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Monte Carlo study of the surface special transition in the XFmodel in three dimensions
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Using extensive Monte Carlo simulations we studied the behavior of L XL XD films containing
classical spins interacting via nearest-neighbor XY interaction. Applying finite-size-scaling analysis
and the cumulant method to determine the position of the surface transition boundary, we locate
the multicritical point and extract appropriate critical exponents. We present evidence that the sur-
face transition is of the Kosterlitz-Thouless type.

I. INTRODUCTION

The past two decades have witnessed a growing in-
terest in critical properties at surfaces of physical systems
in the vicinity of their bulk critical point. ' In the early
seventies, Binder and Hohenberg published two papers
in which they examined the behavior of Ising and Heisen-
berg films with nearest-neighbor coupling which could be
modified in the surface layers with respect to that in the
bulk. The authors have shown that for sufficiently
enhanced coupling in the surface layer there can be dis-
tinct transitions in the surface and in the bulk.

A few years ago, Binder and Landau reported the first
precise simulation of the three-dimensional (3D) Ising
system with free surfaces. They mapped out the phase
structure of the model and gave a detailed description of
the special transition (for a definition of different transi-
tions see Fig. I) associated with the presence of the mul-
ticritical point. This model was also studied by other au-
thors ' using Monte Carlo methods, high-temperature
expansions, 1/n expansions, and renormalization-group
techniques, so that at present its properties are quite well
known.

Surface critical phenomena in continuous models have
been studied in less detail. Especially little is known
about the properties of a three-dimensional planar rota-
tor model (called sometimes the classical XY model, the
name which we will adopt in the following) representing
a system of classical spins constrained to rotate in the x-y
plane of spin space, defined by the Hamiltonian as

keT/J [SP—8P]

specia
transit

cal point. In the present continuation of their study we
aimed to describe the properties of the same model at the
surface and special transitions.

It was suggested a few years ago ' that the classical
XY system in three dimensions should be able to support
a phase with a quasi-long-range order at the surface in
the presence of a disordered bulk. The line of a surface
transition would be then of the Kosterlitz-Thouless type,
so that the transition corresponding to the presence of
the multicritical point (i.e., special) would have a different
nature. The validity of this scenario was recently proved
rigorously by Frohlich and Pfister' (for a semi-infinite
system); however, a detailed description of the surface
critical properties in the model was beyond the scope of
their work.

Our numerical study (preliminary parts of which have
been presented elsewhere" ) intended to shed more light
on the properties of XY-like films in the vicinity of the
surface transition and multicritical point. The main ob-
jective was to locate the shape of the phase boundary and
to confirm the predictions about its nature being of the
Kosterlitz-Thouless type. We were also interested in the
position of the multicritical point and possible descrip-
tion of the special transition.
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where S, is a two component unit vector in the direction
of the classical magnetic moment at the lattice site i and

J; J, denote the bulk and the surface exchange constants,
respectively. In the following we adopt units in which

k~ = 1. Landau, Pandey, and Binder examined the ordi-
nary surface behavior in this model, investigating the sur-
face layer magnetization exponent and the scaling prop-
erty of the magnetization profile far from any multicriti-

FIG. 1. Schematic phase diagram for the XY model with
bulk coupling I and surface coupling J, . The bulk transition
temperature is T,I, . The various phases are labeled by bulk (B)
and surface (S) properties as ferromagnetic (F), or paramagnetic
(P). The label (S?) denotes a hypothetical Kosterlitz-Thouless
surface phase (see the text).
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The layout of the rest of the paper is as follows. In
Sec. II we describe the method and the model, while Sec.
III gives our computational results and a detailed com-
parison with the theoretical predictions. Section IV sum-
marizes the main results of our study.

II. THE MODEL AND SIMULATIONAL TECHNIQUE

In our numerical study of systems described by the
Hamiltonian in Eq. (1), we implemented a vectorized ver-
sion of the Metropolis Monte Carlo algorithm with a
checkerboard lattice decomposition' and layer-wise
sweeps through the lattice. We used periodic boundary
conditions parallel to the film; the top and the bottom
were free surfaces. Since we were mainly interested in lo-
cal properties of the first (and the last) layers, we decided
to improve the em.ciency of the program by adopting a
well-known preferential sampling method: ' ' Rather
than sampling uniformly all the lattice, we visited the
sites at the surfaces ten times more often than the sites in
the bulk. For the largest systems investigated, the sam-
pling ratio was even greater: 20:1; in the case of the small
systems, it was enough to visit the surfaces seven times as
often as the interior of the film.

We studied slabs with dimensions of L XL XD with
8 ~ L ~ 50, and 13 ~ D ~ 51, respectively. We checked
that this choice of D did not result in the appearance of
unwelcomed finite-size effects on the properties of the
surface films. Typically, after discarding about 6X10
Monte Carlo steps (MCS's) per layer, we performed up to
42 million MCS's/layer site for the largest systems, pro-
portionally less for smaller ones.

All simulations were carried out on the Cyber 205 and
the ETA10 supercomputers at the University of Georgia.

The important quantity which measures the intrinsic
properties of the phase transition at the surface L XL is
the surface layer magnetization rn &. In the vicinity of the
surface transition point [with coordinates, on the phase
diagram (J,*/J, T,*/J)], mi can be cast in a modified

scaling form

m, (g, b„L ) =( ~m, ( gb, ' ~, g /L ), (2)

(4)

Here (mi ) and (mi ) denote second and fourth mo-

where b, —:(J, /J,*—1), and P is the crossover exponent.

g is the correlation length, which is expected to diverge in
the critical regime exponentially fast:

g =a

&exp�(b

&t '),
where a& and b& are constant, t—= 1 —T,*/T, and v is a
new exponent. Since in the limit J, /J ))1, an effectively
detached surface is equivalent to the two-dimensional
(2D) XY model, one can assume that v=0. 5 the
nonuniversal parameters a& and b& can in principle be
different than two-dimensional values. '

Another important quantity which we used to measure
the properties of the phase transition is the fourth-order
cumulant U&, defined as follows:

ments of the probability distribution of the surface mag-
netization Pt (m, ):

(m", )t = f dm, m", Pt (m, ) .

In the disordered phase, U~~ —,', in the ordered phase,
Ut ~—', , while at criticality, Uz ~U* (in the L ~ oo lim-
it). ' For the ordinary transition, the universal con-
stant U* was crudely estimated to be U* =0.52+0.04.

A convenient method for locating the transition is to
record the variation of Ut with J, /J for various L and
look where these curves intersect [a similar method was
chosen for a numerical study of an Ising ferromagnet
with an antiferromagnetic surface layer (Ref. 8)]. Anoth-
er variation of this method is to compare the values of U
for two different lattice sizes, L and L' =bL, with the use
of the condition that

( Ubt /Ut ) ~ = 1 .
S ~S

In the critical region (g))L ), the finite-size scaling of
m

&
implies that

m, =L ~m, (LA'~&) .

The surface magnetization exponent p can be then found
by defining a function 8 —,24 so that

Wp
= —ln( ( m, ) „t /( m, )t ) /lnb, (&)

and using the following formula:

Because of the presence of residual corrections to finite-
size scaling, one actually needs to extrapolate the results
of both methods as (lnb ) '~0, as will be demonstrated
in Sec. III ~

III. RESULTS

A.. Surface transition boundary

In the course of our numerical investigations, we con-
centrated our efforts on the precise determination of the
critical coupling ratio J,*/J for four different values of
the temperature T/J=2. 304, 2.404, 2.500, and 3.003; we
also gathered some data at T /J =2.222, 2.252, and
2.353. (Our preliminary runs suggested that this choice
of temperatures provided phase boundary points lying
reasonably close to the multicritical point. )

In Fig. 2 we show results for U~. plotted versus U8 for
14 ~ L ' ~ 50 and obtained from simulations at the temper-
ature T /J =3.003. The thin solid lines show linear fits to
the data close to critical surface coupling, i.e., close to
the intersection with the line of slope 1. Because of
corrections to scaling, the estimates for the fixed point
U for L =8 depend a little bit on the scale factor
b =L'/L, so that an additional extrapolation procedure
is necessary (Fig. 3). Results of extrapolations for L = 14,
16, 20, and 30 agree very well; the difference for L =8
suggests that the lattice with this small surface size is not
yet in the asymptotic regime, where the effects of correc-
tion terms to finite-size scaling justify a strictly linear ex-
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FIG. 2. The fourth-order cumulant U ~ 1

coor inate
critica ity are displayed.

0.654

L=20

trap olation.
It is crucial forr the cumulants memethod to be succe f 1

o a very good stati
ess u

stical accuracy I

o t C 1o hdtob
M f 1 1 (1u s p ease note the s

o ain

axis on Fig. 2) t, a ypical error of U ~

e e scale on the curn 1u ant

d magnitude smaller then the value quot-

Repeatin thg he above procedure for e
peratures given abov

ure or each of four tem-
ove, we obtained

e va ue varied sli htl
xe

W t th t th
tio

is results from the

0
ional corrections to scaling due to a fin'

e presence of addi-

e or inary ra sitio

corresponding to the Kos
e simple 2DD XF model, is

1

As a comment on the above calc
point cumulant , we point out the som

e a ove calculations of the fi d-xe-

d the e crossin of
a ing

cumulant linees correspondin to
g o surface magneti t'ization

A urve bL versus U
ce sizes.

move along toward the J*
U* —= ' Th p

ifFerently, the "cumulan
Expressing it

- -h-h. h-ld -d-11 -n.h
'

of th f t th
wo-dimensional XY

perature phase

witho
ymodel is

A 1 1

"'"-"' """""""
riation of cumulants Ul

0.652

0.650

(8~L ~50), with J, /J t T/J=3. 003 s
h

sin le i
'

g 'ntersection, but r
=, /J (thin lines do not have a

found. E h ti 1 b 1 db
u rat er a famil o

db
L') L. Also h, here, the extra olat'

y cumulants U ~ such huc t at

e presence of
is neces-

scaling (Fig. 4).
o nite-size corrections to

Repeatin this
'

g 's procedure for all f
d f 1a ues o the critical cop g

our points on th he p ase boundary

TABLELE I. The calculated
lyin on

u a e coordinates of f

s 0
g t e surface tran 't'nsi ion boundar

our critical pointns

d 1 fh fi

ofU i d o db U

U )feb

2.304
2.404
2.5
3.003

2.107(9)
2.300(4)
2.460(4)
3.113(5)

0.6543(10)
0.6554(5)
0.6562(2)
0.6566(5)

'J, /J = 1.50(10).
U~z ——0.655(2).

FICx. 3. Estimates for U*
scalee factor b for (a) T/J =3.0

p otted vs iinverse logarithm of
=3.003, and (b) T/J=2. 404.



1P51E SURFA«SPSTUDY OFMONNTF CARLO43

T/~ —g.oo/J
3. i 5

g.') 0 j ]

=8

L=14

(aj

5.0

(S

(SF - BF)

(SF - BP)

2p ~SING/ JLOPE =Tc
2 269

4.0

gpXY /JSLOPE = TKT

2 404 (b)
3.0

/J -1.5 (~)sc

2.28

2.24

2.20

In 'b0

loganthm
~ ofvs inverses for J. ~

b) TIJ
lotied

p4
4 Estimates '

pp3, and (b
FgQ. ~

( ) T/J =3-scale factor b for (a

[SF - BF]
i

3.02.0
2.0

J,/J
f 4) and th

nd squareround a
lk (8) an

(KT), or P
n arrow

d labeled by "
Thouless tyI e

dicated by

an
K. sterlitz-

l point i»
netic ~

f the multic
F)

icriticasition
1 5P+P ~

T e
r bar (Jscw&t

~

h an. error
do not see
b-nd-y

bars, we
of the su fg g

tote in thy po

ares this e erticular y
od 1, tar

a e for J,*/
wit
ing already

'
h 1cloc

lanar coup
neig o a

p
t J

late to TKT

dl h'e. In our mo
far beyon

avior wou
which was a/J»100,J

erimenta y i-iwt only expe
dimensional

o er to
1 to 1

l, b d
4cumulants aoft eh surface magn

' '
cu

er scaling an-crossovere the following),W1 e assume t e
.33

, /J )
' ~",g /L ),J /J), L)=UL, /J( (J, /JUL(g, (J, (10)

L reduces to the f'
h for j))L, re uwhic

1/y(L(J, /J)
the followinger exlies, for t eh crossoveThis implies,

formula:

(12
ln(aU„/a, ,U )

lnb

to T/J»Tb /Jsponds
bulk "'t'" ' t

expect to o
h e pone

(12) demand rivative
'

e. Un or

tain ed:
rithmic e

'

se whic
data c ose

than thoscura te data
ft eg

is im-
ives very id'fferent resu

li 1n to sca incorrection



1052 P. PECZAK AND D. P. LANDAU 43

possible. Our rough estimate up=0. 3+0.2 can be only
qualitatively compared with the value of the crossover
exponent for a layered XY model, calculated earlier by
Kosterlitz and Thouless and by Hikami and Tsuneto:
@=0.5.

A line of the surface transition boundary merges with a
line of the ordinary transition at the multicritical point
with coordinates (J, /J:—J„/J and T, /J = T„b /J), the
position of which can, in principle, be determined using a
diIterent crossover scaling analysis, This has been
demonstrated for an Ising system by Binder and Landau.
There are, however, two important differences in the im-
plementation of this method in a case of the planar rota-
tor model. First, the surface magnetization data cannot
be used directly for the purpose of scaling analysis, since
m i vanishes identically (in the limit of the infinite lattice
size) everywhere in the region of phase diagram above the
line of the ordinary (and extraordinary) transition. How-
ever, the local susceptibility, yii ——Bm i /Bh i, can be used
instead of I&. Second, the conventional form of the
crossover scaling ' ' has to be modified, since the
meaningful quantity for the XY-like system is not the re-
duced temperature but rather the correlation length. '

The local susceptibility g» for J, /J near the multicritical
point at J„/J should then depend on the following com-
bination of two variables ( T /T, —1 ) and (J, /J„—1)

—m

y„/[a~exp( b(t )] "=—P((th ' ~), (13)

where t=—T/T, —1, 6—:J /J 1 p» is the appropriate
scaling function, and y& &

is the value of the local suscepti-
bility exponent at the multicritical point. The above ex-
pression implies that, instead of the scaling variables sug-
gested by a conventional scaling of

y& it versus At~m

one should use modified ones:

(14)

ln pi i (yiibt )t velsus (15)

Figure 6 shows the results of an analysis of this type;
the data correspond to films with surface size 30X 30. As
can be seen, the data fall on the universal curve in a quite
smooth fashion, using the value of J„/J=1.50; the other
parameters were b,,yii-—0. 11+0.02, and /=0. 43+0.02.
However, a high quality of the fit could be also preserved
for all J„/J in the range 1.40—1.60, where the parame-
ters b&yi, and i)) varied in the range 0. 13—0. 10 and
0.39—0.49, respectively.

The self-consistency of the analysis demands that the
crossover coefhcient P and J„/J are to be determined by
the condition gi'i(x, )=0, x, being the scaling variable at
the multicritical point: x,. = t, 6, ' ~ (where
6, :=J,*/J„—1, and t, =—T,*/T, —1). Then, the exponent
P can be determined from the slope of linear fit 5, versus

t, . The insert on Fig. 6 shows that the anticipated linear
dependence is fairly good (especially for the data in the
vicinity of the multicritical point), and that the obtained
value of the exponent /=0. 42+0.02 is consistent with
the result of scaling of g&', . However, we suspect that the
surface of size 30X30 was too small for the crossover
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FIG. 6. Scaled local susceptibility g»exp[( y „b &
){T /

T —1) '] plotted vs the scaling variable

(J, /J„—1)(T/T, —1) ~, for J„/J=1.50, (y„b&)=0.11, and
/=0. 435 (the curve refers to J,. )J„). The inset shows the plot
of the logarithm of the difFerence between surface critical cou-

pling J,*/J and the multicritical coupling J„/J vs T,*/T, —1,
with the assumptj. on that J„/J= 1.50+0. 10.

y„/[a~exp( b, t )] "=I'",, [a~—exp( b(t )b' ~] . —

Now the corresponding scaling variables should be

scaling formula, Eq. (13), to be exact (so that additional
corrections to scaling would be necessary). Thus the final
position of the multicritical point we determined has a
rather large error: J„/J = &. &0+0. &0.

It was impossible in the framework of our analysis to
determine an exponent y» independently of the parame-
ter b&. Since the problem of the measurement of the sur-
face correlation length (i.e., parameters a& and b&) was
left out of our study, we can only assume that b& is of the
order of the analogous quantity calculated in recent stud-
ies of the two-dimensional XY model b&-—1.67, which
gives y i&

——0.066.
It is also interesting to compare the results of the above

analysis with the one carried out with the use of a con-
ventional scaling. Many numerical simulations of the XY
model have questioned not only the mechanism behind
the Kosterlitz-Thouless transition, but even its or-
der. ' ' In our study we have found a strong evidence
against an algebraic-type singularity in this model. Using
the conventional scaling variables, we arrived at a fairly
good scaling function that was not, however, as smooth
as the one obtained with the use of the Kosterlitz-
Thouless type of scaling (Fig. 7). Furthermore, this scal-
ing was also consistent with J„/J = 1.50 (+0.15 ),
/=0. 43 (+0.05), and now y =0.33 (+0.05).

Finally, we would like to comment on yet another pos-
sibility for crossover scaling that would be also consistent
with the Kosterlj. tz-Thouless type of the surface transi-
tion. One could express the local susceptibility g» in vi-
cinity of J„/J in terms of the variables t and 5 via
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zero (see the paragraph above). Recent studies of phase
diagrams in the d =3 semi-infinite anisotropic Heisen-
berg ferromagnets (the special realization of which in-
cludes an isotropic XY model) do not show any indication
of this type of anomalies. Thus the above type of cross-
over scaling does not seem to be appropriate.
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FIG. 7. Scaling of the data in Fig. 6 assuming a power-law
divergence of the correlation length [Eq. (14)].

lnyi& (yP&b&)t —versus ink+(Pb&)t (17)

Surprisingly, this type of scaling produced a smooth
universe curve and for the same value of J„/J=1.50
(-&0. 15). The other parameters were bryan&-—1.15+0.20,
and b&$=0.55+0. 14. The value of the last of the two
parameters was consistent with the value obtained from
the slope of the linear fit ink, versus t, , although the
anticipated linear dependence was only approximate (Fig.
8). This last type of scaling implies, however, that at the
multicritical point the line of the surface transitions has
an infinite slope, but the size of a region where the
inAected boundary would drop down to its terminus
would have to be very small, so that the continuation of
the boundary (which has a very small slope) would be al-

B. Surface magnetization

The final part of our study concerns earlier predictions
about the nature of the surface transition. We carried
out a finite-size-scaling analysis of the surface magnetiza-
tion m &, and Fig. 9 shows a logarithmic plot of I, versus
lattice size L for T/J=3. 003 (other temperatures show
similar results). It is easy to see that the data collected at
different regions of phase diagram (i.e., for different
values of J, /J) fall on qualitatively different-looking lines.
Whereas the points corresponding to the bulk and
surface-disordered phase (BP-SP) lie on a strongly in-
clined curve, all the data collected in an immediate vicini-
ty of the surface transition and in the bulk-
disordered —surface-ordered (BP-SF) region can be fitted
with quite high precision to straight lines. This means,
that for the whole range of the lattice surfaces investigat-
ed, 8 ~ L ~ 50, the entire region (BP-SF) is characterized
by a power-law behavior of I

&
versus I,. But this is a

hallmark of the criticality, since there are correlation
length is infinite and the corresponding surface order pa-
rameter scales like the lattice surface size L ~ [compare
Eq. (7)]. Moreover, one can see that each line has a
different slope, i.e., the critical exponent P depends on the
position of the point in the Kosterlitz-Thouless phase.

The value of the exponent P=P(J,*/J, T/J) obtained
from the finite-size-scaling analysis (denoted by Ps„) can
be compared with results of the analysis of the reduced
moments of surface magnetization m i (denoted by P,„).
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FIG. 8. Scaling of the data in Fig. 6 assuming a full
Kosterlitz-Thouless-type divergence of the correlation length
[Eq. (17)]. Please note that a logarithmic scale used on a verti-
cal axis spans six orders of magnitude, i.e., three times more
than the corresponding axes on Figs. 6 and 7.

FIG. 9. Log-log plot of the surface magnetization m& vs
linear dimension of the surface L for T/J=3. 003 and different
values of J, /J. The dashed lines correspond to the data in the
SP-BP region of the phase diagram; the continuous linear fit is
passible far the points in the SKT-BP phase (compare the insets
in the diagram).
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2.303
2.404
2.5
3.003

fin

0.146(3)
0.144(3)
0.143(3)
0.139(3)

P,„„., =q/2=0. 125

curn

0.152(3)
0.148(4)
0.146(2)
0.142(3)

TABLE II. The values of exponents P obtained from the
finite-size-scaling analysis (Ps„) and analysis of the reduced mo-
ments of surface magnetization (/l, „).The expected value of/1
is denoted as /3, „„,.

ponent /3, obtained from the slope of the linear fit of lnm i
versus lnL corresponding to the KT transition, would be
indeed greater then g/2=0. 125. In the framework of
this study, we could not, however, determine if this type
of correction is valid [one might also consider another
multiplicative term in Eq. (18), e.g. , (I+r lnL) ], since
the shape of the I, versus L line and the values of pa-
rameters x, r, and w depend strongly on T/J and J, /J,
i.e., the position of the point (J, /J, T/J) with respect to
the line of the surface transition boundary.

m, =L ~(lnL ) (18)

which was found ' to be correct in case of the Q =4 Potts
model (which is a special case of the quantum version of
the XXZ Hamiltonian ' ), then the value of the ex-

Because (as we mentioned before) the cumulant type of
analysis demands very high-precision data, calculated
with the use of the probability distribution moments of
the surface magnetization, indices P have rather large er-
rors; even so the results of the two methods agree very
well (Table II). We notice a slight variation of the ex-
ponents /3„„and /3, „with the temperature, similar to
changes found in the analysis of the fixed-point cumulant
U'. Although these changes are marginal, our final esti-
mate of the surface magnetization exponent
P=0. 145+0.005, is rather different from the conjectured
value of the exponent P=O. 125 ( =g/2), which should be
true for any type of the Kosterlitz-Thouless transition.

Similar diKculties in obtaining values of the exponent
il (or /3) predicted by Kosterlitz were found' ' ' ' ' in
many other numerical and analytical studies of the 2D
XY model. It was suggested that this e6'ect is due to the
presence of logarithmic corrections to scaling, similar to
those occurring in the XXZ Heisenberg model. If one
assumes that these corrections can be represented by the
following asymptotic (L~ ~ ) form of the finite-size scal-
ing of the surface magnetization I &, so that

IV. CONCLUSIONS

Using extensive Monte Carlo simulations for films of
classical spins, we have studied the surface behavior
along the surface transition line and in the vicinity of the
multicritical point. We determined the precise position
of the boundary between BP-SP and BP-SF phases and
demonstrated that the transition is of the Kosterlitz-
Thouless type. We could not observe the true asymptotic
regime where the surface decoupling takes place, since
this eA'ect takes place for very large J, /J. The finite-
size-scaling analysis of the surface magnetization and its
probability distribution moments gave us an estimate for
the surface magnetization exponent P associated with the
surface transition: /3=0. 145+0.005, which is somewhat
larger then the exact value of 0.125. Finally, using cross-
over scaling, we have determined the approximate posi-
tion of the multicritical point (J„/J=1.50+0. 10) and
the crossover exponent associated with the special transi-
tion: /=0. 43+0.06.
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