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We develop a scaling approach to Aux-line pinning in high-T, superconductors. Our main result

is a nonlinear relation V(j„)-exp( —Cj,,") between the voltage V and the external current density

j,„,where the exponent p is related to the roughness exponent and has been estimated in an earlier

paper [T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990)]. For the low-frequency ac resistivity we

find two contributions p, (cv)-cv [1—(T/T*)lntoro] ~ and p2(co) —to[1 —(T/T*)incor ]ii~~, where

it = 1 in three dimensions, and where T" is a characteristic temperature. Similar power laws are ob-

tained for the dynamic susceptibility y"(co), whereas the magnetization due to the change of the ap-

plied field varies in time as (lnt)

I. INTRODUCTION

The conventional theory of Aux creep in superconduc-
tors' is based on various concepts. Apart from thermal
Auctuations, the Aux line motion is due to the Lorentz
force density p„=j„XB/c, which acts perpendicular to
the Aux lines. Here, j„is the current density of an exter-
nal source or transport current density and 8 the spatial-
ly averaged magnetic induction. The flux lines are
pinned by defects such as vacancies, interstitials, impuri-
ties, voids, twin boundaries, etc., which even for j„=O
lead to a distortion of the flux-line lattice (FLL). The dis-
tortion of the FLL due to the Lorentz force density and
due to pinning is described by elastic continuum theory.
At zero temperature Aux-line motion is only possible if
p„exceeds the average pinning force density, and the
current density j,„&j, (O, B) is dissipationless, where

j,(T,B) is the critical current density. For j„)j, Aux-

line motion with velocity v leads to an electric field
K=8 Xv/c and hence to a finite voltage V. At finite tem-
peratures there is a finite probability that the Aux lines
overcome the pinning energy barriers: One has a strong
crossover from thermally activated jlux creep for j,„«j,
( T,B) to flux jhow for j„))j, ( T, B).

Flux creep depends on various parameters. At low
fields of the order of H, i one has essentially pinning by a
single Aux line. At higher fields the interactions between
the Aux lines become sufficiently strong, leading to a
thermally activated motion of bundles of Aux lines. The
volume V, of such a bundle which moves in a thermally
activated jump depends on T and 8 and can be estimated
only very crudely. There is a variety of possible pinning
centers which might pin more or less strongly and in gen-
eral one considers two limiting cases: Either one has
strongly pinning defects which all pin independently
(strong pinning lim-it) or weak pinning centers which pin
collectively and where a single pin does not disturb the
Aux lines significantly t,'weak pinning limit) -There is also.

collective pinning of a single Aux line. Here we consider
only weak collective pinning as it is most likely the case
in high-T, superconductors [see, however, Ref. 3(a)].

In the simplest case the activation (or barrier) free en-
ergy Uo(T, B) which is overcome by a jump of a Aux line
or Aux-line bundle is determined by the condensation en-

ergy density H, /Sa gained by the Aux line by transvers-
ing a nonsuperconducting impurity multiplied by a suit-
able volume V, . Here, H, is the thermodynamic critical
field. For a single Aux line this volume is of the order of
V, =giL, where 'gi is the Ginzburg-Landau coherence
length perpendicular to the line (or the radius of the nor-
mal conducting core of the Aux line) and L, the activated
length. In thin films L,. is determined by the film thick-
ness d and for d «L, one has two-dimensional (2D) col-
lective pinning. The crossover from 2D to 3D pinning
indeed has been observed. For 3D systems the relevant
scales are either the coherence lengths

g~~
and gi, the

Aux-line lattice constant au=1. 075 (&bo/B)'/, or the
mean distance between the impurities, where No is the
Aux quantum. Yeshurun and Malozemoff and Tinkham
estimate for H ))H, &

the activation energy
Uo( T B):PH /~~a o where the constant P is proportional
to the number of Aux lines in the bundle and to the free
energy difference between Aux lines in a square and a tri-
angular lattice in units of H, /Sw. The square lattice cor-
responds to the saddle point and the triangular lattice to
the stable Aux-line configuration. Various expressions for
V, and L, have been discussed by Kes et al. For strong
pinning, L, is the mean distance between two pinning
centers.

The concept of a "Aux-line bundle" and hence the
meaning of V, has been considerably clarified by Larkin
and Ovchinnikov (LO) who showed that translational
long-range order (TLRO) of the FLL is unstable against
weak pinning. Flux lines are correlated only over a finite
volume which in the conventional theory is identified
with the volume V, which is activated during a jump.
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The FLL is strongly distorted and is treated in the theory
of LO essentially as an uncorrelated Auid on scales larger
than the correlation length for TLRO. The volume V, is
determined by the elastic energy of the FLL (which is a
function of T, H„and B) the density and strength of the
pinning centers, and the characteristic lengths g~~, gi, and
ao.

At zero temperature the barrier energy U0(T =O,B) is
connected to the critical current density j, (O, B) since forj„=j, the Lorentz force density has to be equal to the
pinning force density in the volume V,

U0(O, B)=j,(O, B)BV,d Ic .

Here, d is the distance over which the tlux-line (bundle)
moves with d =g for an isolated vortex line or
b =—B/B,2(0.2 and d =aa/2 for a Aux-line bundle or
b )0.2.'

In conventional superconductors one has
U0( T,B)/T » 1 (with kii = 1) for all temperatures
T ~ T, . The Aux-line velocity v is given by'

u =2uaexp( —UD/T)sinh(Bj, „V,d IcT)

= u 0 exp [ —( c Uu Bj,„V,d—
) /c T], (1.2)

where the second part of (1.2) holds since a voltage is
measurable only for Bj„V,d /cT))1. Here, v0 is a mi-
croscopic velocity proportional to an attempt frequency
(see Ref. 9 for an explicit calculation of u0). The (lux
creep with velocity v, the generated field E =Bv/c, and
the resistivity p(B, T) can be observed only if Bj,„V,d /c
is of the order of U0 or larger since otherwise the voltage
is unmeasurably small. '

In high- T, superconductors such as Y-Ba-Cu-O,
La-Ba-Cu-O, Bi-Sr-Ca-Cu-O, or Tl-Ca-Ba-Cu-0 the ratio
UDIT is considerably smaller since the coherence lengths

g, and g,b in the c and a, b directions are extremely small
and since T, is large. A small coherence length or size of
the vortex cores also explains why these systems pin
weakly. One observes in the magnetization a well-defined
irreversibility line in the B-T plane which can be inter-
preted as a strong crossover from Aux creep to Aux flow
or a depinning transition. Below this line one has a
strong difference between the field-cooled and zero-field-
cooled magnetizations. This difference represents an ir-
reversible magnetization which scales as a function of
temperature and external field. ' In the resistivity one ob-
serves in a broad range of fields or temperatures either
Aux creep or flux Aow. ' ' In part of these experiments
one observes deviations from the Arrhenius law (1.2)
which is found in conventional superconductors. These
deviations might be due either to a strong temperature
dependence of the activation from energy Uo, to a strong
crossover from Aux creep to Aux Aow or due to a true
phase transition. A "shoulder" in the resistivity versus
temperature which appears in fairly high external fields
Hlj„(Refs. 14, 18—20) has been interpreted as a depin-
ning transition. ' Evidence for a sharp equilibrium phase
transition at considerably lower temperatures for a given

field comes from the current-voltage (I V) -curve ' for
very low currents. These data indicate also a vanishing
linear resistivity in the flux-creep region, i.e., below the
transition line. This transition would become "soft" if
one measures the resistivity with too high currents. The
vanishing linear resistivity is in contrast to the conven-
tional theory discussed so far and will be discussed in Sec.
III.

The experiments mentioned so far are connected to the
motion of Aux lines which are created at sufficiently high
fields. In addition one observes in zero or small fields
some kind of phase transition which possibly can be
identified with a Kosterlitz- Thouless transition. The
corresponding data on Bi2SrzCaCu20 (Bi 2:2:1:2),'26

ErBa2Cu307 ~, and YBazCu307 (Y 1:2:3) all in-
dicate that these systems in a certain field-temperature re-
gion behave as two-dimensional superconductors in
which vortex pairs can be created spontaneously and dis-
sociate at the Kosterlitz-Thouless temperature TzT. The
temperature TzT turns out to be only a few degrees below
the transition temperature T, and depends on the applied
field or current since both stimulate pair dissociation.

The melting of a three-dimensional FLL without pin-
ning has been considered by various authors. ' The
corresponding melting temperature T, as obtained from
the Lindemann criterion, turns out to be well below T, .
However, in a system with collective pinning one would
rather expect a transition from a vortex glass into a vor-
tex liquid ' or a depinning transition. The experi-
mental evidence for such a transition seems to be incon-
clusive. The interpretation of vibrating reed data as evi-
dence for FLL melting (see also Ref. 41) has been ob-
jected by several authors and it is not obvious that
the proposed vortex glass-liquid transition ' ' is identi-
cal with a depinning transition. ' If the latter is a
sharp phase transition it should be connected with
infinite energy barriers which by some mechanism disap-
pear at the transition temperature.

In two dimensions one has melting by dissociation of
dislocation pairs in the FLL (Refs. 24, 31, and 47) and
possibly this mechanism can be observed also in layered
high- T, superconductors.

So far we considered the case of an external field H in
direction of the c axis and the current density j„in the
ab plane. The situation still became more puzzling when
a series of experiments on the resistivity transi-
tion' '' ' ' indicated also a broadening for H~~j,„. In
these data the "shoulder" is missing. ' They were inter-
preted as a breakdown of conventional theory since the
Lorentz force density due to the external field
p„=j„XH/c should be zero. However, as mentioned
before, the Aux lines in a vortex glass and in particular in
a vortex liquid are not parallel to H, and there are still lo-
cal Lorentz force densities p„=j„XBi„/cwhich can
lead to Aux creep or Aux Aow and hence to a finite resis-
tivity. In a recent paper it has been shown that the
"shoulder" in the resistivity of Y 1:2:3 or more exactly
the difference between the resistivities for Hlj„and
H~~j,„are due to the Lorentz force density p,„. The ab-
sence of a similar anomaly in the resistivity for H~~j,„
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then suggests that in the range of fields and temperatures
investigated one has thermally assisted fiux fiow (TAFF)
without any phase transition. In Bi 2:2:1:2the "shoul-
der" is missing for all angles between H and j„within the
ab planes ' indicating a TAFF or vortex liquid state for
all fields between 0.5 and 3 T and for all measuring tem-
peratures. This can be explained by the fact that Bi
2:2:1:2has a considerably larger anisotropy than Y 1:2:3
and hence behaves more as a 2D system with very small
energy barriers Uo, at least for Aux lines in the ab planes.

In the classical theory of Aux creep' ' ' "' ' the bar-
rier energy Uo is assumed to be the same for all Aux-line
bundles. However, a better fit to some of the experimen-
tal data is obtained if one assumes a broad distribution of
barriers. ' Actually, the pinning of a flux line or of a
Aux-line bundle of linear size L is a complicated stochas-
tic problem. The system has many metastable states
which correspond to different Aux-line configurations. In
the case of weak pinning (which we consider in this pa-
per) the barrier energy Uo depends on the scale L on
which we consider the Aux-line bundle and is the free en-

ergy difference between two neighboring locally stable
configurations of the Aux-line bundle and the saddle
point. There is pinning on all length scales, as in the case
of a ferromagnetic domain wall or interface, of a
charge density wave, ' or a dilute Ising antiferromag-
net in a uniform magnetic field (the random field Ising
model). In these systems a random distribution of point
defects leads to roughening of the domain walls
or charge density waves. ' ' ' Hence one expects a
similar roughening of a single flux line s5, 57, 65 —6s

FLL, ' or also of a single dislocation in a random
field or random potential.

In this paper we apply the concept of scaling to the
roughening of a FLL and similar systems with random
point defects. In Sec. II we present a general theory
which holds for flux-line lattices, interfaces, and charge
density waves. We derive expressions for the time-
dependent response to a small external force density p„
and in particular for the creep velocity, based on a scal-
ing assumption. In Sec. III we apply this theory to the
FLL in superconductors and calculate the dc and ac
resistivities and the dissipative part of the dynamic sus-
ceptibility due to thermally activated Aux creep. Our
main result will be a nonanalytic relation
V(j,„)—exp( —Cj,„") between the voltage V and the
current density j„where C is a T- and H-dependent con-
stant. The exponent p is related to the roughness ex-
ponent g and the barrier energy exponent 4 by
p=%'/(d —

g
—0') and has been estimated by one of us39

to be p, =0.5 for d =3. A similar expression for V(j,„)
has been derived in a different way ' ' though with
different values for p. The experimental data of Ref. 22
suggest p=0.4. This result leads to the linear resistivity
p —(d V/dj, „)j,„~0=0, but for all finite current densi-
ties j„to a finite resistivity V/j, „. It holds in the flux
creep or vortex-glass region. For the transition observed
in Ref. 22 other mechanisms (such as the formation of
dislocations in the FLL) should be responsible which are
not considered in this paper.

II. GENERAL THEORY

In this section we describe a general scaling approach
to the pinning of Aux lines and similar objects such as
domain walls in Ising systems, dislocations, or charge
density waves in a d-dimensional space. These objects
have different dimensions D: D =d —1 for domain walls,
D = 1 for Aux lines and dislocations, and D =d for charge
density waves or Aux-line lattices. All these objects are
pinned by inhomogeneities of the solid. Here, we consid-
er weak pinning by a random distribution of point de-
fects. In order to simplify reading we will mostly refer to
Aux lines as the objects which are pinned.

All these objects are distorted by the point defects.
Our basic assumption is that density fluctuations of these
point defects lead on scale L to a typical distortion

w=L~ (l~(~O, L~L*) . (2.1)

(2.2)

where V is the volume of the system. Here, ( ), denotes
the average over thermal fluctuations and the random-
ness. More precisely, we assume that at low tempera-
tures the average over neighboring metastable
configurations u, (x), u, .(x) with energies close to the
ground-state energy

V ' Jd x([u, (x+Ln) —u, .(x+Ln)

—u, (x)+u, (x)] )„
1/2

agrees roughly with definition (2.2)
The low-frequency dynamics of the system is governed

by the free energy barriers Uo between neighboring meta-

Here the length scale L * is assumed to be large compared
to the characteristic lengths g and ao, and also compared
to the distance between the point defects. For a FLL, L '
will be identified with the characteristic length in the LO
theory [see Eq. (3.5) below] which has been estimated in
Ref. 6 and depends strongly on the number and strength
of the pinning centers. As explained in the Introduction,
the point defects lead to many metastable states or many
different Aux-line configurations. A Aux line can be
pinned on any length scale L ~L*; there is a cut-off L*
since a single point defect does not disturb a Aux-line
significantly, and since for L (L * there are too few point
defects in the volume V in order to obtain a significant
Auctuation of the number of impurities which may pin a
Aux line collectively.

To give the "typical" distortion w a more precise
meaning, we connect w with the correlation function
(u(x)u(y)) of the displacement field u(x). Here, u(x) is
the local displacement of the object from its equilibrium
configuration if the disorder is absent and x is a D-
dimensional position vector. We then define as our cen-
tral quantity the roughness in arbitrary direction (n is a
unit vector)

w(Ln)—= V ' Jd x([ u( x+L n)
—u(x)] ),
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Uo(L) = T* L (D)%)0), (2.3)

stable states which also depend on the length scale L, and
in addition on temperature and on the field B. We as-
sume that typical barriers will scale with the exponent 0
and that there is a smallest free energy T*=UO(L*)
below which there is no pinning. [As long as the distribu-
tion of Uo(L) has no long power-law tail we can obtain
the correct long-time behavior of our system by consider-
ing only typical barriers. ]

%"e have

its. Introducing L =L, into (2.5) we obtain the pinning
force density which is effective at the time t

—1/p

F (t)=F" 1+ ln
0

p . (2.9)

Let us consider the pinning on each length scale L sepa-
rately. A given p,„wi11 compensate the pinning force
density F (L ) on the length scale L . One has from (2.5)
F (L~)=F~*(L /L')~ ~=p,„or

1/(D + g
—f)

(2.10)

w(Ln)=w* L(n)
)fc

(1)$)0), (2.4)

where (2.4) makes (2.1) more precise with w =w* for
L =L . The characteristic quantities T* and m* will be
estimated below.

We can estimate the pinning force from Uo(L)/w (L)
and therefore define a pinning force density in direction
of the gradient V Uo(L) by

On scales L &L the system can overcome the relevant
barriers only by thermally activated jumps or Aux creep.
For L )L the external force density overcornpensates
the pinning force density and one has Aux Qow. The
force density p,„ induces the fiux-line velocity v (domain
wall velocity, etc. ) which is dominated by the creep
motion on the largest scale which is still the scale L .
Hence

F (L)=
U (L)
w (L)

(2.5)

w(L )

t(L ) +0
exp

Sex
(2.11)

t (L)=roexp
Uo(L )

T
=&0exp (2.6)

with the exponent 4 D —$~0—from (2.3) and (2.4). Ex-
cluding for the moment the case %=D and /=0, p(L)
decreases with increasing length scale L or barrier free
energy Uo(L) and one has the strongest pinning density
F~"=Fz(L*) (the depinning threshold) for the smallest
length L =L* or the smallest barrier free energy T*.
For sufficiently large scales L the force density F (L ) will

be small and thermal fluctuations or a small driving force
density p„will lead to Aux Qow. Between these limits
one has F~(L) )p,„and at T =0 pinning will prevent the
motion of the object.

At finite temperatures part of the free energy barriers
Uo(L) will be overcome by thermal activation. Accord-
ing to the Arrhenius law, on the time scale t (L) barriers
Uo(L) are jumped over. We have with (2.3)

from (2.6) and (2.10) with w = w

We defined the roughness (2.2) by a spatial and thermal
average over the distortions u(x) which can be described
by elastic continuum theory. Here we consider the sim-
plest model for a D-dimensional object (fiux line, domain
wall, FLL, etc. ) with the free energy

F= Jd x[—,'I (Vu) + V(x, u) —p,„u], (2.12)

where I is an elastic constant, V(x, u) includes the in-
teraction with the point defects, and p,„ is an external
force density. For vortex lines in a superconductor one
has p,„=j„XB/c.

A weak external force density p,„ leads to a distortion
5u=yp, „where the susceptibility y(L) in general is a ten-
sor. On length scales where the interactions with the de-
fects can be neglected we obtain for (2.12) for a displace-
ment 6u due to an infinitesimal external force p,„acting
on scale L of the object

where ~0 is a microscopic time. Hence, after the time
t (L) barriers of size

5u p,„=I (5u ) L (2.13)

L &L,'=L'
] /g

T tin-
+0

(L,') L*) (2.7)
or

y(L) = I 'L (2.14)

are ineffective for pinning. For L,'(L* Eqs. (2.6) and
(2.7) are meaningless since there is no pinning on these
scales. In order to get rid of the condition L,' ~ L * we re-
place L,' by L, =L,'+ L *, i.e.,

. 1/0

L, =L* 1+ ln
T (2.8)

+0

which is correct T~0 or t —+~0 and for
(T/T*)(lnt/ro) ))1 and interpolates between both lim-

For processes on the time scale t (L) this leads with (2.8)
to the time dependent susceptibility

. 2/4

y(L)=I 'L, =y* 1+ ln
70

(2.15)

with y* = I '(L *)'.
We close this section by estimating the smallest pin-

ning length L' and free energy barrier T'. Following
LO we estimate L* by extrernizing the total free energy
in a system of the volume (L*) with the density n of
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pinning centers. In this volume one has

X =n (L*) (w*)" (2.16)

which leads to the smallest possible response

~)fc Q /FQ (2.22)

I (
e )2(L e )D

—2
i (L e )D( s )d

—
D] 1i2

which leads to

L*=w*[(w*)DI!b,]'"4 D' (D (4)
with

(2.17)

(2.18a)

pinning centers (point defects) with the pinning energy vz
for a single defect. Here, the roughness m* on the small-
est length scale is determined by the characteristic
lengths of the flux lines such as the coherence length g or
the lattice constant ao. For weak (collective) pinning the
pinning free energy is determined by the fluctuations of
the number of pinning centers. We have to extremize the
sum of the elastic and the pinning free energies

III. APPLICATION TO FLUX-LINE LATTICE

A. Static properties

F = d "x —
c&&

—c66 divu +—c66 V~U

2
BU+—c44 + V(x, u) —p,„u

2 az
(3.1)

In order to apply the theory presented in Sec. II to the
Aux-line lattice of a superconductor we have to generalize
the free energy (2.12) slightly in order to take into ac-
count anisotropy. We have for D =d (Refs. 33 and 69)

b, =v [n (w*)"]' (2.18b)

apart from a numerical constant. This result holds for
N &)1 or for many pinning centers in the volume L".
The existence of a finite correlation length L* above
which distortions are larger than m* means that transla-
tional long-range order of the object ((lux line, FLL, etc.)

is destroyed by a random distribution of point defects,
and that L * is the smallest size of the object which moves
in a depinning process. From (2.18) one has L*~~ ei-
ther for n —+0 or for U ~0 and D (4, i.e., in the absence
of point defects.

For arbitrary length scales and T=O the elastic free
energy scales as

F„(L)= I (Vu ) L = I w (L)L

where c&&, c44, and c66 are, respectively, bulk, tilt, and
shear elastic modules. In general the modules c»(k) and
c«(k) depend ' on the wave vector k=(ki, k, ) which
is important if one considers the possibility of melting
of the FLL. Here we shall ignore the compressibility
-(divu) assuming sufficiently strong fields B. With this
restriction we can transform the free energy (3.1) into
(2.12) and hence apply all results of the preceding section
for D =d."

For this purpose we consider the free energy of a block
of size L,L ' and write z =yz' with y =(c«!c66)' . If
we now chose L, =yL, the system is elastically isotropic
in the new coordinates z', and the transverse coordinates
R ~ with the elastic modulus

—I (w*)2(L*)D L
(2.19) c66'Y (c44c66)

1/2 (3.2)

7 e I ( e)2(Ls)D —2 (2.20)

and to %=2g+D —2. For domain walls with D =d —1

we have g =2/+0 —3 in agreement with Ref. 55. In par-
ticular the relation y=2g —1 for d =2 has been derived
by various authors. ' For a FLL with D =d this
leads together with the estimate (=0(log) for d (4 to
%=d —2 and p=(d —2)!2. With (2.20) the depinning
threshold F* in (2.5) can be written as

F*=(T*lw*)(L*) =I w*(L*) (2.21)

where u denotes the ground-state configuration and
y= 2(+D —2.

Since F,~
has to (over-) compensate the free energy gain

F~(L) due to the interaction with the randomly distribut-
ed impurities, we conclude that both scale in the same
way. It is then tempting to assume that the free energy
barriers Uo(L) Eq. (2.3) also scale with the same power y
of L, i.e., y=% (for additional arguments see Ref. 39).

This admittedly crude estimate (which ignores that F„
and Uo might scale with different exponents y and 4)
leads to the smallest barrier free energy

and the block size L". For the rescaling of the random
part we write the pinning free energy

F;„=g f dz Vo(z, R„+u„(z) )
0

= g f dz'y Vo(yz', R„+u„(yz') ),
0

(3.3)

F„,„= v(yLdn, )'"—
with the density n =Ã/L, L" ' of pinning centers. Ex-
tremizing the total free energy I (w*) L +F„with
respect to L then leads to the distance L over which the
flux lines are correlated (apart from a constant)

where the summation runs over all Aux lines on the un-
perturbed sites. Here, V0 is a random variable in both, z'
and u„.

The scaling factor y in (3.3) has to be taken into ac-
count if we estimate the correlated FLL volume by ex-
tremizing the total free energy F =F,&+F;„. We have
instead of the second term in (2.17)
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L'=w* (w*)" r
gy 1/2

2/(4 —d)
JI

T*'
V(j,„)=Voexp

Jex
p-

d —g —e '

1/2

L* (d &4),
66

(3.4)
(3.9)

where the energy b, is defined in (2.18b). For d = 3 the re-
sult (3.4) reduces with (2.18b) and (3.2) to

1/2 3/2

vz n~ v n

2 4

VQ (L lit )2L gt 44 66 (w*)
C 6 3

v n
(3.6)

and the roughness w* depend on the field B and on tem-
perature. Here, V,

* is the smallest activated volume since
for smaller volumes the point defects (pinning centers)
are inefficient. It connects the smallest pinning free ener-

gy barrier (2.20)
2

T4 —P( lt )2L 4 c44c66 (w*) (d=3)
2n v

(3.7)

to the critical current density at T =0

and agrees for w*=ao and u =aof with the result of
LO. Here, f is the pinning force of a single point defect.
Both the activated volume

where Vo is proportional to the microscopic velocity
Uo=w*/ro. Since p) 0 for d =3 (see Ref. 39) we have
the remarkable result that the linear resistivity
p —(dV/dj, „)j,„~O vanishes and one has a true super-
conducting state without energy dissipation in the limit
j„~O. This is in contrast to the conventional theory of
Aux creep which predicts a finite resistivity or ohmic be-
havior for all fields B )H, i.

However, a finite current density j„leads to a finite
voltage, as observed in many experiments. With the ex-
ponents (=0(log) and V=d —2 we have @=0.5 for
d =3, in fair agreement with the exponent p=0.4+0.2
found in Ref. 22. However, the data of Ref. 24 seem to
indicate a phase transition in the field-temperature plane
which is not predicted by our theory. Equation (3.9) de-
scribes only the flux creep (or "vortex glass" ) region. Ac-
tually, a theory which considers the spontaneous genera-
tion of dislocations in the FLL predicts a phase transition
into a liquid-like state in which all energy barriers have
finite heights. Above this "depinning" or glass transition
the conventional theory of pinning (see Introduction)
should apply.

For j, =j*—6j, 6j))j' or for j„near to the critical
current density j„our result (3.9) agrees with that of the
conventional theory. One has

J' =F c/B =
c44c66 ( w ) B

(3.8)
V(j,„)-Voexp 1

T ~j
1 p

J
(3.10)

where F*=T*/w*V,*=Uo(L" )/V,*w" is the largest
possible pinning force density [see (2.21)]. At T=0 we
have j* (O, B)=j,(O, B) since the critical current density

j, per definition is the largest possible current density.
By comparing with (1.1) we can then identify w * with the
distance d over which the (smallest) flux bundle moves.
A relation between j* and j, at finite temperatures is
given below.

The field and temperature dependence of the elastic
constants has been investigated by various authors,
whereas little is known about v . For thin films LO esti-
mate F*=n gic66 where gi is the coherence length per-
pendicular to the z axis or within the plane of the film.
This expression has been used by Yeh in order to esti-
mate the free energy barriers T* for various fields and
temperatures in high-T, superconductors.

So far we considered a FLL for p„=O. A small exter-
nal current density j,„ leads to the Lorentz force density

p,„=Bj,„/c perpendicular to the Aux lines and to an
enhancement of the jump rate over the barriers Uo(L) in

the direction of p„and to a reduction in the opposite
direction. A given p„will compensate the pinning force
density F (L ) [see (2.10)] and leads to the flux-line veloc-
ity (2.11) which generates the electric field E=BXv/c
and hence the voltage

where the first term is due to thermal fluctuations for
j„=Oand where one has the linear resistivity

p= Vo exp
TJ

(3.11)

j,(T,B)= sinh '[exp[ Uo/T —ln(2VO/V;„)] IBV,d

(3.12)

which reduces for T~O to definition (1.1), becoming in-
dependent of V;„. In the present scaling approach which
takes into account energy barriers on all scales L the volt-
age is determined by (3.9) and the same criterion leads to

This result could have been expected: At the critical
state and for T=O one has j,„=j*=j,and the Lorentz
force density p,„ is equal to the largest pinning force den-

sity I'*. Smaller force densities p (E*become unirnpor-
tant and one has essentially a single free energy barrier as
in the conventional theory.

Finally, we derive a relation between j*(T,B) and the
critical current density j, ( T,B) at finite temperatures. In
the conventional theory one defines j, by j,=j,„(V;„)
where V;„ is the smallest measurable voltage. We have
from (1.2) for U —V= V;„
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T ~pj,(T,B)=j * 1+ ln
~min

(3.13)

Here again we took into account that there is no pinning
for p„)F or j„)j * and interpolated between j,=j*

for T =0 and the result for ( T/T" )ln( Vo/V;„) ))1 [see
the discussion below (2.7)].

E(t)=BXv/c, E(co)=icoBu(co)/c .

One has with (3.16) and (3.17)

E(~) B+oriL
p, (co,L)=Re

j(~) c c66ao 1+ [cur(L)]

B [cur(L) ]
"H,2 1+[cur(L)]

(3.19)

(3.20)

B. Dynamic properties

1. ac resistivity

In the preceding section we have shown that the
motion of a flux line or flux-line bundle as induced by an
external current leads to energy dissipation and hence to
a finite resistivity. As shown by Bardeen and Stephen,
one obtains also a finite resistivity if a single flux line
moves in a viscous medium without pinning. This
motion leads to scattering of normal electrons near or in
the flux-line core and hence to energy dissipation as de-
scribed by the viscosity coefficient'

The resistivity (3.20) still depends on the length L of the
oscillating flux line. For a given force density p„ the sys-
tem will adjust itself in such a way that the resistivity (or
response V=jp) as a function of L becomes a maximum.

It turns out that the function L I 1+[cor(L)] ]
' is ex-

tremal for I ~~ and p& is determined by the length
scale Ld, ;„due to depinning processes (see below). The
latter turns out to be identical with the maximal length
scale (2.8) on which the FLL is not pinned, if t is replaced
by I /co, i.e.,

Ldepin t = 1/co

ri=@~„/c'p„(H «H„), (3.14) =L* 1+ ln
T 1

T N7p
(co) 0) . (3.21)

where p„ is the resistivity in the normal state at the same
temperature. In the case of pinning and if one applies an
ac current density j,„(co) one has two types of flux line
motion: A pinned flux line or flux-line bundle might per-
form small oscillations or might move by depinning. We
will consider both processes, restricting ourselves to the
discussion of a single flux line. The theory could be for-
mulated as well for a flux-line bundle. In all cases the re-
storing force is determined by the elastic energy density
I u L for a distortion u and the driving force by the
Lorentz force density p,„=j,„B/c =j,„&o/ao c [see Eq.
(2.13)].

In the case of small oscillations perpendicular to the z
direction we have the equation of motion of a single flux
line of length L [with I replaced by c« from Eq. (3.1)]

qadi (t)+c«(ao/L) u (t) =j,„(t)@0/c (3.15)

u(co) = j(~) (co&0)
cc66a02 I+ivor(L) (3.16)

with the viscosity coeKcient (3.14) and where

j,„(t)=jo+j(t) might also contain a static contribution
jo. The Fourier transformation of (3.15) leads to

This leads to the resistivity due to small flux-line oscilla-
tions

[cur(L, ~~ )]
(co) 0)"H,p I+[~r(L, , ) )]

(3.22)

with r(L, , &„) from (3.17) and (3.21).
In the case of depinning we have the same solution

(3.16) of the distortion u(co). However, now the relaxa-
tion time r(L) is determined by the time scale t (L) (2.6)
in which barriers with the free energy Uo(L) are jumped
over. This leads to

B+oL co2t (L )
p~(~, L)=

c c«ao 1+ [cut (L) ]

B cu r(L)t (L)
pn 1+[cut (L ) ]

(3.23)

The relevant length scale L, , / for a given frequency co

again is determined from BP2/BL =0 which leads with
cot(L, , & ) = 1 to (3.21) and with (3.23) to

L 2

r(L) =
~p ~66

@~,2L
2 2

p 66P

with the relaxation time

(3.17)

p2(co) =p„cur(L*) 1+ ln
B, T 1 (co) 0) .

T co'Tp

(3.24)

P(co)= —,'Re[Bj(t)u(t)] =
—,'[j(co)] p(~) (3.18)

([ ]„means the Fourier transform), or from the electric
field

and ri from Eq. (3.14). The resistivity po(co) due to oscil-
lations can be obtained either from the dissipated energy
density'

In deriving (3.24) we assumed L, && ))L * which should
hold for a sufficiently small current density j„or for
covp && 1 . In addition we took into account that L,
cannot be smaller than L which is the smallest flux-line
length which pins [see Eq. (2.8)].

The resistivities (3.22) and (3.24) due to small oscilla-
tions and due to depinning have different frequency and
temperature dependences compared to the resistivity ob-
tained in the conventional theory. ' The latter agrees
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with Eq. (3.20) if c«(ao/L) is replaced by a single elastic
constant k and if the relaxation time (3.17) is replaced by
g/k. For cow(L, i& ) )&1 the resistivity pi(co) Eq. (3.22)
and the resistivity in Ref. 10 both extrapolate to
Pi =P„B/H, 2.

The resistivity p2(co) due to depinning has some simi-
larity with a recent result of Ref. 38. However, Eq. (3.24)
contains the free-energy barrier exponent defined in (2.3)
whereas in the result (8.14) of Ref. 38 enters the ratio of
different exponents. With 4=1 from Ref. 39 the resis-
tivity (3.24) vanishes for co~0 as co(lnco) and remains at
all frequencies and temperatures larger than p, (co). Near
cor(L, ,&„)= 1 both resistivities are of the same order of
magnitude.

=—y"(co)[5H(co)] (co) 0)
2

(3.25)

with the total external fields and current densities
H=HO+5H(t) and j„,(t)=jo+j (t) and their static
components Ho and jo. For j(t) and 5H(t) holds the
Maxwell equation

rot5H =(4'/c)j . (3.26)

Here we calculate 5H(co) and j (x, co) for a slab of thick-
ness l with the external field H(t) parallel to its surface
(in z direction) and the current density j„,(t) in y direc-
tion. As a simplest approximation we use the Bean mod-
el in which one assumes the current density j(t) which
is an average over many Aux lines to be constant within
the sample. We have for l «A, L where A,L is the London
penetration depth

5H (x, co) =5H(0, co)x /l,

2. Dynamic susceptibility

There is a close relation between the ac resistivity p(co)
and the dissipative part y"(co) of the complex susceptibil-
ity as the response to an external field 5H(co). The ener-
gy density dissipation (3.18) can be written as

l'(co) =
—,'p(co)[j(co)]'

calculated in the same way from the resistivity pi(co) Eq.
(3.20). The relevant length scale L, , & (3.21) again fol-
lows from the maximum energy dissipation which leads
to

B2(L*)~g"(co)=, 1+,ln
2(2+i) c66 T' co&0

(3.29)

Note that Eq. (3.29) holds only in a restricted frequency
range in which there are depinning processes.

BB ~If 8 (Bu),
Bt Bx Bx

(3.30)

where jf is the Aux-line current density and v the Aux-line
velocity which enters into (3.9). Here, the fiux lines are
driven either by the current density j„,= —c(c)H /c)x ) /4' or by the field gradient aB /c)x.

Following Ref. 1 we introduce the parameter

8
Bx 8~

(3.31)

and take into account the x dependence of B (x, t) only in
the exponent of (3.9). We have for B =H from (3.30) and
(3.9) with Vand Vo replaced by u and uo

P
T )fc Q'

(3.32)=Vp exp4~ Bx'

where

a, = F*= Bj /c —. —

The ansatz

(3.33)

3. Relaxation of the magnetization

In this section we calculate the relaxation of the mag-
netization, considering again a thin slab of thickness l
with the boundary conditions B (x =0)=Bo=H for t )0
and B(x =l)=BD+bB(t) for t)0. We follow closely
the standard theory'" which is based on the condition of
Aux conservation for Aux-line motion in x direction

aaj (x,co) = —(c/4~)
Bx

(3.27) exp T a
=f (x)g (t) (3.34)

=(c/4')5H(O, l)/l .

This leads to the spacial average 5H(co) =
—,'5H(O, co) and

with (3.23) and (3.25) to (for l )&AL, l has to be replaced
by lA. L)

2

or

then leads to

' —1/p
T

ln( fg) (3.35)

g"(co,L) =
2+i

p(co)
c)a B df ~ T c)g T
c)t 4m c)x ~

p Tg dt

—( i/p) —
&

B L cot(L)
(2vrl) c66 1+[cot(L)]

(3.28) (3.36)

where p(co) is the real part of the complex resistivity.
Equation (3.28) represents the energy dissipation for de-
pinning processes on the length scale I. The dynamic
susceptibility due to oscillations of the Aux lines can be f (x)=1+aix —a2x (3.37)

where we replaced ln(fg) by ln(fogo) with the initial
values fo=f (x =0) and go=g(t =0). In general, the
field B (x) varies smoothly within the sample. We write'
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Depending on the initial condition, the sign of the
coelficient a2 will determine whether the field B (x, t) will
increase or decrease as a function of time. The time in-
tegration (3.36) then leads with info =0 to

lng (t)= —ln go '+—
71

(3.38)

with the relaxation time

4~a, [(T/T*)lngo ']
7

PUOB'a,
(3.39)

We have in linear approximation of B (x) from (3.35)
—1/pT

1 1+ (3.40)
C"c

and by integration of (3.31) with the initial conditions
B(x =0, t )0)=BO and a, = Boj, /c—

B (x, t)=BO —8~xa, ln go +-T
71

(3.41)

B (x, t) =Bo+ j,x4~ .
C

ln go +-
T

—:Bo+bB(t)x/I . (3.42)

In particular for a thin slab of thickness l we have the
average magnetic induction B(t)=Bo+AB(t)/2 and the
magnetization M =(B H)/4w. T—his leads to our final
result

Ij,M(t)= ln go '+-
2c T 7p

(3.43)

BB 4~ . T
t=p c T~

1 0j lng (3.44)

which defines gp. With 4'=1, p= —,
' the dynamic sus-

ceptibility (3.29) and the inverse magnetization M '(t)
from (3.43) decay with the same power of the logarithm.

IV. CONCLUSIONS

We developed a theory for the pinning of fIux lines and
similar objects such as domain walls in Ising systems,
dislocations, or charge density waves in a d-dimensional
space, based on a scaling approach. The underlying idea
is to take into account that Aux lines or Aux-line bundles
are pinned by density Auctuations of impurities, which
exist on all length scales L. This results in pinning bar-
riers which increase in height as L~, 1( )0, if L goes to

with the boundary condition Bo=B(x =0)=H. Eq—ua-
tion (3.43) describes the decay (or increase) of the magne-
tization for a fixed field at x =0 after a sudden change of
the field at x =l. This change in field is determined by
the initial slope

infinity. Here, the impurities act as a random distribu-
tion of pinning centers which leads to many Aux-line
configurations with roughly the same energy. There is
also a certain analogy between such a "vortex glass" and
a spin glass to which similar methods have been ap-
plied.

An application of this approach to the FLL of a super-
conductor leads to the current-voltage relation (3.9)
which, for small currents, gives a vanishing linear resis-
tivity and which is one of our main result. Equation (3.9)
agrees for three dimensions and the critical exponent
p=0. 5 (Ref. 39) fairly well with the experimental data of
Koch et al. who find p =0.4+0.2. A qualitatively simi-
lar relation has been found in Refs. 37, 38, and 69. How-
ever, these authors obtain different exponents p and do
not derive the prefactors T* and j*, Eqs. (3.7) and (3.8).
A nonlinear I-V curve similar to that of Ref. 22 was also
observed in thin films of YBa2Cu30, ErBa2Cu30,
and amorphous Nb3Ge, and also in a YBa2Cu30 single
crystal. No attempt has been made by these authors to
fit their results to an equation of the form (3.9) and to ex-
tract the critical exponent p. In addition, in thin films, a
nonlinear I-V relation for small fields might also be due
to a Kosterlitz-Thouless transition which is not con-
sidered in this paper.

The depinning transition observed in Y-Ba-Cu-O is
possibly due to the creation of dislocation pairs and their
subsequent unbinding in the vortex glass state which are
not included in our theory. Hence our results hold only
for the Aux-creep region or for sufficiently low tempera-
tures and fields. For very small fields (H =H, &) one has
essentially independent vortex lines which yields a
different critical exponent p.

Our scaling approach leads also to dynamical proper-
ties of a superconductor which differ from those obtained
from the conventional theory which assumes a single
characteristic pinning length L. In the ac resistivity, one
has two contributions due to Aux-line motion both of
which depend on the frequency-dependent depinning
length Ld, ;„(co), (3.21). The resistivity p&(co), Eq. (3.22),
due to oscillations varies for small frequencies as
p&(co)-co [1—(T/T*)lncoro] ~ (with /=1 for three di-
mensions) which replaces the co law of the conventional
theory. ' In addition, there is the low-frequency contribu-
tion p~(co), Eq. (3.24), due to transitions over energy bar-
riers which varies as p~-co[1 —(T/T*)lmoro] ~. Here
T is the temperature corresponding to the smallest pin-
ning free energy barrier. Unfortunately, there do not
seem to be experimental data available in order to test
this result. A similar ln behavior has been found for the
conductivity [Eq. (8.14) of Ref. 38]. In contrast to Ref.
38 we calculated p2(co) explicitly, including all prefactors
and give an estimate for the exponent g.

The dissipative part y"(co) of the dynamic susceptibili-
ty is closely related to pz(co) since both responses are pro-
portional to the energy dissipation due to Aux-line motion
in a depinning process. For the frequency range in which
depinning is important, the relation (3.25) leads to
y"(co) —[1—

( T/T* )Incoro] ~. According to the
Kramers-Kronig relations, the real part y'( co ) then
should vary as (lncoro) &. A constant susceptibility
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y"(co) due to viscous motion of Aux lines indeed has been
observed. ' However, due to different initial conditions,
one can also obtain other frequency dependences of
y"(co) or time dependences of the magnetization M(t).
In deriving (3.25) we assumed a homogeneous distribu-
tion of vortices over the whole sample. Since the suscep-
tibility or magnetization measures the change of the
number of vortices in the sample, there is no contribution
to y(co) which corresponds to the resistivity p, (co).

The frequency dependence of the susceptibility y'(co) is
closely related to the time dependence of the magnetiza-
tion M(t). The derivation of M(t) (Sec. III B) follows
closely the standard theory' " and leads to
M(t) —[in(const+t)] ' "with p= —,

' in three dimensions.
Here, the constant depends on the initial condition. This
result contrasts the conventional lnt Aux-creep behav-

ior'" which is often observed. (Unfortunately,
often the lnt behavior is assumed to be trivial and is not
plotted. ) However, sometimes, clear deviations from this
lnt law are observed. ' ' ' At present, , it is not clear
whether these deviations exist also in the homogeneous
(lux line state (i.e., the fully penetrated sample) or are due
to a macroscopic variation of the Aux-line density. For
the latter case, deviations from the lnt law have been
demonstrated in Refs. 6, 88, and 89.
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