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Thermal activation of vortex motion in YBa2Cu3O7
films at low temperatures
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Thermally activated Aux vortex motion in a constant applied field is studied at temperatures be-
tween 2.5 and 21 K for In situ thin films of YBa2Cu307 z. The magnitude and temperature depen-
dence of the dissipation is shown to be consistent with an activation energy U( J), which is indepen-
dent of temperature in this temperature region, but which is assumed to be a function only of
current J. Activation energies U( J) are deduced for currents between 1X 10' and 2. 5 X 10' 2/cm
for the samples measured, by considering the change in the decay rate, at constant current, as a
function of temperature. These results indicate that the fundamental mechanism for dissipation in
this temperature range is thermally activated.

INTRODUCTION EXPERIMENTAL

Many models have been proposed for the detailed
description of magnetic relaxation in high-temperature
superconductors. ' These models make different as-
sumptions about which properties of high-T, materials
are most important in describing the critical current and
I- V characteristics. For instance, the magnetic penetra-
tion depth, the coherence length, the degree of anisotro-
py, and weak coupling between layers have all been con-
sidered. One feature which distinguishes some of these
models from others is the assumption that thermally ac-
tivated magnetic Aux motion is responsible for the ob-
served dissipation characteristics. For instance,
Feigel'man et al. argue that the Aux creep activation en-
ergy U(J) provides a description of the decay process,
but that U(J) is highly nonlinear in the current due to
changes in the correlation volume with macroscopic
current J. Fisher et al. also argue that the observed dis-
sipation is thermally activated, via thermal nucleation of
Aux vortex loops, although the appropriate activation en-
ergy must be described properly in terms of the H-T mag-
netic phase diagram.

Alternately, it has been proposed that the observed I-V
characteristics and magnetic relaxation are the result of
nonthermal effects. For instance, Lensink et al. ' pro-
pose that magnetic relaxation at low temperatures is due
to a nonthermal process, e.g. , Aux vortex tunneling. Re-
cently, " some of the present authors have pointed out
that an inhomogeneous critical-current distribution
might be the dominant cause of dissipation observed in
isothermal and magnetization decay over a wide tempera-
ture range, as has been observed in measurements of
low-temperature superconductors. '

Here, for YBazCu307& thin films, we investigate the
question of thermally activated dissipation in detail for
temperatures between 2.5 and 20 K. We postulate the ex-
istence of an approximately temperature-independent
activation-energy barrier for fiux vortex motion b,F (J) in
this temperature range. We deduce the function b,F(J)
from measurements of the relaxation rate of the current
versus temperatures as described below.

YBa2Cu307& thin films were grown to a thickness of
approximately 1.2 pm by off-axis magnetron sputtering,
as described elsewhere. ' The films were highly c-axis
oriented, with a sharp transition temperature T,o= 86 K
as removed from the deposition chamber.

Magnetization measurements were performed with the
field parallel to the film surface normal on a modified
Princeton Applied Research vibrating sample magnetom-
eter. Using the Bean formula, ' critical currents for the
samples were determined to be 2.3X10 A/cm at 4.2 K
in an applied field of 5 kG. We find the measured critical
currents to be independent of thickness for films grown
between 0.2 and 1.2 pm, indicating that the volume pin-
ning force is not thickness dependent in this thickness
range.

Magnetization decay measurements were made by
ramping the field to a high value (11 kG) and then slowly
ramping the field linearly in time down to 5.0 kG, where
the ramping was stopped. This procedure saturated the
observed moment throughout the measured temperature
range. The magnetic moment was measured at 1 sec time
increments for 1000 sec, starting a few seconds before the
final field value was reached. Because measurements
were made in an applied field substantially larger than the
self-field if the samples, self-field effects were neglected.

THEORY OF MAGNETIZATION DECAY

Consider those magnetization states for which we can
write the decay of the supercurrent R in a fixed applied
field H, as

R (J, T)= dJ/dt . —

That is, where the current decay rate deduced from the
Bean formula is only a function of the temperature and
the average current J as determined from the sample mo-
ment. States of this type include those reached by iso-
thermal decay from the saturated moment at constant ap-
plied field (in magnetization decay), and those in which
this process is followed by changing the temperature of
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the sample. ' Equation (1) does not apply for more com-
plex distributions of the Aux, for instance, those which
arise if there is overshoot in the applied field at the end of
the ramp. ' The magnetic field dependence of R is impli-
cit in Eq. (1), but is not included explicitly in order to
simplify the notation below.

From Eq. (1) we can write

(3 lnR
aJ

8 lnR
B(1/T)

d lny(J)
dJ

1 rib F(J, T)
kT BJ

—bF(J, T) T BhF(J, T)
k k BT

(6)

dR = dJ+ dT,
BJ BT

(2)

and by the chain rule,

BR BJ dT
aT, aR

(3)

The three quantities on the left are experimentally acces-
sible from, respectively, isothermal decay or I-V measure-
ments, from critical current versus temperature measure-
ments, and from cooling measurements at constant
current. ' The second factor on the left can be taken as
J, versus T, since a fixed decay rate corresponds to a con-
stant electric field, from Faraday's law. Equation (3) es-
tablishes that, for those situations for which Eq. (1) holds,
only two of these three types of measurements can be
treated as being independent.

Model for thermal activation

One general model for describing decay processes as-
sumes thermally activated relaxation. This assumption
specifies that the decay rate can be written

R (J, T) =y( J, T)exp[ —b F(J, T) /kT j,
where y is a prefactor proportional to some attempt fre-
quency and length scale, while b,F(j,T) is a free-energy
difference between the minimum and activated states.
Note that the assumption of thermal activation in Eq. (4)
does not place a limitation on the mechanism for the
thermally activated dissipation. For instance, Eq. (4)
does not select between glassy behavior and Anderson
Aux creep, since both of these models assume that the dis-
sipation is thermally activated. ' We make the assump-
tion that the primary temperature dependence in Eq. (4)
is through the exponent, whi1e the prefactor y only de-
pends on the current J. Various generalizations of Eq. (4)
can be made based on additional assumptions about the
system. One generalization is allowing a range of energy
barriers to Aux motion, such that the right-hand side be-
comes a sum; another is the introduction of inhomogene-
ous regions of the sample which possess different I-V
curves at constant temperature, as illustrated by Fig. 5 in
Ref. 11. Here, we do not consider generalizations of this
form. Instead, we investigate quantitatively the degree to
which a single pinning function AF(J, T) can describe ob-
served decay without the use of these additional parame-
trizations.

If we switch free variables from T to 1/T and R to
lnR, which are more convenient quantities for using Eq.
(4), we can write from Eqs. (2) and (4) that

In terms of a thermally activated dissipation process, Eq.
(5) is applicable to isothermal decay and I Vm-easure-
ments, and Eq. (6) is appropriate for describing the case
where the sample is cooled at constant J, as described
below.

The second term on the right-hand side of Eq. (6) can
be neglected at low temperatures relative to the first
term. The quantity b,F(j,T) is expected to become rela-
tively constant versus temperature at low temperatures,
since we associate it with the condensation energy of the
superconductor. At low temperature ( T (0.2T, ), Eq. (6)
therefore yields a more or less direct measurement of the
pinning activation barrier hF (J). Consistent with com-
mon usage, ' hereafter we use the symbol U to denote
free energy. We denote the experimental activation bar-
rier deduced from experimental data using Eq. (6) as
Ugg(j)

Di6'erent forms for U(J) can be constructed based on
different physical assumptions. ' ' For illustration, we
show one such functional form in Fig. 1, which is a pin-
ning function of the form

U(j)=U 1—J
J (7)

where U is the depth of the pinning well in the presence
of no macroscopic current and J, is the current at which

Up

c Up
O

~ w

J(tp)

FIG. 1. Schematic vortex pinning potential showing approxi-
mate construction for Uo. U~ is expected to be finite for Ander-
son flux creep.
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no barrier to Aux Aow exists. The exponent n depends
sensitively on the shape of the potential well. Typically,
for simple Anderson Aux creep models, 1 & n (2. '
Different physical assumptions, of course, lead to
different functional forms for the activation potential, for
example, U(J) ~J " "', where p is a parameter.

We now discuss measured magnetization decay data in
terms of Eqs. (1)—(6). We consider whether thermally ac-
tivated dissipation described by a single pinning potential
adequately describes the decay process in the measured
temperature range.

Historically, isothermal decay of the magnetization has
been used extensively to determine energy Up. Up is a
geometric construct obtained from U(J) at some particu-
lar value of J by extrapolating (dU/dJ)z. linearly back to
the J=O origin, with U(J)«UO assumed. ' Failure of
this assumption introduces uncertainty into the calculat-
ed intercept, and precludes the simple calculation of a
Aux bundle volume. The construction of Up is indicated
by the dashed line in Fig. 1. If the total current decay in
the experimental region probed is very small, then the
pinning potential, for instance Eq. (7), can be expanded to
first order in J, about its value at some time during the
measurement t p, with y assumed to be constant relative
to changes in U. ' This yields a decay solution of super-
current J versus time t approximately

(8)

where Jp is the value of the supercurrent at time t p. This
expression can be made more complicated by considering
the initial condition in the magnetization decay experi-
ment' ' or the breakdown of Aux creep at large values of
J, but it contains the important features for the present
discussion. The subscript indicates some nominal time
during the course of the experiment, about which a time
expansion is taken. The coefficient of the logarithmic
time decay term can be used to calculate an energy inter-
cept Up. Usual values for Up in conventional supercon-
ductors are Up=150kT, so the linearization procedure
and the assumption Up &) U is satisfactory, where U is
assumed to be of order of a few kT.

In high-T, superconductors, the observed decays are
rather large. This requires that we reevaluate our lineari-
zation procedure and our assumption about the size of
Up. A simple consideration of a model potential, for ex-
ample Eq. (7), quickly reveals that a linearized potential
is inadequate over the range of current decay (20%)
which is typical in magnetization decay experiments, in
that (BU/BJ)r varies considerably over this range of de-
cay. Therefore, strictly logarithmic decay will not be ob-
tained for cases where the total decay is large, except
when n =1. Further, the assumption that U(J) « Uo
also becomes invalid for large relaxations. For high-T,
materials, Uo is extrapolated to be (20 —60)kT. ' '' In a
typical decay over three orders of magnitude in time, say
between 1 sec and 1000 sec, U(J) increases by —6kT.
Typically, one extrapolates back to phonon frequencies to
estimate when U =0, i.e., 10 ' sec. This yields values
for U of -20kT at experimentally accessible times,

1 8 U+ — (J —Jo)' .
BJ

This is the potential assumed by Beasley et al. , with the
addition of an additional term in the Taylor expansion to
explicitly consider nonlinearity in the pinning potential.
Again, we assume that changes in y are relatively small,
and obtain the following approximate expression for the
isothermal magnetization decay in the neighborhood of
t p'.

J(t)=Jo kT I—n(t/to)
hJ
aU,

3
(kT) BJ 8 U

2 BU o QJ2
(10)

We define the quantities a and /3 for parametrizing exper-
imental data:

a and P are therefore the experimentally determined
values for the first and second derivatives of the pinning
potential with respect to the current, respectively, ob-
tained from fits to isothermal decay data using Eq. (11).
a is the same quantity in Eq. (8) which is customarily
used to determine Up.

The effect of the nonlinearity in the pinning potential is
to add an addition term to Eq. (10), which is quadratic in
In(t). Equation (10) does not result from the imposition
of any additional assumptions on the Aux creep model;
rather it explicitly includes a term which previously has
justifiably been neglected as small. Equation (10) can be
used to extract values involving the pinning potential
U(J), by fitting to magnetization decay data.

RESULTS

We now consider the various types of data available ex-
perimentally, which consist of isothermal decay (IV)-
measurements, J, measurements, and constant J versus T
decay rate measurements.

which are comparable to Up.
These considerations do not affect the general applica-

bility of the Aux creep model, nor should the failure of a
system to obey Eq. (8) necessarily be taken as a failure of
the Anderson Aux creep model without consideration of
the magnitudes of the various quantities involved, such as
the total decay which occurs during the course of the ex-
periment.

Equation (8) results from the imposition of a locally
linear pinning potential function in the neighborhood of a
current Jp. Here, we develop a more general isothermal
decay equation which takes into account the first non-
linear term in the pinning potential U(J), also expanded
about the current Jp occurring at time tp:

U(J)= U(JO)+ (J—Jo)
aU
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Isothermal decay

A straightforward experiment to perform is the obser-
vation of isothermal decay of the supercurrent in a con-
stant applied magnetic field. Typically, the external field
is ramped to a certain value, H„at constant temperature,
and the magnetic moment of the sample is recorded as a
function of time.

Figure 2 shows typical data of this type, for an applied
field of 5 kG at a temperature of 20.4 K. The same data
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are plotted in Figs. 2(a) —(2c). In Fig. 2(a), a straight line
has been drawn approximately parallel to the data to il-
lustrate the fit of Eq. (8) and to illustrate the nonloga-
rithmic behavior of the decay. An alternate type of
fitting, based on a fixed power n in the I-V characteris-
tic, ' also does not yield an exact fit to the data, as illus-
trated in Fig. 2(b); however, it does provide a better fit
than the logarithmic fit of Fig. 2(a). (A small vertical
offset has been made to the dashed curves to clarify the il-
lustration. ) It is found experimentally that the departures
from fits of the type shown in Figs. 2(a) and 2(b) increase
for increasing temperature.

If.we assume that the pinning potential is a nonlinear
function of the macroscopic current, we can fit the data
using Eq. (10), as illustrated in Fig. 2(c). With the ap-
propriately chosen values for the first and second deriva-
tives of the pinning potential, the quahty of the fit is ap-
parent. Data obtained at higher temperature, for in-
stance 77 K, are also well described using this procedure.

The use of Eq. (10) allows an additional fitting parame-
ter to be employed, so improvement in the fits is not
surprising. We now attempt to verify that the fits ob-
tained are consistent with a nonlinear pinning potential.
We do this by considering the temperature dependence of
the magnetization decays. If we assume that at low tem-
perature the pinning function U(J, T) reduces approxi-
mately to a temperature-independent form U(J), then we
can compare the quantities a and /3 by taking the discrete
derivative of the slope of the pinning potential deter-
mined at two different temperatures, i.e.,
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The subscript "0" in Eq. (12) denotes that we take the
discrete derivative using values for a(J, T) at some fixed
time in the decay measurement, for instance 30 sec after
stopping the field ramp. The subscript to J denotes the
value of current measured at time to at the two different
temperatures.

If the model of thermal activation with a nonlinear
U( J) is correct, we then expect that
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FICx. 2. Fit of measured isothermal magnetic decay data
(solid line) to various I Vcharacteristics. (a) E-xponential [Eq.
(8)], (b) power law, (c) second-order exponential [Eq. (11)].

i.e., that the curvature of the pinning potential deter-
mined from the two different methods, one at constant
temperature, the other at constant time, will yield compa-
rable values.

Figure 3 illustrates the values for the curvature of the
pinning function derived in the two fashions, for data
taken between 3.2 and 20 K. The dots represent the
discrete derivatives of a from Eq. (12), while the squares
denote values for /3, from Eq. (10).

As can be seen in the plot, Eq. (13) holds rather well
over this data range. This supports the notion that the
nonlogarithmic behavior in the magnetization decay is
due to a nonlinearity in the pinning potential.
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Rate versus temperature for a fixed current

In this experiment, the sample is cycled at constant
field ramp rate to a fixed value of applied field H, at con-
stant temperature T, . The sample is allowed to decay at
this field value to some subsequent time, t, , just as in the
isothermal decay experiment above. At time t„ the tem-
perature is changed to a new temperature T2. The decay
of the sample moment is observed constantly during this
process.

We assume that the sample is brought to the same ini-
tial state at t, each time the process above is repeated. If
we assume that the process by which dissipation occurs is
by the motion of flux vortices in the sample, then the
significant effect of the temperature change from Ti to
T2 is on the average velocity of the flux vortices, as ob-
served by a change in the rate at which the moment of
the sample decays.

Typical data of this form are shown in Fig. 4, which
shows magnetization decay data in which the sample
temperature was reduced at t, =55 sec, from an initial
temperature TO=30. 7 K in an applied field of 5.07 kG.
The figure consists of the superposition of four decay ex-
periments, for which T2 =30.5 K, T2 =29.7 K, T, =28.3
K, and T2=26.2 K. The solid lines are fits of using a
power law I-V relationship to parametrize the decay rate
subsequent to the cool, as has been discussed else-
where. '

If we assume that the vortex motion is thermally ac-
tivated, then the change in the decay rate should be ap-
proximately described by an Arrhenius expression, where
the rate varies exponentially with inverse temperature.
The inset to Fig. 4 shows the best-fit decay rate versus
1/T2. The data shown in the inset are well described by
an Arrhenius expression over two orders of magnitude in

FIG. 4. Sample moment vs time for a sample cooled to vari-
ous temperatures T2 at t& -55 sec. Solid lines represent best-fit
values, shown in the inset, using a power-law form [illustrated
in Fig. 2(b)]. Inset: Decay rate R vs Tz. Solid line represents a
best fit to an Arrhenius expression lnA ~ 1/T.

the decay, as indicated by the solid line fit. This yields a
value of U=70 meV.

The most notable features from Fig. 4 are, first, that
the change in the decay rate does in fact appear to be Ar-
rhenius in character, since the rate versus inverse temper-
ature is approximately exponential; second, that the ob-
served decay rates are the same as those which are ex-
pected when the state at (t„T2,H, ) is reached by iso-
thermal decay. This implies that we can perform the ex-
periment illustrated by Fig. 4 by reaching the moment at
t, by isothermal decays at various temperatures, which is
a much easier experiment. These rates can then be used
to construct U( J, T) values using Arrhenius plots, so long
as U is relatively constant over the range of temperature
considered. In the Anderson flux creep model, it is most
likely that the values of U(J, T) have their smallest tem-
perature dependence for T « T„since the activation en-
ergies in Eq. (4) are customarily associated with the free
energy of a vortex in this case. '

We perform the experiment represented by Fig. 4, in
the range 2.5 K & T &21 K, by making isothermal decay
measurements in temperature increments of 0.5 —1 K.
We then calculate best-fit values for U( J) from Arrhenius
plots, implicitly assuming that the temperature depen-
dence is negligible in this temperature range. Generally,
the data were well described by an Arrhenius expression
using this procedure, although data in the neighborhood
of 5 —8 K yielded plots exhibiting a small positive curva-
ture. Such curvature might signal the breakdown of one
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or more of the assumptions made for obtaining activation
energies in this fashion.

The resulting best-fit values for U( J), denoted as
U**(J), are shown in Fig. 5. Within the assumptions
mentioned here, the points in this plot represent a direct
measurement of the pinning potential of the supercon-
ductor versus the macroscopic current J, using a least-
squares fit to Eq. (11). The solid line is a quadratic fit to
the U**(J)data, shown for illustration. The pinning po-
tential shown in Fig. 6 is intuitively reasonable, ap-
proaching zero as J increases and falling off roughly as a
power law, with n =2.

One difference between the classical Anderson Aux
creep model and the vortex glass model is the value of the
thermal activation energy as J approaches zero, which is
finite for the classical Anderson model, ' ' but diverges
for the vortex glass model. It is interesting to consider
whether the potential versus J shown in Fig. 5 can ad-
dress this question. Although the fit to Eq. (7) yields a
finite intercept at U —100 meV, it should be noted that
the power law in J guarantees a finite intercept at J =0.
Maley et al. consider an experimentally determined
function U, (J), which they find consistent with a form
U(J) ~in(J, /J). Such a form might be consistent with
the onset of a vortex glass phase, as reported by Koch
et a/. ,

' in 0.3-pm-thick YBa2Cu307 & films. We find a fit
to this form, which diverges as J approaches zero, also
yields a qualitative fit to the data. It is therefore quite
difficult to distinguish experimentally between a vortex
glass and Anderson Aux creep based simply on data of
the form shown in Fig. 5.

A natural question is whether the pinning potential de-
rived from the cooling at constant current, and the first
derivative of the magnetization decay, yield consistent
values for the pinning potential. We make this compar-
ison, within the context of the foregoing assumptions, by
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FIG. 6. Comparison of U(J) determined from Arrhenius
measurements (open circles) and from an integration of the iso-
thermal decay measurements (solid circles). U(J) is fixed at
zero at J =2.6X 10 2/cm for the integration.

performing a discrete integration of the pinning potential
slopes a(J, , T; ) determined from Eq. (11) at various tem-
perature T;. The subscript on J indexes the values of Jo
for different temperatures:

U (J )—:U (Jo)+ ga( J T)( J J; i)
i=1

(14)

Here U ( J) is the experimentally derived pinning poten-
tial obtained from the isothermal decay measurements.
To fix a starting point for Eq. (14), we take U=0 at
Jo =2.6 X 10 2/cm, the highest current measured in
the experiment. This procedure for calculating U (J) is
essentially equivalent to that employed by Maley et al.
for finding U, (J), in which the isothermal relaxations are
used to construct the nonlinear pinning potential.

Figure 6 shows the comparison between the resulting
pinning potential derived from Eq. (14), i.e., isothermal
decay data, and from Eq. (6). As can be seen in the
figure, the agreement is relatively good. It is interesting
to note, also, that the pinning potential constructed from
the isothermal decays for our thin films (solid circles) ap-
pears similar to that constructed for oriented powders.

20— Critical current versus temperature

I

2

J (10 A/cm')

FIG. 5. Values of U(J) determined from Arrhenius plots at
constant current J.

As a final consideration of the consistency of a
thermally activated Aux motion model for the dissipation,
we make a comparison between the temperature depen-
dence of the critical current and pinning potential, simi-
lar to the comparison made by Tahara et al. We can
also consider the critical current versus temperature,
which, with the previous assumptions, reduces to
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100— —100 deduced for a constant applied field ramp on the left-
hand side, we compare the two sides of Eq. (16). This is
illustrated in Fig. 7.

As can be seen in the figure, the slopes of the two
curves differ by approximately 50%. This can be taken
again as qualitative agreement between the two measure-
ments in terms of a simple flux creep picture.

~0

q ~
O g

00

I I

2

J ( 10 A/cm')

1

3

FIG. 7. Comparison of temperature vs J, and pinning poten-
tial U * vs J. The two curves should have comparable slopes,
from Eq. (16).

BJ
c)(1/T )

1 BU(J, T)
kT BJ

U(J)
(15)

Note that we have already assigned measured quantities
to the two terms on the right, in terms of the other two
partials in Eq. (3). If we were to substitute these on the
right-hand side, the relationship (15) would be tautologi-
cal by virtue of Eq. (3).

If we again assume, in the temperature range
0 (T (20 K, that U( J, T) is independent of temperature,
then Eq. (15) becomes

CONCLUSIONS

Magnetization decay data have been interpreted in
terms of thermally activated dissipation. It is found that
the first and second derivatives of the magnetization de-
cay versus ln(t), the critical current versus temperature,
and isocurrent cooling experiments all give comparable
values for the relevant quantities in the pinning potential,
which is assumed to be only a function of the current in
the temperature range T & 20 K. It is shown that, within
the assumption of thermally activated flux creep, a mea-
surement of U(J) can be obtained at low temperatures
from Arrhenius measurements of the magnetic relaxation
rate at constant current. The level of agreement between
the various measurements supports the notion that
thermally activated flux motion in YBa2Cu307 & thin
films is responsible for the bulk of the dissipation in the
temperature range 2. 5 K & T & 20 K.

The model of a single thermally activated pinning po-
tential U(J) does not preclude additional assumptions
about the system, for instance, the presence of dissipation
due to a multiplicity of decay paths with varying energy,
or the presence of inhomogeneities in the system which
would complicate the decay of the system. '" These
represent generalizations of Eq. (4), which could presum-
ably reconcile the differences in the pinning potential
determined using the various methods, represented by
Figs 3, 6, and 7. Conceptually, these generalizations are
straightforward, although the analysis might be quite
complicated for a specific set of assumptions.

c) lnU(J, T)
BJ
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