintrinsic rounding effects, there will be, at a given
temperature, a continuum of conductivity values. In or-
der to treat quantitatively this situation, we need a gen-
eralization of Eq. (6) which is valid for a medium having
only two possible values of electrical conductivity, p=0
and pp. For that purpose we shall use the generalized
Bruggeman’s EMT formula'’

e
[ 7—"0(s,TNdo=0, O)
o—20°
where o¢ is the effective conductivity (o°=1/p¢) and
Q(o,T) is the local conductivity distribution; i.e.,
Q(o,T)do is the volume fraction of the sample having
an electrical conductivity between o and o+do at a
sample temperature 7. Since we have assumed a Gauss-
ian distribution for T,,, we simply get, for the conductivi-
ty distribution,
]

(10)

TCO(U’ T)— TCO

7T =
Q(U ) ATCO

exp

2
VA T.o

where T,o(o,T) is now the relationship between conduc-
tivity and critical temperature as given by the fluctuation
mechanism, i.e., Egs. (7) and (8). For computational pur-
poses it is better to recast Eq. (9) into the equivalent itera-
tive form

e (c—0°)?

o= [oQ(ordo+ [ 12T 00)o . (11)
It is worth noting that in first order in (o —0°) /0¥, the
effective conductivity is simply, as one would expect, the
volume-weighted average of the local conductivity. In
order to carry out the integrals in Eq. (11), we need at
any sample temperature, as singled out in Eq. (10), the lo-
cal critical temperature for a given local conductivity.
Since the fluctuation mechanism [Egs. (7) and (8)] gives
directly the conductivity for a given critical temperature,
the above integrals are worked out more easily by sum-
ming up in T, instead of . Thus, in particular, Eq. (9)
becomes

(T, T)—0° 2

o(T.0, T)—20° VAT,

( TcO_ TCO)Z
ATZ,

Xexp dT,.,=0, (12)

where o(T,,, T) is the conductivity as directly given by
Eqgs. (7) and (8).

In sum, we have obtained the proper expression for the
effective electrical conductivity, namely, Eq. (12), which
contains in the MFR both the intrinsic rounding due to
SCOPPF’s and that due to a Gaussian distribution of local
T,, values. This formula is used in the next section for
estimating the transition-temperature inhomogeneities in
real samples from resistivity data.
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III. COMPARISON WITH THE EXPERIMENTAL DATA
IN THE MEAN-FIELD REGION

In order to compare the expressions obtained above
with the experimental results, we shall use as examples
published resistivity data of one polycrystalline sample,’
single phase to better than 4%, and a single crystal in the
ab plane,?? both of nominal composition YBa,Cu;0;_g.
A general view of their electrical resistivity is plotted in
Fig. 1, circles and squares corresponding to, respectively,
the polycrystal and single crystal in the ab plane. Note
that two samples differ largely both in the absolute values
of the resistivity and the temperature slope. Our purpose
here is, therefore, to compare the expressions we have ob-
tained for the effective p° in the mean-field region, in
which we have included the eventual presence of T, in-
homogeneities with and without SCOPF’s, with the mea-
sured resistivity p™. As said in the Introduction, p™ may
be also affected by the mismatch between grains or
untwinned regions or even the presence of nonsupercon-
ducting domains. These effects must then be “added” to
p° in order to obtain a proper comparison with pM. Fol-
lowing the empirical picture described in detail in Refs. 5
and 6, in the presence of the temperature-independent in-
homogeneities, p™ is related to p° (which contains the T,
inhomogeneities and/or the SCOPF effects) by

1
pM:;p‘*ﬂ% , (13)

where p (0<p <1) is associated with the effective cross-
section data of the sample (and, indeed, also with the
path lengthening due to the random orientation of the ab
planes) and p. accounts for the contact resistance be-
tween different sample domains (grains, untwinned
domains, etc.). Above T,y both p and p, are assumed to
be temperature independent in the MFR (and, of course,
at higher temperatures). To extract p and p, from the ex-

40 . . ; . 250
“«z
{200
30}
E €
o 150 ©
(@] (o]
g 20r 3
= o 100
o
zm S *a
4 .
g’ BRCKGROUND
o 8 , . . .
50 100 150 200 250 300
T (K)

FIG. 1. Temperature behavior of the electrical resistivity of
the two samples used here as typical examples. The squares cor-
respond to the resistivity in the ab plane of a single crystal mea-
sured by Hikita and Suzuki (Ref. 22). The circles correspond to
a granular sample (Ref. 5). The background resistivity is shown
(solid lines), as well as the mean-field region (MFR) where our
results are applied.
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perimental data, the important point is the fact that far
away from the transition (background region) neither any
eventual T, smearing nor SCOPF’s will be relevant, and
so p® can be identified with the ideal resistivity of that
type of compound in the ab plane, i.e., that measured in
high-quality single crystals in the ab plane. Other details
of the p and p, extraction procedure may be seen in Refs.
5 and 6, but we just state that (i) For the ideal back-
ground resistivity in the ab plane, we have used the Zou-
Anderson functional form, namely, p5=C,;/T+C,T.
C, and C, are obtainable by fitting this expression of pp
to the experimental data in the temperature interval
150-250 K. (ii) The ideal temperature slope of resistivity
has been taken as C,=0.6 uQcm, in accordance with
measurements on high-quality single crystals.?>? (iii)
The mean-field-like region for either EMT or LD theory
is taken as the temperature interval
0.1<[pp(T)—p«T)]/pp(T.;)<0.4. Some of these
features may be seen in Fig. 1. When this analysis is ap-
plied to the two aforementioned samples, one obtains
p=~1, p,~0 for the single crystal, and p=6.6X10"3,
p.=7.8 mQcm for the polycrystal. These values of the
parameters associated with the temperature-independent
structural inhomogeneities show that, as expected, our
two representative examples correspond to two very
different cases: an almost ideal single crystal and a
granular sample having strong long-scale temperature-
independent inhomogeneities. For the remainder of this
section, we shall compare the measured resistivity round-
ing of these two samples with the theoretical p¥, obtained
by combining Eq. (13) with p® given by Eq. (6) or (12) and
using for p and p. the values indicated above.

We will first compare the experimental data with the
theoretical p™ due to either SCOPF or T,, inhomo-
geneities alone. In Figs. 2(a) and 2(b), we display the re-
sults of this comparison. The experimental points corre-
spond, respectively, to the single-crystal (squares) and
granular (circles) samples of Fig. 1. The inflexion-point
temperatures are, respectively, T,;=90.86 and 91.04 K.
The two solid lines were obtained from Egs. (7), (8), and
(13), with the values of p and p, indicated before and with
Ayp and By as free parameters (and T,,=1T,;). The re-
sulting values are, in both cases, Ap=310£50
Q 'em™!and By =0.16+0.05. These relatively impor-
tant uncertainties are associated with the sample dimen-
sions for both the single-crystal and granular samples,
and the p and p, extraction for the latter. The fact that
the same A and By p, within uncertainties, explain the
resistivity rounding in single crystals and polycrystals in
the MFR is a nice check of the consistency of our
analysis procedure in terms of LD theory. On the
grounds of the original LD approach, those values corre-
spond to a correlation-length amplitude £.(0)=1
+0.3 A a£1d an effective superconducting-layer spacing

.=5%+1 A. Note that the latter value is well between
both CuO, p&ane spacings in YBa,Cu;0,_s compounds
(3.3 and 8.4 A). The above value for £.(0) is somewhat
smaller than that currently found by measuring other
properties, where £,(0)~2 A.?* In fact, this is the value
we find, within the uncertainties, using for A the ex-
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FIG. 2. Comparison between the measured resistivity in the
MFR and different approaches for the resistivity rounding:
Lawrence-Doniach theory alone (solid lines), with the best-fit
values 4;p=310+50 Q@ 'cm ™! and B, =0.16+0.05; a best-fit
Gaussian distribution of transition temperatures alone with
T.,=70+5 K and AT, =20+5 K (short-dashed lines), and with
the percolation constraint of Eq. (5) (long-dashed lines). The
MFR is the region between 10 and 40 on the left axis.

pression proposed in Ref. 21 for s-wave pairing (and
then d,=10%2 A). However, the important point for the
analysis in this paper is that in all the cases the functional
form for Ao remains the same, and therefore our con-
clusions for the role of T,, inhomogeneities in the pres-
ence of SCOPF’s do not change.

The pM( T) rounding due to transition-temperature in-
homogeneities alone is represented by the dashed lines in
Figs. 2(a) and 2(b). The short-dashed lines represent Eqs.
(2) and (6) with T,, and AT,, as free parameters. The
best-fit values are T,,=70+5 K and AT,,=20+5 K for
Figs. 2(a) and 2(b). Not only is the fit quality clearly
worse than for LD theory alone, but the best-fit values
are physically untenable. The long-dashed lines represent
Egs. (2) and (6), but with the constraint of Eq. (5). The
disagreement with the experimental points rules out
again the possibility, as one should expect, of a smearing
of the transition temperature as the only driving mecha-
nism for the rounding of the critical behavior near and
above T ;.

We now turn to the issue of the interplay of T, inho-
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mogeneities with SCOPF’s in HTSC’s. In other words,
what will be the effect of T,, inhomogeneities when
pM(T) is already rounded by the intrinsic SCOPF mecha-
nism? The answer can be easily obtained by using Eq.
(12). For SCOPF’s we will use the LD approach with
A;p=370 Q@ 'ecm ™! and B, =0.2. The T,, Gaussian
inhomogeneities will be characterized by its spread AT,,.
A typical example of the results of our calculations is
shown in Fig. 3, where the difference in p™(T) is plotted,
in this example for T—T,,=4 K, with and without T,
inhomogeneities (but, we recall, always affected by
SCOPF’s), as a function of AT,,. From this figure an im-
portant conclusion we can derive is the sensitivity of elec-
trical resistivity as a probe to detect possible spreading in
the transition temperature. In concrete terms, assuming
a typical resistivity relative resolution of 2X 1073 (typi-
cally 0.1 over 50 u{lcm), we see that one can resolve
transition-temperature inhomogeneities of some tenths of
kelvin, the precise amount depending on the absolute
temperature within the MFR. This result admits also
another reading: When interpreting the resistivity round-
ing onset (above T,;) in terms of SCOPF’s, transition-
temperature inhomogeneities up to some tenths of kelvin
(in fact, of the order of the observed width of the resistive
transition) should affect very little the precise values of
the critical exponents or amplitudes. It is clear, then,
that T,, inhomogeneities produce some kind of average
of the critical magnitudes [see, for instance, Eq. (11)], but
their effects on the resistivity will be relatively small be-
cause the latter is already rounded by SCOPF’s. Howev-
er, T,, smearing effects may be appreciable when acting
on magnitudes varying rapidly near the normal-
superconducting transition. This may be, for example,
the case of the resistivity itself, beyond the MFR closer to
T,y where its temperature variation is steeper. This
feature introduces additional difficulties in analyzing the
paraconductivity results in the so-called “full critical”
and crossover regions.”> However, we remark that the

0.8r

0. 41

108 [p"0y-p" (AT )1 /p" (D)
o
[}

AT,e (KD

FIG. 3. Influence of a Gaussian T, inhomogeneity distribu-
tion on the electrical resistivity already rounded by thermo-
dynamic fluctuations of the superconducting order-parameter
amplitude (LD model). p™(0) and p™(AT,,) are the measured
resistivity, in this example at T—T,,=4 K (well within the
MFR), without and with T,, inhomogeneities, respectively,
AT, is the spread of the Gaussian inhomogeneities.
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observed Ao(€) behavior in the crossover region is very
similar for all the Y-based samples we have studied and
can be easily understood in terms of an intrinsic distinct
dynamic regime for fluctuations, as first proposed in Ref.
25. Another example for the relative importance of T,
inhomogeneities is the specific heat, for which it has been
recently suggested that a 7,, inhomogeneity of some
tenths of kelvin could have a dramatic effect on the
analysis of its critical behavior.?

The above results may be confirmed by fitting Eq. (12)
to the experimental data with A;, and B;p for
SCOPF’s, and T, and AT, for the T,, inhomogeneity, as
free parameters. In that case we find that the critical
temperature spread AT,, goes to negligible values (below
0.1 K), whereas the mean critical temperature 7., falls
very close to the inflexion-point temperature T, con-
sistent with Eq. (5). Indeed, we also find again the same
values for 4;p and B as quoted above. All the single-
phase polycrystalline samples® submitted to the same
analysis reproduce the same features. These results imply
that in single-phase (better than 4%), either granular or
single-crystal, samples, the T, inhomogeneities effects on
the resistivity rounding in the MFR are negligible, their
magnitude being less than our sensitivity threshold: some
tenths of kelvin.

As remarked earlier, two main hypotheses on which
our results rest are (i) a temperature-independent length
scale of T, inhomogeneities. It should be of questionable
validity if, close enough to T, the correlation length
exceeds that length scale. At the lower temperature limit
of the MFR, T—T,;~1 K and so §,, ~ 100 A. The pro-
cedure developed here can then be applied to probe even-
tual T, variations in grains or crystallites for polycrys-
tals, or microtwins domain for crystals, caused, for in-
stance, by different average oxygen content. At much
shorter length scales, other inhomogeneities such as
chemical defects or local variations in the oxygen-
vacancy ordering might exist as well. This ordering is
also shown to affect transition temperatures.”’” The treat-
ment of these possible atomic-range inhomogeneities is
outside our framework and should deserve further
analysis. (i) We have also assumed a Gaussian distribu-
tion of local T,y’s. Of course, the actual distribution need
not be Gaussian. In fact, assuming T, inhomogeneities
as the only rounding mechanism, one can easily deter-
mine, for instance, by Eq. (6), an ad hoc superconducting
fraction P(T), i.e., the cumulative distribution that fits
any resistivity data. Though this ad hoc distribution (ob-
viously not necessarily Gaussian) can only be probed up
to the percolation threshold (=~15%), we have checked
that it is irregular in that it shows a kink coinciding with
the shoulder of the resistivity curve. Moreover, when
both SCOPF and T,, inhomogeneity rounding effects are
considered, the effective (average) conductivity [see Eq.
(11)] should depend mostly on the distribution width and
less on its finer details. We do not think, consequently,
that the T, distribution (provided it is a regular one)
choice is very sensitive for our main results.

Finally, we want to comment briefly on a suggestive
analogy with the case of a liquid *He sample placed near
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the A line at a given temperature and in the presence of
gravity. Here, because of the gravity-induced pressure
gradient, each point of the sample is at a different re-
duced (critical) temperature. The analogy with a HTSC
sample in which T— T, varies locally is evident. When
studying the propagation of first sound near the A line,
there are two simultaneous rounding effects on its veloci-
ty: (intrinsic) critical dispersion and (nonintrinsic)
gravity-induced inhomogeneity. In that case it is also
found that the nonintrinsic rounding effect is strongly at-
tenuated with regard to the intrinsic one.!®

IV. CONCLUSIONS

We have studied the presence of inhomogeneities of the
mean-field transition temperature T,, in HTSC’s, caused,
for instance, by local strains or oxygen-content varia-
tions, by using electrical resistivity as a probe property.
To that end, we have obtained, by resorting to the
effective-medium theories, pertinent expressions for the
effective conductivity in the presence of a Gaussian distri-
bution of transition temperatures, either with or without
the additional presence of thermodynamic fluctuations.
Order-of-magnitude estimates show that very general
features of resistivity behavior near the transition temper-
ature are incompatible with a transition-temperature
spread of the order of the mean critical temperature it-
self.!%12 Moreover, the observed resistivity behavior in
the mean-field region cannot be explained solely by any
T., inhomogeneity.

When considering the concurrent effect of thermo-
dynamic fluctuations of the superconducting order-
parameter amplitude (SCOPF), as given by LD theory
and T,, inhomogeneities, comparison with the experi-
mental resistivity-rounding onset in single-phase (to better
than 4%) YBa,Cu;0,_5 samples leads to a negligible
(below 0.1 K) T,, spread. Since we have shown that a
smearing of some tenths of kelvin will produce an effect
comparable to the typical experimental uncertainties,
that degree of smearing sets an upper limit for T, inho-
mogeneities in Y-based (single-phase) HTSC’s. Answer-
ing the question first raised by Bednorz and Miiller,* we
may conclude, therefore, that transition-temperature in-
homogeneities seem to play a negligible role in the electri-
cal resistivity-rounding onset in HTSC’s, even in (single-
phase) polycrystalline samples. In contrast, our analysis
confirms™® that for either (single-phase) granular or
single-crystal YBa,Cu;0,_5 samples the rounding effects
on the resistivity in the MFR can be explained quantita-
tively on the grounds of the Lawrence-Doniach theory for
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SCOPF’s, with the same values for the correlation-length
amplitude and the effective interlayer spacing. Although
this work has focused on HTSC’s, let us finish by noting
that its qualitative aspects may also be applied to LTSC’s.
For instance, the presence of intrinsic SCOPF effects will
also mitigate the relevance of possible nonintrinsic 7, in-
homogeneities. However, as the correlation-length am-
plitude is orders of magnitude larger than in HTSC’s,
SCOPF effects will be much smaller, relevant only very
close to T,,. Consequently, as stressed by Kosterlitz and
Thouless,! the T,, inhomogeneities may play a substantial
role in the p™(T) rounding onset in LTSC’s, in any case
more important than in HTSC’s. At a more quantitative
level, because of the large magnitude of the correlation
length in LTSC’s, some of our simplifying assumptions,
such as the existence of sample domains with a given lo-
cal T,, having a temperature-independent volume, may
not be reasonable approximations in this case.?®

Note added in proof. It has been suggested recently
that the electrical resistivity along the ab plane in
YBa,Cu;0,_5 (6 <0.1) in single crystals, and for T ~150
K up to room temperature, follows a linear temperature
dependence slightly better than the Zou-Anderson tem-
perature dependence used in this work for the intrinsic
background resistivity, p [see, e.g., Ref. 29]. However,
as we have clearly pointed out earlier [Ref. 5, and in par-
ticular Fig. 1 therein], the use of either T dependence has
a relatively small influence on the extracted paraconduc-
tivity. This is because when analyzing critical phenome-
na, the precise choice of the background should be of lit-
tle relevance provided that a high-quality fitting in a wide
T region is realized and also that the extrapolation
through the transition is smooth [see e.g., Ref. 30 and
references therein]. For instance, the intrinsic LD values
for YBa,Cu;0;_5 compounds obtained in this work by
using the Zou-Anderson background, namely,
A p=310+50 Q7 'em™! and B;;;=0.161+0.05 only
shift to 4;,=380+70 Q 'em ™! and B;;=0.13+0.06
when a linear temperature dependence for the back-
ground resistivity is used. The latter values, which
comprise the scatter from sample to sample as well as all
estimated uncertainties, are obtained by using
pp(T)=C,+C,T, with C,=5 uQcm and
C,=0.5 uQ cm K1, which are well within the average
values obtained in single-crystal samples [see the above-
indicated references and also Ref. 31].
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