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Quadratic substrate energy term and harmonics in the Halperin-Nelson model
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The influence of the quadratic term in the Taylor expansion for the substrate potential, which is
neglected in the Halperin-Nelson model, is investigated. The quadratic term is found to yield a har-
monic series for the equilibrium displacement and a quadratic potential term in the energy of devia-
tions from this displacement. Criteria for convergence Of the series and negligibility of the quadra-
tic potential term are derived. The criteria require the misfit vernier period and length scale of devi-
ations not to be large compared with the Van der Merwe discommensuration width.

INTRODUCTION THE HN MODEL

The study of dislocation unbinding or Kosterlitz-
Thouless transitions in two dimensions is of theoretical
and practical interest. Current theories are based on the
work done by Kosterlitz and Thouless' (KT) and Young
for free layers, and by Halperin and Nelson (HN) who
included an incommensurate modulating layer-substrate
potential (MP).

HN, using a linear response approximation, discarded
the term in the Taylor expansion of the MP that is quad-
ratic in displacements from the free condition of the ad-
layer, and higher-order terms. In this approximation, it
is possible to eliminate the explicit occurrence of the MP
in the energy of the adlayer by introducing a shift in the
reciprocal space representation of the displacement. This
corresponds to a sinusoidal displacement, which
represents an equilibrium state between the competing
periodicities of the elastic force and the truncated MP.
We will refer to this displacement as the regular displace-
ment. Henceforth the deviation from the regular dis-
placement will be termed the residual displacement. The
energy of the system then has a regular elastic form in the
residual displacement with an additional term dependent
on the relative orientation of the adlayer and the sub-
strate added. This energy can then be treated in the
framework of KT theory.

This linear-response approximation is subject to the re-
strictions that the MP should not be too strong (or that
the temperature be high enough) and that the adlattice be
sufficiently incommensurate with the substrate. In order
to quantify the above restrictions, we study the effect on
the HN model of the quadratic term in the Taylor expan-
sion of the MP. The main effects of the quadratic term
are found to be the introduction of higher-order harmon-
ics of the regular displacement found by HN, similar to
the charge-density-wave harmonics predicted by McMil-
lan and Nakanishi and Shiba, and the persistence of a
quadratic MP term dependent on the residual displace-
ment.

Our main goals are to assess the effect of the quadratic
term and to quantify the restrictions this imposes on the
linear-response approximation of the HN model.

u,, =-,'(a, u, +a, u, ) .

u is the displacement field of ML atoms from their "free"
positions, i.e., the positions they would have had, had
there not been a MP, and A, and p are the Lame, elastic
constants. The energy of the ML in the MP can be ex-
pressed in terms of the reciprocal lattice vectors K of the
substrate and the MP Fourier coefficients gK as

&i,= —g gg&expIiK [R+u(R)]I,

where the R are the lattice vectors of the adlayer. We
transform to reciprocal space by

u(q) = f u(R)e'q
R

(4)

u(q) is the Fourier transform of the displacement field in
the ML reciprocal lattice and q is a ML reciprocal lattice
vector in the first Brillouin zone. The total energy of the
adlayer is then given by

&=&~+&i
u qa. qu. —q

q

+ g gg~e' I l+iK u(R) —
—,'[K u(R)]

R K

,' f u(q)—D(q)u( —q) —2u (q) g ig~KE~
q K

+u(q) gg~KK u( —K —q) .
K

The HN model comprises an isotropically elastic
monolayer (ML) adsorbed on a rigid substrate, in which
the ML-substrate interaction is represented by a modu-
lating potential (MP).

The elastic energy &z of the ML is given by (summa-
tion convention is implied by repeated indices)

,' f I&—pu;J(r)'+&[uJ/, (r)]'I, (l)
r

where
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D(q) is the dynamical matrix of the ML. b, K =XRe'
is the Dirac 5 function if K=q+ G for some ML recipro-
cal lattice vector G; otherwise it is zero. Note that the
quadratic term, dropped by HN, in the expansion of the
MP is retained.

To eliminate the terms linear in u, we write

u(q)=u (q)+v (q),
where u (and later u') is the residual displacement, while
v (and v') is the regular displacement. By introducing
the shift v, we hope to eliminate the inhuence of the MP
from the energy, so that we can apply the theory of Kos-
terlitz and Thouless for dislocation unbinding. The dis-

placement of the dislocation is thus included in u, while
the v' should be a "background" term incorporating the
effects of the MP. This worked well when only the linear
term in the expansion of the MP was retained. What is of
interest now is whether the retention of the quadratic
term will still allow this decoupling of MP and disloca-
tions. Introducing the shorthand notation

CK( —q)= g igKKE
K

S K= ggKKK,
K

and substituting in Eq. (6), we obtain after simplification

,' f—[u (q).D(q)-u ( —q) —2u (q) CK( —q)+u (q) S K-u ( —K—q)+2u (q) D(q) v ( —q)
q

+2u (q) S K v (
—K —q)+v (q) D(q) v (

—q) —2v (q) CK( —q)+v (q) S K v (
—K—q)] . (10)

We can eliminate the terms that are linear in u by defining

v (q) =D '(q) CK(q) =iD '(q) $ KgKbK q
.

K

The energy of the system accordingly becomes

,' f [u—(q)D(q) u ( —q)+u (q) S K u ( —K —q)+2u (q) S K v ( —K—q)
q

—v (q) D(q) v (
—q)+v (q).S K v (K—q)] . (12)

We now define

CK( —q}=—S K v ( —K—q} .

Because v is defined in Eq. (11) in terms of the MP and adlayer elasticity, the last two terms in Eq. (12) are effectively
constants. Equation (12) therefore is of exactly the same form as (10). We can thus recursively eliminate terms that are
linear in u" ' by defining

u" '(q) =u"(q)+v"(q),

v"(q) =D '(q) CK(q),

(14a)

(14b)

and

CK( —q) = —S Kv" '( —K—q) . (14c)

Repeating the recursion until convergence, the energy can be shown to be

8=—,
' f u" (q).D(q).u" (

—q)+u" (q) S K.u" (
—K—q)

q

+ $ [—v"(q) D(q).v"( —q)+v"(q).SK.v"( —K—q)]
n=0

(15)

In this limit, the constant terms decouple from the residual displacement field u . Only the elastic and quadratic MP
components of the energy remain.

To interpret Eq. (15), we write v" explicitly as

n Jv"+'(q)=( —1)" Q D ' g K'+q S
j=o

[
l=i

iD ' g K'+q ggKKb
I =0 K g K+K, q

(16)

Because of the b, , this equation shows the v"(r) to be Fourier sums over such reciprocal lattice vectors p of the first Bril-
louin zone, as correspond to a difference between a reciprocal lattice vector Cx of the ML and an n-fold composition of
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the substrate reciprocal lattice vectors K contained in the expansion of the potential. These p= g& K —Cr are misfit
vectors of order n. This selection criterion on displacement modulation frequencies corresponds to the criterion for ep-
itaxial configuration selection and discommensuration (DC) spacing derived by Braun and Van der Merwe. The v "(p)
are just the Fourier components of the displacement field of a regular DC lattice taking up all the misfits, similar to the
expansions for charge-density waves developed by McMillan and Nakanishi and Shiba. The u"(q) are the Fourier
components of the deviation of the displacement field from this regular DC lattice.

Substituting (16) into (15) and writing the dynamical matrix in terms of polarization vectors e, (p), the mass of the
adatom m and eigenfrequencies co(p), we obtain

S=—,
' J [u"(q) D(q) u" (

—q)+u" (q).S ~.u" ( —K—q)]
q

n 2

1

K( i.e, g K,".

1

Ki e, gK,"
+X X(—1)"g ~ II g ~ X

n =2 ~~&~+ 1=2 ' s=1
j

1

Vl 6) K;
(17)

jK,"J* denotes the n-fold stars of substrate reciprocal
vectors, i.e., all those sets of n vectors summing to 0. As
in the original HN model, the sum in (17) depends only
on the relative orientation of substrate and adlayer. If
this series converges, the greater number of terms than in
the original HN model does not substantially alter their
conclusions. However, the second term in the integral,
representing the effect of the MP on deviations from the
regular displacement modulations v', does not appear in
the HN model.

CRITERIA

tion (21) thus requires the DC spacing to be less than, or
of the order of, the DC width or equivalently requires the
misfit to be large and the MP weak compared with the
elastic constants. This implies that, near a
commensurate-incommensurate transition, many terms
of the expansion will have to be included if convergence
can be attained at all. "'

In addition, (15) shows that the potential terms, except
the linear term, carry across to the modified u(q). The
HN theory, which disregards these terms, is valid if they
are negligible. Estimating their size relative to the elastic
terms we obtain

l = g gKKK/(2@+A. ) (20)

This series converges provided

p '~l . (21)

In Eq. (16) for v", those p's for which b,%0 are reciprocal
misfit vectors and determine the spacing between
"discommensurations. " l corresponds to the Van der
Merwe l-parameter, ' giving the width of a DC. Condi-

The effect of the quadratic term in the expansion of the
modulation potential is shown to be twofold: (a) The reg-
ular displacement modulation is a Fourier series includ-
ing higher-order harmonics. (b) There remains in the ex-
pression for the energy a MP term dependent on the re-
sidual displacement. These effects enable us to determine
criteria for the applicability of HN theory. If both effects
are small, i.e. , if the series in (15) converges and if the
remaining MP term is much smaller than the elastic con-
tribution to the energy, HN will hold true.

To derive a good approximate criterion for the conver-
gence of the series in (15), we note that

D(q)=—pq I+(A, +p)qq

so that

(p)ll=~ '& '

where

u"(q) 5'&(q).u"( —K—q)/[u (q) D(q) u"(q)]
2l 2 (22)

In this equation, q is the wave vector of the perturbations
being considered. According to Eq. (22), for the MP
inhuence on the modified u to be small relative to the
elastic energy of this displacement field requires the
characteristic distance q

' of these perturbations to be
small compared with the DC width l. This, the exact
analogy of (21), shows the MP to be especially important
when considering long-range interactions.

CONCLUSIONS

Investigating the inhuence of the MP quadratic term in
the HN model, we found the MP induced regular dis-
placement consists of a Fourier series. The linear ap-
proximation used by Halperin and Nelson gives only the
first term of this series. The energy includes a term quad-
ratic in the residual displacement. Criteria were found
for the convergence of the series and the smallness of the
quadratic potential term in the residual displacement.
These criteria limit the range of applicability of the
linear-response approximation used in HN theory. The
criteria are as follows.

(a) The misfit vernier periods must be of the order of
the discommensuration width (as given by the Van der
Merwe l parameter). This requires discommensurations
to be closely spaced and therefore requires
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commensurate-incommensurate transition to have ad-
vanced far.

(b) The inverse of the wave vector of disturbances con-
sidered must be of the order of the discomrnensuration
width.

ACKNOWLEDGMENTS

This work was supported by the Foundation for
Research Development of the South African Council for
Scientific and Industrial Research.

J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
~A. P. Young, Phys. Rev. B 12, 1855 (1979).
38. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121

(1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19,
2457 (1979).

4V. L. Pokrovsky and L. L. Talapov, Theory of Incommensurate
Crystals, Vol. 1 of Souiet Scientific Reuiews Supplement Series
(Physics) 1Harwood, Chur, Switzerland, 19g3), pp. 62 —65.

5W. R. McMillan, Phys. Rev. 14, 1496 (1976).

K. Nakanishi and H. Shiba, J. Phys. Soc. Jpn. 43, 1840 (1977);
K. Nakanishi, H. Takatera, Y. Yamada, and H. Shiba, ibid.
43, 1509 (1977);A. Kotani, ibid. 42, 408 (1977).

7M. W. H. Braun and J. H. Van der Merwe, S. Afr. J. Sci. 84,
670 (1988).

8J. H. Van der Merwe, Surf. Sci. 31, 198 (1972).
F. C. Frank and J. H. Van der Merwe, Proc. R. Soc. London,

Ser. A 198, 205 (1949).


