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Nonlocal elastic properties of fiux-line lattices in anisotropic superconductors
in an arbitrarily oriented field
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The real-space anisotropic interaction between arbitrarily curved London vortices is calculated
for a uniaxially anisotropic superconductor. From this we derive the elastic energy of a distorted
Aux-line lattice (FLL) in a uniaxially anisotropic superconductor for inductions B «B,2 and arbi-

trary field direction. Avoiding the continuum description of the FLL, we obtain the exact elastic
matrix, which is periodic in Fourier space and from which all elastic moduli of the FLL may be ex-
tracted. In the continuum limit, we give explicit expressions for the various nonlocal tilt and bulk
modnli for the two cases Blc and 8~~c; here c is the symmetry axis of the nniaxial crystal perpendic-
ular to the basal plane. These results complement previous local theories and extend previous non-

local treatments.

I. INTRQDUCTIQN

Recently, there has been much interest in the proper-
ties of flux-line lattices (FLL) in high-temperature super-
conductors. A number of varieties of the mixed state of
type-II superconductors have been proposed, such as vor-
tex liquid, ' vortex glass, and even vortex plasma. In
particular, there exist a number of theoretical esti-
mates ' ' that a vortex lattice may melt well below the
mean-field phase boundary where superconductivity
disappears. The main features that make thermal fIuc-
tuations important in the high-T, compounds are the
small coherence lengths g (Ref. 5) and the large mass an-
isotropies. It was recognized a number of years ago
that in order to obtain an adequate description of the
elastic properties of the FLL, the nonlocality of its elastic
response must be accounted for. This means that some of
the elastic moduli of the FLL depend on the length scale
of the elastic strain. In atomic lattices one usually con-
siders the elastic response as local since a nearest-
neighbor ion-ion interaction is a reasonable description of
the interactions in the lattice. In a FLL the situation is
quite difFerent: The vortex-vortex interaction extends
over many vortex separations a=(No/8)'~, where
+0=2.07X10 G cm is the Aux quantum and B the
magnetic induction. Typically, the range is given by the
magnetic penetration depth A, . Thus nonlocality becomes
increasingly important as the reduced induction
b =8 /B, z increases; here 8,2 is the upper critical field.

The criterion for the applicability of local elasticity
theory is (M, /M)'~ lr b &(1, where M, and M are the
quasiparticle masses along the c direction and basal
plane, respectively. Ir=A, ,„/g, b is the Ginzburg-Landau
(GL) parameter with A,,b and g, b the in-plane penetration
depth and coherence length, respectively. We have
A,, /A, ,b =g,b/g, =(M, /M)' in an obvious notation.
Particularly in the Bi-Sr-Ca-Cu-0 compounds, with large
(M, /M)' =60 and a.-100, the local limit becomes of
mere academic interest. In the local limit, the elastic tilt

and bulk moduli of the FLL become completely indepen-
dent of the crystal anisotropies, and in fact of all material
properties of the underlying superconductor as soon as
the vortex fields start to overlap (i.e., for 8 ~ 28„, where
8„ is the lower critical field); the small, material- and
angle-dependent corrections are proportional to the small
reversible magnetization. This little recognized fact was
explicitly demonstrated in Ref. 6 for the case B~~c, where
(M, /M)'~, the only manifestation of underlying materi-
al properties, was shown to cancel out of the description
of the fIux-line lattice. This must be so, as the local tilt
and bulk moduli are simply magnetic energy densities as-
sociated with compressing fIux into the compound. Thus
in the limit of negligible magnetization, i.e., for
(M, /M)'~ Ir b ((1, there is only one bulk and one tilt
modulus, given by

=8'
c„(0)=c4q(0) =

This result is independent of the direction of the applied
field with respect to the crystal c axis. In the local limit,
material properties only enter the elastic description of
the FLL through various shear and rotation moduli (ro-
tation of the FLL with respect to the crystal about the
applied field ).

The derivation of the elastic energy in Refs. 6, 7(c), and
7(d) [the main results of Refs. 7(c) and 7(d) are summa-
rized in 7(a) ] employed complicated variational tech-
niques, solving the GL equations for the spatially varying
order parameter and magnetic field of a distorted FLL,
and obtaining finally the elastic moduli in the continuum
limit. All results were valid in the entire field range
(2a ) '&b &1. However, as shown in Ref. 7(b), this
complicated mathematical apparatus can be avoided en-
tirely if one is interested only in the field regime b &&1.
In this case, the vortex cores do not overlap and spatial
variations of the order parameter outside the core may
thus be neglected. Actually, for this condition to apply
b «0.2 suffices. The limit 6 «0.2 should be adequate for
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the high- T, compounds due to the large values of B,2,
and it is the one we will consider in this paper. There
will, nevertheless, still be a wide range of fields
[(~,/M)' ~ ]

' «b «1, where the vortex fields over-
lap strongly (but not the cores) and where nonlocality is
thus pronounced, but the simple London theory still ap-
plies.

It is the purpose of this paper to compute the general
elastic energy of the FLL in an arbitrarily tilted magnetic
field. The full periodicity and geometric anisotropy of
the FLL itself is accounted for since we avoid the contin-
uum limit. Therefore, one may also reproduce various
(local) anisotropic shear and rotation moduli from our
theory, as was previously done by Kogan and Campbell
within a local approach (i.e., for uniform strain). When
avoiding the continuum limit in describing the elastic
properties of the FLL, it is essential to start from the
correct equilibrium configuration ' in order to avoid
spurious results, e.g. , a negative shear modulus.

As one motivation for the present work, we mention
briefly the following. Recent decoration experiments car-
ried out on Bi-Sr-Ca-Cu-O (Ref. 11) show unexpected
features in the vortex structure (vortex chains embedded
in a nearly regular FLL), when the magnetic field is tilted
away from the c axis. In order to investigate the stability
of various such vortex arrangements, it is important to
gain a complete understanding of the elastic properties of
the FLL in arbitrarily oriented fields. We will derive
these properties from the general anisotropic interaction
between arbitrarily curved vortices. As a further applica-
tion the resulting elastic energy also allows determination
of the anisotropy of thermal fluctuations and the phase
boundary between Aux-line lattice and vortex liquid as
the field direction is varied. Finally, the anisotropic non-
local moduli for general field direction will also be useful
in pinning theories since the statistical summation of pin-
ning forces depends crucially on the elastic response of
the FLL to the pins.

II. ANISOTROPIC LONDON THEORY

The starting point of our analysis is the free energy for
a system of London vortices in an anisotropic supercon-
ductor given in Ref. 12,

(p2
F= g f J dl; dlt3V ~(r; —r ) . (2)

In (2) the summations run over all vortices in the system,
including the terms i =j, which represent the vortex self-
energies. Only in these self-energy terms is an inner
cutoA' of the potential required to account for the finite
vortex core, but not in terms involving diferent vortices.
Equation (2) applies to bulk superconductors and dis-
cards the energy of the stray field generated outside the
sample by the vortex ends, but image vortices may in
principle be included. For the inclusion of surface efFects
into the elastic energy see Ref. 13. Equation (2) implies
that all line elements dl, interact with each other by the
th ree-di mensiona1 anisotropic London potential

d k
V ts(r)= f 3

e'"'V t3(k), (3)
(2")

where for uniaxial symmetry we have

V. (k)=
A

1+Aik 1 +Aik +A2q

1 rV(r)= exp
4~~ah r ab

Without loss of generality at this point, we may choose a
coordinate system in which z~~c, thus obtaining for the
anisotropic part Vz~(r)

V2 (r)=0,

Vz~(r) = [G, (r) —G2(r)]5 &+G2(r)

where now (a,p)E(x,y), and the two functions G1(r)
and G2(r) are given by

G, (r) =exp (p +e z2)1/2
exp

and

2

G2(r)= 2+
A, ~b r

exp
~ab

P
( 2+ 2 2)1/2

C

( 2+ 2 2)1/2
X exp (10)

In Eqs. (8)—(10), we have defined the quantities
p

——z +y and p=P /g b

with (a,p)H(x, y, z), q=kXc, A, =A,,', and A2=X, —
A,,&

in the notation of Ref. 14. A,,b is the in-plane magnetic
penetration depth and A., the penetration depth for
currents Aowing perpendicular to the ab plane. The rela-
tive simplicity of the present London approach to obtain-
ing the nonlocal elastic properties of the FLL, as com-
pared to Czinzburg-Landau theory, ' ' ' depends cru-
cially on the applicability of (2), which assumes that the
vortices can actually be defined at all points in space.
More sophisticated treatments may be envisaged by using
the Lawrence-Doniach model of layered superconduc-
tors. ' ' Equation (2) demonstrates that in anisotropic
superconductors the vortex-vortex interaction is tensorial
in nature, whereas in an isotropic superconductor it is
Uectorial [see Eq. (12) below]. This fact possibly puts ap-
proximations where one only considers the scalar repul-
sion between straight, parallel vortices even more into
question than in the isotropic case.

The tensorial real-space interaction V ~(r) between
vortex-line elements (3) explicitly reads (for details of the
calculation see Appendix A)

V t1(r)=V, (r)5 t1+VP(r),
where the first, isotropic term is
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These expressions contain a considerable amount of in-
formation. Not only do they give the interaction of two
arbitrarily oriented vortex segments, they also allow the
calculation of the magnetic Geld distribution of a general
configuration of arbitrarily curved vortices via the expres-
sion

B (r)=C&op f dl;pV p(r —r;) .

In the isotropic limit k, /k, b~1, V2 (r) vanishes, and
(2) reduces to the well-known result' '

direction, namely, when 8, is not ~~c or J.c and the mag-
netization is not discarded. Expanding V p(r; —rj ) and
the line elements up to quadratic order in the displace-
ments and collecting all terms, we find the excess energy
AF due to vortex displacements

hF = ,' f—u( —k)4 p(k)up(k) .
d k
(2')' (13)

Here, summation over repeated indices is understood and
the integration over k~ is restricted to the first Brillouin
zone, while k, E( —~, ~ ). The elastic matrix 4 p(k) is
given by (see Appendix B for details)

F= g f fdr, dr, V, (~r, —r. ~) .
t,j

(12) g 2

4 p(k)= g [k, V p(k+Q)4~ ~
The interaction between vortices is thus quite different
from an ordinary scalar repulsion. Although it is true
that straight, parallel vortices repel each other (with a
logarithmic potential at distances much smaller than the
penetration depth), it is clear from (11) that vortices tilted
by more than 90 with respect to each other attract each
other. We suggest that in vortex systems where the tilt
modulus is small and transverse meandering of the flux
lines is significant, ' ' such considerations should be
taken into account in the statistical mechanics of, for in-
stance, weakly pinned entangled flux-line liquids. In fact,
the vectorial nature of the integral measure dr, .dr in
(11) will, under quite general circumstances, lead to an in
stability of a two-vortex configuration provided that one
allows for local bending of the vortices in the vicinity of
their closest approach. ' This instability will not occur if
the vortices are regarded as rigid. Furthermore, prelimi-
nary results in the isotropic case (11) indicate that an in-
stability similar to that reported in Ref. 21 may occur for
entangled vortex configurations in a lattice.

In anisotropic superconductors, the angle at which the
interaction between stiff; parallel vortices vanishes is)90' when they are tilted symmetrically away from the c
axis. This is because the currents tend to flow in the ab
plane. One might thus argue that the anisotropy makes
vortex cutting harder. However, this effect is compensat-
ed (or possibly overcompensated) by the tendency of vor-
tices to align parallel to the ab plane; such vortices have a
smaller line tension (self-energy ~ I /A, ,bi., ) than vortices
oriented along c (self-energy ~ I/A, b ). Therefore it costs
little energy when the vortices tilt locally to form an an-
gle )90' such that they can cut easily.

III. ELASTIC ENERGY

To account for distortions and rotations of the vortices
we let r, =R,. +u,-, R,- being the equilibrium position of
the ith vortex in the lattice and u, a two-dimensional (2D)
displacement vector about this position, chosen perpen-
dicular to the direction of the average magnetic field.
[Note that the displacement component parallel to the
displaced line, u„has no physical meaning, cf. also Eq.
(17) below. ] Without loss of generality, we choose z
along the equilibrium direction of the flux line which al-
ways coincides with the orientation of the average field 8,
whereas in general the applied B, may deviate from this

+ (k+ Q) (k+ Q)p V„(k+Q)
—Q QpV, (Q)l (14)

where (aI3)H(x, y), V p is given by (4), and the sum in
(14) runs over all reciprocal lattice vectors Q at a given
inclination of 8 with respect to e. The basis vectors of
the undistorted equilibrium lattice when B is tilted by an
arbitrary angle e away from the c axis are given by
a& =Cx and a2=C(yx+v 3y/y)/2, where

y =(M/M, )sin 6+cos 6 and C =24&z/V3B. The
corresponding reciprocal lattice vectors for arbitrary field
inclination are given by Q „=nQ&+mQ2 with m, n in-
tegers and

2 tr x p y 2'tr 27
C y v'3 ' ' C v'3 (15)

g 2

4 p(k) = [k, V p(k)+k kp V„(k)] .
4~ (16)

From this lattice-structure-independent term, we can ob-
tain the various nonlocal elastic tilt and bulk moduli but
not, for instance, any of the shear moduli. Moreover, in
the very small-k limit, where V p(k ) =const and
4& p(k) ~ k2 (the local limit), the elastic energy is com-
pletely material independent, since the prefactor is deter-
mined entirely by the magnitude of the magnetic field

Equation (14), with (15) inserted, is the central result of
this paper. It is a generalization to anisotropic supercon-
ductors of the results of Ref. 7(b) and gives a complete
description of the elastic properties of a FLL in a uniaxi-
ally anisotropic superconductor when b ((1 and w))1,
for any orientation of the applied field relative to the un-
derlying crystal. Its validity is not limited to a continu-
um description, which is obtained by expanding the elas-
tic matrix 4 p(k) for ~k~ ((kBz, where kBz is the radius
of the circularized Brillouin zone of the FLL. Note that,
due to the summation over Q in (14), and to the appear-
ance of the argument k only in the combination k+Q,
the elastic matrix is a periodic function in k space. Also,
it is seen that 4 p(k=O)=0, as it should be since a uni-
form displacement of all flux lines does not cost energy in
the pin-free case.

In the limit where only the term Q=O in (14) is kept,
4 p(k) reduces to
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2 2+~xxxx xx +~yyyy yy (17)

Here, u; =(i),u;+8;u )/2. The first two terms in (17)
are tilt modes, the three last ones compressional modes.
Note that the form of the free energy Eq. (17) is con-
sistent with the fact that the displacement vector u has
no z component, i.e., terms like k„„u„donot occur. In
general, there are two tilt, and three compressional
moduli, all of which in the general case could differ from
each other. In Ref. 8, the previously mentioned shear,
squash, and rotation moduli are computed within a local
approach and as we have argued, these moduli indeed
can generally be considered well approximated by their
local values; their weak dispersion is of geometric nature,
i.e., they depend on ka but no kk. The results of Ref. 8
may thus be combined with (17), to form a complete
description of the FLL in the continuum limit, provided
the coefficients X,"I are known; this is the topic of the
next section.

IV. NONLOCAL ELASTIC MODULI

The nonlocal moduli are obtained by comparing Eqs.
(13) and (17) for the elastic energy and using Eq. (16) for
the elastic matrix. We consider the two geometries B~~c

only, which for negligible reversible magnetization coin-
cides with the applied field.

The limit defined by (16) may be denoted as Pux li-ne

liquid limit. ' '' The continuum limit to (14) is obtained
from (16) when the energy of shear, squash, and rotation
modes (rotation of the FLL with respect to the underly-
ing crystal) is added to (16). The energy cost of rotating
the FLL with respect to the crystal is a novel feature of
anisotropic superconductors and occurs when the mag-
netic field is applied in an off-symmetry direction (i.e.,
away from c); this was first discussed in Ref. 8. In the
present formalism, these structure-dependent contribu-
tions to the elastic energy have their origin in the QWO
terms in (14). The corresponding moduli will in general
depend on material properties such as mass anisotropy
and ~, as well as on the direction of the applied field; they
are proportional to A, as is easily seen from (14) and (4)
noting that Q k ))1.

In the limit of very small B (&B„where Q A. ))1, all
moduli not connected with the tilt become exponentially
small, e.g. , c» =3c66 ~ exp( —a/A. ) in the isotropic case.
This nearest-neighbor limit, however, is only of academic
interest since its c66 value is extremely small such that
the always present pinning distorts the FLL plastically.
A more useful fit to a numerically obtained c66 at some-
what larger B is "c«=(B /32r33~ )exp( —I/3b~ ), see
also the review. Note that, since these structure-
dependent modes contribute to the elastic energy only via
the terms QWO, the shear and rotation moduli are local,
i.e., nondispersive for ~k~ not too close to kBz, say,

Within the fiux-line liquid limit defined by (16), the
form of the energy density associated with the vortex dis-
placements is given by

f 2 ( ~zxzx xz + ~zyzy yz xxyy ~xx yy

and Bic.
(1) B~~c. In this case, the tilt moduli are given by

A.„„(k)= 4~ I+A,2(k2+ky2)+A2bk2

k, , (k)=k,„,„(k)—=c~~(k) .

(18)

(19)

A, yyy(k) =A, (k) =X„„(k)—:c„(k) . (21)

These results have already been derived from the GL
theory in Ref. 6, and were later rederived from a hydro-
dynamic treatment of Aux-line liquids. ' Note that the
present form of the modulus c» is somewhat simpler
than the one given in Ref. 6. This is due to the London
limit where terms —O(3~ ) are neglected compared to 1.
A detailed discussion of this has been given for the isotro-
pic case in Ref. 7(b).

(2) Blcly. Now we find for the tilt moduli

B2

A, , (k)=
4~ I+X'(k'+k')+X' k' '

=B' 1+A,,k
A, , (k)=

4~ (1+g2 k2)[1+g2(k2+k2)+g2 k21

(22)

(23)

where A, , (k) and A, , (k) represent out-of-plane and
in-plane tilt moduli, respectively. The planes refer to the
basal planes. The nonlocal tilt moduli now differ from
each other due to lack of rotational symmetry around the
z axis. Similarly, we find for the bulk moduli

B2

(k)=
4~ 1+g2(k2+k2)+g2 k2

B2 1+/2 k2+2(g2 g2 )k2
(k)= ab c ab z

yyyy 4~ (1+g2 k2)[1+g2(k2+k2)+g2 k2]

(24)

(25)

B2

(k)=
4~ 1+X'.,k' (26)

Notice that in the local limit all moduli reduce to the
value B /4~, as in the isotropic case. The reason for this
has been given above. Note also that the anisotropic
nonlocal moduli depend on the orientation of k, not only

V. REMARKS ON LARGE a AND LARGE x

In the case of an isotropic superconductor k, /A, b =1,
within London theory (valid for ir ))1 and b & 0.2), and
for ~k~ (&kBz, even all nonlocal tilt and bulk moduli col-
lapse to one and the same quantity,

Furthermore, we find for the bulk moduli

B2 1+k,k
A,„„,(k) =

4~ ( 1 +g2 k 2) [ 1 +g2( k 2+ k 2) +g2 k 2
j

(20)
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B 1c«(k) =cii(k) =
4~ 1+A2k' ' (27)

which is not orientation dependent. However, an addi-
tional geometric anisotropy and nonlocality associated
with the FLL structure itself appears in the moduli at k
values approaching the boundary of the first Brillouin
zone. ' ' This geometric dispersion occurs in the isotropic
as well as the anisotropic cases and is fully contained in
the elastic matrix Eq. (14), but not in its limiting form,
Eq. (16). Moreover, the general expression (14) contains
also the case of almost isolated fiux lines (B ((B,i),
where the moduli (18)—(27) do not apply.

A remark is appropriate as for the small difference be-
tween c«(k) and cii(k). As is well known, thermo-
dynamic considerations yield a bulk modulus (for isotro-
pic compression) c»(0)—c66=B /4~ and a slightly
larger tilt modulus c«(0)=BB,/4m. . The di(T'erence is
small since B,—B =const/~ &&B as soon as B 2B,

&
~

In most publications so far, the slightly more general ex-
pression

B 1c«(k)= + ~ ~ ~

1+X'k' (28)

BOO
c«(k) = ln(1/gk, )

(4vrk)'
(30)

has to be recovered in (28). Thus for k )k, (29) should
be replaced by

~ ~ ~

+0 1
ln

4~X'B
B„ ln(1/gk, )

B ln(A, /g)
(31)

Note that in the isolated-vortex result, only the variable
k, enters in the dispersion, since the perpendicular com-
ponents of k no longer have physical meaning. In the
large (even dominating) part of the Brillouin zone k )k,
where (31) dominates over I/(1+1, k ), tilted vortices
behave as if they were isolated, i.e., their elastic response
is determined by the (logarithmically dispersive) line ten-
sion of an isolated flux line. This fact slightly reduces the
thermal fluctuations of the FLL as compared to the re-
sults of Refs. 5 and 6. Note that the component k, may
be larger than kHz. The correct cutoff from GL theory is

k, ~ I/g =kiiz/2b ))kHz.
It has recently been argued that the limit K~ ~ may

be taken such that vortices in type-II superconductors
behave like vortices in superAuid He. However, for
typical applications, the limit ~=A, /g'~ oo is unphysical.
If this limit means g'~0 for A, =const, then c«(k) (30)
diverges. As a consequence of this infinite vortex-core

where the ellipsis represents correction terms, was used,
with k-independent correction term (valid as k~0)

(B B)/B =(1 b)/knzk, =(1 b)/2b~2. —(29)

However, as pointed out in Ref. 27, and as is implicit in
Sec. 4.4 of Ref. 7(b), for large values
k )k, =k Hz /In( 1/gk, ), the true ( k-dependent) correc-
tion term even exceeds the main term since the isolated-
vortex result

stiffness, both thermal Auctuations and pinning-caused
distortions of the FLL would be suppressed. On the other
hand, considering this limit further we see that since
B,I =Coin~/4~A, the lower critical field also diverges, so
no vortices even exist.

Another reason for the unphysical nature of the limit
~~ ~ becomes clear when this is interpreted as A,~~
for /=const. This limit not only would make c«(k)=0
and B,&

=0; it would also require specification of whether
the limit A, )&L or A, « I. is considered, where I. is the
smallest extension of the specimen, e.g., the thickness of
the slab. If A, ))I. is meant, it is inconsistent to consider
bulk problems, since all vortices are "close to the sur-
face," i.e., image forces have to be considered. Further-
more, the problem of an infinite slab would become 2D
and stray-field terms (from the field outside the specimen)
would have to be accounted for in the elastic energy of
the FLL. ' If I, «L is meant, then the limit ~—+ ~ does
not imply that c«(k) ~1/k as expected in Ref. 28.
Rather one has the usual nonlocal result (28), which for
k —+0 reduces to the thermodynamic result
c «(0)=BB,/4'. However, some properties of stacks
of point vortices in superconducting layers with no
Josephson coupling (pancake vortices ) may be obtained
by letting k, ~ ~ in the anisotropic London theory of
Secs. II—IV.

All statements in this paragraph follow from the gen-
eral (periodic) elastic matrix given by (14) [ and by the ex-
pressions given in Ref. 7(b) for isotropic superconduc-
tors], from which the isolated-vortex limit is easily ob-
tained as well as the improved tilt moduli (28)—(31). Our
results were derived from a description of the FLL that a
priori avoided the continuum approximation. The subse-
quent continuum limit could be taken in a straightfor-
ward manner, confirming the results obtained in Ref. 6
for the case B~~c. This seems to settle a point of criticism
which was raised recently, where the results of Refs. 6,
7(c), and 7(d) were attributed to an incorrect approach to
the continuum limit. Our present results, derived by the
methods of Ref. 7(b) strongly suggest that this is not the
case. This finding, in turn, lends further support to the
result of Ref. 30, that phase fIuctuations of the order pa-
rameter do not destroy superconductivity in 3D in the
mixed state of a type-II superconductor. For complete-
ness let us remark finally that the simplicity and tran-
sparency of the above London approach disproves the (to
us unclear) arguments by Matsushita, ' who claims that
the tilt modulus of the FLL is not dispersive.

VI. SUMMARY

We have presented results for the nonlocal elastic
properties of the Aux-line lattice in anisotropic supercon-
ductors in an arbitrarily tilted magnetic field. In addition
to the exact anisotropic real-space potential between arbi-
trarily curved London vortices and the nonlocal elastic
matrix for general field direction, we have given explicit
expressions for the bulk and tilt moduli for the two cases
B~~c and Blc. The general solution for the magnetic field
B(r) is also given [Eq. (11)]. The general intervortex po-
tential, Eq. (5), is relevant for discussing the stability of
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entangled fIux-line liquids, at least in the weak-pinning
regime, and in principle allows the calculation of the en-
ergy barrier for Aux cutting. The general result for the
elastic matrix, Eq. (14), is exact for reduced induction
b «1 and GL parameter v))1, since the continuum
description of the FLL is avoided.

By inverting the elastic matrix and integrating over the
Brillouin zone, one can obtain directly the variation of
thermal fIuctuations of the FLL as 8 is tilted away from
the c axis. Such a calculation, which may be relevant for
FLL melting, as estimated by a Lindemann criterion, is
the topic of a forthcoming paper. The obtained aniso-

tropic elastic matrix is further required for the summa-
tion of random pinning forces and for the calculation of
activation energies for thermally activated depinning.

ACKNOWLEDGMENTS

One of us (E.H.B.) acknowledges support by the Ger-
man Bundesministerium fiir Forschung und Technologie.

APPENDIX A

We compute the anisotropic part of Eq. (3) by consid-
ering the auxiliary integral

A2 eik-r
d k

(2~) (1+A,ki+A, k, )[1+(A,+A2)ki+A, k, ]

On performing the azimuthal and kz integration, we get

oo EP(zi ) KP(z2 )Ip
= cos(k, z )

—I1 I2
(2m) p 1+A k

(A2)

g)2 dpi de'y f fdzdz, ' ' V~(R, —R, )
l, J

+—(u —u ) (u —u )
1

i j i j

=(A, +A2)', c2 '=(A, )', and Ep is a modified
Bessel function of zeroth order. The anisotropic part of
the London potential, Vz~(r) in Eq. (5), is given by

X V V&v"(r) l, =R.—R

(B1)

Vz~(r) =
2 ay 2

Defining the quantity I; by

aIO
r, =

aa;
we obtain

(A3)

(A4)

The last term arises because the only line-element com-
ponents that do not contain displacement fields are dl,-'.

The coefficient of u; u,~ is denoted @ &(R; —R~ ). To ex-
tract its functional form, it suffices to let R =0. We get,
after partial integration,

2 2

az'
a Io

ax ax@

(A5)

»2
2 1

Ki/2(Z ) & (A6)
4~2 &;

aIoI.=
acr;

aI 1 ao.'1 acx1 a cx1+r,
a~, ax. ax, ax.ax,

2 2 2 2—I
acx2 ax ax p ax ax p

After a lengthy calculation we get
1/2

+(1—5 p)V VpV"(r)
P

(B2)

+(1—5,, p)q. qp V"(q) ~ .

which we represent, using Eq. (3), as

@'on d'q

where K»2 is a modified Bessel function of order —,', given

by K»2(x ) =&m. /2x exp( —x), and zi = (a;A,
2)i/2/Ai/2

Performing the necessary derivatives of I; and o, ; and
collecting terms, we get Eqs. (g) —(10).

APPENDIX 8
The expression for 4 &(k) is derived along the lines de-

scribed in Ref. 7(b). Expanding the free energy, Eq. (2),
and retaining all terms up to quadratic order in the dis-
placement vectors, we get for the excess free energy due
to Auctuations

The lattice Fourier transform of this is given by

4 ~(k)= g f dz e "N ~(R„) .

Using the result

g f dz e' "=(2~) n5(q, —k, ) +5(qi —ki —Q),
P Q

(B5)

and performing the q integration, we get Eq. (14). Here
n =B/No is the areal density of vortices.
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