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We study the physical properties of the Thue-Morse chain and its generalizations. After a
preliminary discussion of its basic features (e.g. , structure factor, location, and relative magni-
tude of spectral gaps), we focus on (1) the trace maps of generalized Thue-Morse lattices, (2) a,

detailed analysis of the attractor of the associated dynamical system, (8) the electronic spectra.
through the trace-map approach, (4) spin excitations in a quantum Ising model in a, transverse
magnetic field, (5) light transmission through a multilayer, and (6) the diamagnetic properties
of Thue-Morse superconducting wire networks and 3osephson-junction arrays.

I. INTRODUCTION II. THE THUE-MORSE CHAIN

The pioneering work of Merlin et ar,. on aperiodic Fi-
bonacci GaAs-A1As superlattices has generated a large
amount of research activity. The study of the scaling
properties of the excitation spectra (electronic spectrum
and magnetic excitations) of a Thue-Morse (TM) chain
is motivated by the fact that this deterministic structure
is more "disordered" than the quasiperiodic (QP) one.
In other words, this system has a degree of aperiodicity
intermediate between that of QP and random systems.
More precisely, the Fourier amplitude spectrum of the
TM sequence is singular continuous, while that of a QP
lattice is one with 6-function peaks (not arranged peri-
odically) and possibly a singular continuous spectrum.

The first experimental realization of a TM GaAs-AlAs
superlattice is due to Merlin et al. 2 Other recent works
include entropy considerations for the TM sequence,
a chain with springs, acoustic-phonon transmission,
a quantum Ising spin system in a transverse magnetic
field, a tight-binding model, and the scaling of the
peaks of the structure factor. We believe that there
exist many other structures, such as some of the gener-
alized Fibonacci lattices, with properties intermedi-
ate between quasiperiodic and random. Tracy 3 also ob-
served such intermediate behavior in the thermodynamic
properties of some aperiodic Ising models. It is interest-
ing to note that, with regard to the presence of magnetic
phase transition, the quantum TM Ising model behaves
as a QP sequence. i4 Also the results of Ref. 8 suggest
that the electronic spectra of the TM lattice are inter-
mediate between those of the periodic and QP lattices.
This apparent contradiction of some thermodynamic and
spectral properties with the results for the structure fac-
tor is one of the reasons why a more detailed investigation
of lattices of this type is important.

The TM sequence of order N has M = 2~ elements
composed of two symbols, 0 and 1, defined recursively as
follows:

The above equations generate an infinite string of digits
that never repeats itself. In spite of this aperiodicity, the
TM sequence is self sr'milar-

The Fibonacci and Thue-Morse sequences are both
generated by extremely simple substitutions: 0
1, 1 ~ 10 (Fibonacci) and 0 —+ 01, 1 —+ 10 (Thue-
Morse). The former has been recently studied by many
authors in the physics literature (see, for example, Refs.
15—17). However, the latter is relatively unknown to
most physicists. Therefore, some background informa-
tion might be necessary and appropriate.

Sequences generated by substitutions have been stud-
ied in several areas of mathematics, computer science,
cryptography, and, more recently, physics. One of the
first systematic studies of aperiodic sequences was made
by Thue in 1906. His results have been rediscovered
many times since then. In most cases, these "new" redis-
coveries have been made in completely different subjects.
Morse studied substitution-generated sequences in the
context of topological dynamics. Others have analyzed
them in such diverse topics as (i) ergodic theory, (ii) au-
tomata theory (tag machines, characterization of recog-
nizable sets of numbers), (iii) formal language theory,
(iv) solutions to algebraic equations, and (v) cornbi-
natorial theory. This multiplicity of rediscoveries has
generated at least ten different ways to define the TM
sequence. It is easy to prove that they are all equivalent
to each other. We will only mention here the simplest
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ways to generate it. The definition based on a recurrence
relation has been presented in Eq. (1). Alternatively, let
n„be the number of ones in the binary expansion of n.
Thus, Siv(A) = )

0& n& 2~ —1

f 2+i An (2)

where f„can assume two values, f and fb The Fourier
transform of this function is

Yet another definition starts with the sequence of pos-
itive integers. After writing them in binary form, we
sum the digits of every integer modulo 2 and obtain the
TM sequence. On the other hand, the so-called word
concatenation approach starts with Ws ——0, and defines
W„+& ——O'„6"„where R '„ is obtained from W„by
exchanging 0 and 1 . Thus, R'~ ——01, W2 ——0110,
R3 —01101001, 6'4 ——0110100110010110, and so on.
Decimating every other digit in the last sequence, we ob-
tain in the following: decimated (W4) =01101001=Ws .
In other words, the infinite sequence is not only aperi-
odic, but also self-similar. Thus, the usual symmetry,
translational invariance, has been replaced by invariance
with respect to multiplicative changes of scale (scaling
invariance). The scaling factor is, of course, equal to 2.
Periodicity has always provided a useful tool to under-
stand and simplify the formulation of physical problems
(e.g. , Bloch's theorem, crystalline momentum conserva-
tion). Needless to say, for aperiodic sequences, these tools
become powerless. However, the concept of periodicity is
still (in a subtle way) lurking behind the Thue-Morse con-
struction because scale invariance is nothing other than
periodicity on a logarithmic scale.

The sequence of some TM-chain parameters, such as
hopping amplitudes t, and t~, is obtained by associat-
ing to every 1 and 0 of the above sequence, the values
t, = 1 and t~ ——r, respectively. Therefore, the deviation
of r from unity conveniently gauges the lack of trans-
lational invariance in the system. In other words, our
results will obviously depend on the choice of r . Clearly,
the r 1 limit corresponds to the usual periodic regime,
while the limits r (& 1 and r )) 1 correspond to the
strongly aperiodic regimes. Needless to say, numerical
computations cannot handle the infinite aperiodic chain.
However, the aperiodic TM structure can be conveniently
approximated by a sequence of chains with progressively
larger unit cells of sizes 2" and periodic boundary con-
ditions.

III. ABSENCE OF b-FUNCTION PEAKS
IN THE FOURIER SPECTRUM
OF THE THUE-MORSE CHAIN

Let us assume that we have two different types of
diffraction centers, with scattering factors f, and fb, as-
sociated with sites 0 and 1 of the TM chain, respectively,
The distance between the neighboring centers is constant, ,

e.g. , equal to 1. The scattering properties of such TM
chains are described by the function

2'
) f„6(x—n),
n=O

where

if A is an integer
Q(A +) —

/ 1 1 ei wA 2

otherwise.
~2+ s A

An alternative way to split the sum of Eq. (2) is to use the
relation f2'+„——f + fb —f„[corresponding to E2a+„——
1 —e„, which is equivalent to Eq. (1)]. This procedure
gives the recursion relation

Siv(A) = —'(1 —e2 '")S~ i(A)

+(f. + fb)e2 *"F(A,N) . (4)

The initial condition is

ie 'A (f c—w A+f aA)

Equations (3) and (4) enable us to calculate, for any A,

the scaling of Siv(A) with & as ~ ~ oo. For fa+ fb = 0,
it can be easily shown from any of these two equations
that for any A, S~(A) —+ 0 as N —+ oo. The scaling
coefficients of S~(A) for this case are given in Ref. 9.
Thus, the spectrum does not have b-function peaks. For
f + fb g 0, one can obtain immediately from any of the
Eqs. (2)—(4) that S~(n) = ~ +2~' for any arbitrary in-

teger n. Thus, there is a periodic array of b-function
peaks sit, uated at integer values of A. However, such
peaks are present in any structure, including a random
one, for which liml. & Pb 0 fb is nonzero. Here
I is the number of sites in the chain. For all noninteger
values of A, Eqs. (3) and (4) still allow for the solution
limiv Siv(A) = 0. In this case, Eq. (4) can be cast in
the form

(A)
i (1 2 wi A)

fa + fb
c2~iA)

which indicates that S~(A)~~ +~'~ & oc S~(A)&~ +f'=o&

for noninteger A. Apart from the presence of b-function
peaks at the integer values of A, the form of Siv(A) seems
to be essentially independent of the value of fa+ fb Our.
numerical calculations confirm this: for several values of
f + fb we have obtained practically the same shape of
Siv(A) as depicted in Fig. 1 of Ref. 9 for f = fb = l. —

Now the Fourier sum will be split in two groups of terms,
and afterwards the relations f2„——f„and f2„+i ——f, +
fb —f„directly resulting from the definition (1) of the
TM sequence will be used. This results in the relation

S~(A) = -'(1 —e '")S~ i(2A)

+(f, + fb) e '" E(2A, N),
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Therefore, we can conclude that a TM chain with any
value of f + fk has a spectrum with no b functions for
noninteger values of A.

In spite of the aperiodicity and the absence of b-

function peaks for noninteger values of A, the TM Fourier
spectrum exhibits very prominent high peaks that would
be completely absent in a random sequence. Therefore,
the scaling invariance of the system (i.e. , periodicity on a
logarithmic scale) produces long-range correlations that
somewhat mimic, in a very crude way, the behavior of a
chain with periodicity.

A few additional remarks might be appropriate. Equa-
tion (2) is not the only way to define the structure
factor corresponding to a substitutional sequence. An-
other possibility is to arrange identical scatterers (e.g. ,

with f„= I) in such a way that the distances between
the neighboring scatterers can assume only two values
that are alternated according to a certain sequence (e.g. ,
Thue-Morse or Fibonacci). The structure factor is then
given by the Fourier transform of the density

P(z) = ) b(z —zk),

H; = tp(b;~+i+ b;+i, ) (i, j = I, 2, . . . , N)

I
FI;~ = t; 6;+g~ + t~ 6; ~+g.

Note that the i, j indices identify N + 4 with 1 . The
entries in FI', t;, are chosen in a Thue-Morse sequence
and are considered to be small compared to to . For
reasons that will become clear later we will also require
that the entries of FI' satisfy

For a given FI it is always possible to find a tp such that
Eq. (7) is satisfied. Now, the states that diagonalize HP
are, of course, given by

k „2k„Nk'1

for n satisfying —N/2 ( n & N/2, where k„= 2rrn/N,
and their eigenvalues are given by

where xJ, are the positions of the scatterers and the dif-
ferences zy —zp i can assume two values; e.g. , for Thue-
Morse sequence one could put

&a —&x —z = lo+ ~xAI

(k~):'2 tp cas(k~).

Note the degeneracy in Eq. (8) between time-reversed
states

i n) and
i n). Th—e matrix elements of H' in

this basis are given by
where lo and AI are some suitable constants. Struc-
ture factors of this type were investigated for various se-
quences in Refs. 25-28. For instance, Ref. 29 contains
a proof that the Thue-Morse lattice defined in this way
is not quasiperiodic. A general case would then be rep-
resented by varying simultaneously both the distance of
neighboring scatterers and their scattering factors. More-
over, the scattering power of the same scatterers can
be diferent for diA'erent types of scattered particles or
waves.

where

k~+ k~1 &(k k )x cos(rn n,

2

IV. WHERE THE SPECTRAL CAPS ARE
AND WHAT THEIR RELATIVE SIZES AB.E:

ANALYTICAL APPROACH BASED
ON DEGENERATE PERTURBATIQN THEORY

Note that from Eq. (7), (n i
H'

i n) = 0. If we now
perform first-order degenerate perturbation theory with
the states

i n) and
i n), we find that the—eigenenergies

of FI are given to this order by

An extremely simple argument based on perturbation
theory is suFicient to predict the location and relative
magnitude of the spectral gaps in the Thue-Morse, or any
other aperiodic, chain. Let us first consider the problem
of solving for the excitation spectrum of a Thue-Morse
nearest-neighbor hopping Hamiltonian on N sites in the
perturbative regime, where the small parameter is the
diAerence in the transition energies between the short and
lang segments, i.e.

i
t —ti i

- The locat, ious and sizes of
the gaps do not depend on boundary conditions. 5 There-
fore, for convenience, we choose here periodic boundary
conditions as for the moment we are only interested in
the locations and sizes of gaps, not in the nature of the
eigenstates in the gaps. We first write our Hamiltonian
as FI = FI + FI', where

~+(k„) = 2 ltp cos(k„)+ it(2k„) i] .

Comparison of this result with the numerical calcula-
tion of the location and magnitude of the gaps in the
phonon spectrum show an excellent agreement among
them. This has been originally pointed out, for aperi-
odic sequences, in the erst paper of Ref. 15. Note that
Fig. 4 in that paper is similar, but obviously not equal,
to a structure factor. The only extra feature present
there, for the phonon case, and absent here is the pres-
ence af Goldstane modes, which suppress the gap size far
long-wavelength excitations. Also, in the quantum Ising
model to be studied below, there is a suppression of gap
sizes for long-wavelength excitations.
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V. CENERALIZED THUE-MORSE CHAINS

One can generalize the Thue-Morse sequence in a way
similar to the generalization of the Fibonacci sequence.
We will define two sequences of strings by the following
infiation scheme

A+, —A, B B,+, —B,"A,

Ni(0)
Ni(l) n

where A() = 0, Bg = 1, rn and n are integers, and
A& represents rn adj acent repetitions of the string A~,
etc. Then the infinite string of 0's and 1's defined by
limi Ai is called a generalized Thue-Morse (GTM)
sequence. In analogy with the Fibonacci case, At will
be called the t th GTM generation. Let us note that
our generalization diA'ers from that of Keane based
on more than two symbols. The inAation scheme of
Eq. (11) is equivalent to the substitution rule 0 —+

0 1", 1 —+ 1"0, where 0 represents a string of
m 0's, etc. Both strings A~ and B~ have the same
length equal to (m+ n)'. Let us denote by Ni(0) and

Ni(1) the numbers of 0's and 1's contained in Ai . For
l ) 0, the same numbers pertain also to Bt and we have

Ni(0) = m(m~n)' and Ni(l) = n(m~n)' ~. Thus
for all GTM sequences,

Our aim is to express zi in terms of the previous traces

zk, k & l. We will proceed along the same lines as in

our recent work in which we derived the trace maps
for the generalized Fibonacci sequences. (The proof that
trace maps exist for arbitrary two-letter substitutional
sequences was for the first time presented by Allouche

and Peyriere. ) We will need the following formula:

Tr(a"I) = Tr(ha") = dk(() Tr(ak) —dk-i(() Tr 6,
(14)

where a and b are 2 x 2 matrices such that det a = 1,

( = Tr a, k is an arbitrary integer (positive or negative),
and dk(() is a polynomial in ( such that

dkyi(() = gdk(() —dk i(() ) do(f):—0) di(()—:1.
d&(() = ( ds(() = ( —1, d4(() = ( —2(, etc. For

Positive k, we have dk(() = Sk i(() = Uk i((/2), where

Sq(() and Vz(() are Chebyshev polynomials of the first
and second kind. Among others, the d polynomials have
the following properties:

d„(2) = k, d„(-2) = (—1)"+',

d2k(0) = 0 ) d2kyl(0) = (—1)",

which is independent of l . This implies that, unlike cases
such as the golden-mean Fibonacci sequence in the limit
l ~ oo, an irrational ratio can never be obtained for
the GTM sequences. In this aspect, as well as in the
fact that the dimensionality of their trace maps is two,
as will be shown in the next section, all GTM sequences
resemble the n = an+1 subset of the generalized Fibonacci
sequences.

and

~k~l+ j. ~k —1~1 —~t+k )

di~k —di —k = dk(disci —di —i)

2 2
~kyl~k —l = ~k —~(

VI. TRACE MAP S OF THE G KNERAI IZED
THUR-MORSE SEQUENCES

d
(dk+1 dk —1) —~ dk

d(

Let us assume that the 0's and 1's that constitute the
GTM sequence represent two diff'erent building blocks,
such as atoms or two-dimensional layers. We will limit
ourselves to the class of physical properties that can be
studied in terms of 2 x 2 transfer matrices of unit de-
terminant. Denoting the whole transfer matrix of the
chain (superlattice) Ai as Mi and that of Bi as A'i,
the matrix equivalent of Eq. (11) is

where the argument of all the d polynomials is the
same. ~ ~

Using Eq. (12), one can write

z,~, = ,' T (W,~—,) = ,' Tr(ai"W—( ) .

Applying Eq. (14) twice, we get [cf. Eqs. (9) and (10) of
Ref. 11]

Mz+i = A/i ~i A'rye = ~i rV(", (12)

where Mo and Ap are the transfer matrices of the two
basic building blocks 0 and 1, respectively. In the peri-
odic approximation in which A~ serves as a unit cell of a
periodic chain, which is called the l th periodic approx-
imant of the infinite TM chain, the allowed energies or
frequencies are given by the condition

zi~, = d (2zi)[d„(2zi) —,'Tr(MiA&) —d„,(2zi) zi]

—
~ d~, (2zi) [d„~,(2zi ) —d„,(2zi)])

which can be further simplified to

—1( xi (1,
where zI. =

2 Tr(~i) . For / ) 0, Tr(JWi) = Tr(A'~) .

(2*i)dn(2zi) [-,'Tr(~iA'i) —1]

+ 2 [d-- +~(2zi)+ d---+~(»i)1
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The form of Eq. (16) suggests that a suitable choice for
the second "trace coordinate" is yl =

2 Tr(Miff). Using
Eq. (12), one can write

zo ———,
' T (~o), zp ———,

' T (Xo), y, = —,'T (Woomp),

zi = dm(2zo) dn(2zo) yo —
2 [ dm 1(2zp) dn+1(2zo)

+dm+i(2zo) d„ 1(2zp)],
yl+1

———,
' Tr(&l+1JV(+1) = —,

' Tr(A", "M,2 ) .

Comparing this with Eq. (15), one can see immediately
that the recursion formula for y~+~ can be obtained from
Eq. (16) by substituting 2m for m and 2n for n. Thus, the
trace maps of the GTM sequences are tioo dimensional
and have the form

zl+1 =" (»l)" (»l)(yl —1)

yi ——d2m(2zo) dzn(2zp) yp
—

2 [d2m r(2Zp) d2n+1(2Zp)

+d2m+1 (2Zp) d2n 1(2Zp)]

For m =n, Eqs. (17) reduce to a very simple form,

zl+1 ——[d„(2zl )] (yl —1) + 1,
yl+1 = ["2 (2zl)] (yl —1)+

(18)

+ 2 [dn —m+1(2zl) + dm —n+l(2zl)]
which for the original TM chain, I, = n = 1, further
reduces to

yl+, —d2 (2zl) d2„(2zl) (yl —1) zl+1 = yl, yl+1 = 4zl (yl —1) + 12 (20)

+ 2 [ 2n —'2m+1(2zl) + d2m —2n+1(2zl)]

where l ~ 0. Initial conditions are

(17)
which is identical with the map obtained by Axel et al.5

Note that for arbitrary m and n, Eqs. (17) maps a
straight line zl = ( =const onto an inclined straight line
with the slope

d2 (2() d2„(2() = [dm+1(2() —dm-1 (2()] [dn+r(2() —dn-r(2()]

that goes through the point

P = (2 [dn m+1(2() + dm n+1(2$)], 2 [d2n 2m+1(2()+ d2m 2n+r(2()]) .

If d„(2() = 0 or d (2() = 0, the whole image of the zl = ( line shrinks just to the point P For arbitra. ry (, point P
lies on the parabola y = 2z —1 as can be verified by direct calculation.

The Jacobian of the map (17) is

J = (n —m) (d2„d2m d„m —2 d„d d2„2m) —2(yl —1) d„d (n d„d2m + m d d2„),

where the argument of all d polynomials equals 2z~. Ap-
parently, for all m and n, ~J~ g 1. Thus, this map is
area nonpreservi ng.

It is also evident from Eq. (17) that it is noninvertible.
Let us assume that zl+1 and yl+1 in Eq. (17) are given,
and z~ and y~ are unknown. After eliminating yt one gets
an equation of the [2 max(m, n)]th order for zl. Thus,
a general point can have between zero and 2 max(m, n)
predecessors depending on the number of real roots of
this equation. Moreover, for each m and n, there is at
least one point that has infinitely many predecessors. (i)
For m = n, it is the point (1, 1). Among its predecessors
are all points on the line y = 1. (ii) For m+ n =odd, it is
the point (0, —1). Among its predecessors are all points
on the line z = 0. (iii) When both m and n are even,
it is the point ((—1) 2, 1). Among its predecessors is
again the whole line z = 0. In all these three cases the
respective points listed above are fixed points. (iv) In the
remaining case, when both m and n are odd and m g n
(i.e. , at least one of them is diff'erent from one), we will
use the fact that for k ) 1 there are always real solutions

VII. ATTRACTOR OF THE GENERALIZED
THUE-MORSE MAPS

The TM map of Eq. (20) has some similarity with the
copper-mean map for y = —1 whose invariant curve in
certain trace coordinates is a parabola. This led us to
investigate the following quantity:

U)-—-y( —2x +l.
Using Eq. (17), one can find that Ul transforms as

Ul+1 = 2 [d (»l)] [" (»1)] (1 —yl) ~l .

(21)

(22)

of the equation dr. (2() = 0. Thus all the points P men-
tioned above corresponding to dm(2() = 0 or dn(2() = 0
will have infinitely many predecessors. These predeces-
sors are all the points on the z = ( line. Several such
points may, of course, exist also in the previous three
cases. However, they will generally not be Axed points.
Actually, the points given above in (ii) and (iii) are spe-
cial cases of the P points corresponding to the root ( = 0.
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It is obvious that U~ is not exactly a pseudoinvariant as
defined in Refs. 31 and 12 because its sign can change.
However, we will see that it is equally important. First
of all, the set of points satisfying U~

——0 is clearly an in-
variant set. During iterations of the GTM maps, points
cannot escape from this set, but new points can end up in
it via the y = 1 line or the zeros of the d~ and d„poly-
nomials. This invariant set is the parabola y = 2z2 —1 .
It contains all the fixed points mentioned in the preced-
ing section. This parabola also contains all the P points
introduced above as can be seen directly from Eq. (22)
because these points are the images of the points with

y~ ——1. Thus it contains all the points with an infinite
number of predecessors. All these predecessors are at-
tracted to the U~ ——0 set from "afar." We will show
that the y( 1 part of the U~ = 0 parabola, i.e. , the set
A = ((z~ & 1, y = 2z —lf, is an attractor of the same
type as those investigated in Ref. 12 for the generalized
Fibonacci maps. It is interesting that the attractor is
the same for all GTM maps. The same situation was
obtained in the case of generalized Fibonacci maps when
suitable coordinates were introduced.

The expression for @~+i of Eq. (17) can be cast in the
form

y~+i —1 = [d +„(2z~)] (y~ —1) —[d„(2z~)] Ui .

Equations (22) and (23) divide the whole trace space into
four diA'erent regions:

I: y&1 and y&2z —1(U( &0),
II: y&1 and y&2z —1(U~ &0),

III: y(1 and y(2z —1(U~&0),

IV: y&1 and y(2z —1(Ut &0).

Ui ———2[d (2zp)] [d„(2zp)] I, (24)

where I = zp + zp + yp
—2xpzpyp —1 is the value of

Region I is an invariant bounded region that is fully con-
tained within the (~z) & 1, ~y~ & I) square. This square
corresponds according to Eq. (13) to the allowed ener-
gies (frequencies). Region I is thus an equivalent of the
Lissajous curve and its interior of the Fibonacci copper-
mean map. According to Eqs. (22) and (23), points
cannot escape from region I. However, points from its in-
terior can end up on Q (parabolic part of the boundary
of region I) where they will stay forever. Thus, if in a
whole interval of energies (frequencies) the initial values

(zi, yi) of the GTM traces were situated in region I, one
would obtain a continuous allowed band similar to those
of periodic crystals. However, it seems that for a truly
nonperiodic crystal, an initial point can never lie in the
interior of region I. Substituting into Eq. (21) for (zi, yi)
from Eq. (18), one can easily calculate Ui . After some
manipulation, one gets

the Fibonacci golden-mean map invariant [and the (ini-
tial) value of the (pseudo)invariants of all generalized Fi-
bonacci maps in the second (with tilde) set of coordi-
nates of Ref. 11] that corresponds to a Fibonacci system
constructed with the same building blocks as our GTM
system [cf. Eq. (18)]. In all previous studies of the Fi-
bonacci quasiperiodic crystals, it never happened that I
was negative and the initial point was at the same time
inside the central bounded spherelike portion of the I=0
surface (i.e. , in the notation of this section, the conditions
I & 0 and ~zo[ & 1, (zo

~
& 1, and ~yo ~

& 1 were never sat-
isfied simultaneously "ee the discussion on this matter
in Refs. 12 and 31). A case of negative I was reported
earlier by Sutherland z who investigated the dynamics of
a spin placed in quasiperiodically pulsed magnetic field.
However, in this dynamics of a spin, the "transfer" matri-
ces are such that their traces are always less than 2, and
hence the corresponding points in the trace space must
always be inside the central bounded portion of the I= 0
surface. In crystals of arbitrary structure (periodic, QP,
or random), a similar situation would correspond to all

energies (frequencies) being allowed. Thus such a dynam-
ical system has little in common with crystals and cannot
be used to model them. Using Eqs. (18) and (24) one can
find that for arbitrary rn and n there is a one-to-one cor-
respondence between the interior of the central bounded
portion of the I= 0 surface and the interior of region I.
Thus we can expect that the initial points will never lie

in the interior of region I. This will be demonstrated by
a few examples in the following sections. However, Eq.
(24) suggests that the initial point can lie in the g set
if 2zp or 2xp happens to be a root of polynomial d~
or d„, respectively. Around the energies (frequencies)
corresponding to such values of 2zp or 2Xp we expect
"Bloch-like" bands as observed in Refs. 31 and 12.

According to Eqs. (22) and (23), points from region
II will in the next iteration appear in region III or IV,
points from region III will jump into region II, and points
from region IV will stay there or jump into region III. For
m = n the motion of points is restricted even more: no
points can cross the y = 1 line as the second term of
Eq. (23) is identically zero in this case. This can also
be seen directly from Eq. (19). Regions II, III, and IV
will contain mostly escaping points, some periodic orbits
(although most of the periodic orbits can be expected in
region I) and an infinite (though probably of zero mea-
sure) set of points whose descendents will eventually end
up in the A set. According to Eq. (22) such a set can be
constructed by looking successively for all predecessors of
the y = 1 line and those lines z =( where ( is a root of
the d or d„polynomial. The simplest situation occurs
for m= n= 1 when d~ has no roots, and it is suFicient to
investigate the predecessors of the y = 1 line only. The
11 generations of predecessors of this line are shown in
Fig. l. In the case of the original TM sequence all those
points that are ending up in the A set come through
the (1, 1) point wliere they remain, as it is a fixed point.
Thus only this point actually plays the role of the attrac-
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(2 )

Tt+i = [d + (»~)]'&~ + ld-- (»~)]' U~

U = 2[d (2x()]'[d„(2z()]' T)U( .

only. Thusis a polynomial inFor any k, [dt. (()] is a
wecansu sib t tute without any pro ems i

= n = 1. For the general case ththe situation
e be more entry points

d t d fI lo
lex as there may e

and the attracted poin s cat th A t
set. The basin o a rac

haracter as that o e csimilar fractal chara
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f '"t"duce '" tl
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'
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with various parts (beams of lines) of the fractal basin of
attraction of Fig. 1. In this section we will do that for two
cases: (i) the electronic spectra of the "diagonal" tight-
binding model and (ii) the quantum Ising model. We
will show that in this way one can predict the structure
of spectra as obtained in Refs. 8 and 7 without going
through the iterations of the TM trace map.

A. The diagonal mode1

Similarly, the edges of the central gap correspond to yq—
1 and zq ———QV2 + 1, giving

E = + 2 (1 —gl + V') + V'

The centers of the other gaps correspond roughly to the
intersections of the initial-point parabolic segment of Eq.
(25) with the y = 0 and z = 0 lines. These intersections
correspond to

Let us consider a TM chain of atoms characterized by
two different values of the diagonal matrix elements of
the potential, V and —V, associated with sites of type
0 and 1, respectively, and by the same hopping matrix
element equal to —1 for all nearest neighbors. For this
choice, s the two initial matrices of Eqs. (12) and (18) are
(cf. Refs. 16 and 12) and

E=+ 2(1+
2

1 + V2) + V2

E=+ 2(l — -'+V )+V

(V E —1—i /' V E ——1—i
o ——

I , 0 I, ~o ——
I , 0 rr

where E is the energy. Thus zp —— —(V + E)/2,
zp —(V E)/2;—yp

—(E2—V2 —2)/2, and the Fibonacci
invariant occurring in Eq. (24) is I = V2. Because I is

not dependent on energy in the diagonal model, we find
from Eq. (24) that Uq

——2V is also energy indepen-
dent. Thus the locus of initial points lies on a parabola
that can be obtained by shifting the invariant parabola
y = 2z —1 downward by —Vi ——2V . It is the set

2 2 V +2
y~

—2z, —1 —2V
2

(25)

E = + 2 (1+gl + V') + V'

From Eq. (18), the dependence of zq on energy is zq-
yp

—(E2 —V' —2) /2 .
For large negative energies E, z~ &&0 and yy &&0. As

the energy increases, the initial point of the trace map
moves down along the parabolic segment of Eq. (25) and
intersects successively all the beams of lines of the prede-
cessors of the (1,1) point. For E= —QV2 + 2, the initial
point reaches the bottom of the parabolic segment, and
for E=0, it is in the highest point, (—1—

2 V, 1+4 V ),
of the left branch of the segment of Eq. (25). The increase
of the height of the E = 0 initial point above the y = 1

line with increasing V corresponds in Fig. 1 of Ref. 8 to
the widening of the central gap (remember that all points

y ) 1, z g 0 are escaping). As the energy increases fur-
ther into the range of positive values, the initial point
travels along the same parabola in the opposite direction
thus giving rise to the mirror symmetry of the energy
spectra in Figs. 1 and 2 of Ref. 8 with respect to the
E = 0 point.

The bottom of the lowermost energy band and the top
edge of the uppermost one obviously correspond to yj ——

1 and positive zq, which according to Eq. (25) must be
zq ——gV~ + 1. This gives immediately their dependence
on V in the form

E=+Q2+V2.
All these formulas are in perfect agreement with Figs. 1

and 2 of Ref. 8.

B. The quantum Ising model

Let us now try to explain in the same way the spectrum
of the TM quantum Ising chain in the transverse field.
The transverse magnetic field is assumed equal to unity.
The nearest-neighbor exchange interaction can assume
two values, A associated with 0's in the TM string and
rA associated with 1's. Then the initial conditions from
Eqs. (18) can be shown to be

E2/4 —(1 + r ~ A2)

2rA ) zp
E2/4 —(1 + A2)

2A

1 1
yo ——2zozo —— r + —

~

2 r)

From Eq. (24) we have that the set of initial points of the
TM map must in this case again have an empty intersec-
tion with the interior of region I. The invariant I, and
thus also U~, depends on energy; hence the set of initial
points is a complicated curve as depicted in Fig. 2. This
figure corresponds to A = 8/5 and r = 1/2. For several
points along the curve of initial values (zq, yq), mostly
the intersections with various groups of lines of predeces-
sors of the (1, 1) point, the corresponding energy values
are indicated. They are fully in agreement with Fig. 3(a)
and Table I of Ref. 7. One can show that for arbitrary

y = yp, yy = 1 —2zp —2zp + 4zpzpyp

(cf., e.g. , Ref. 33). In this case the dependence of yq on
z~ cannot be written in a simple explicit form. However,
we can easily calculate the Fibonacci invariant for the
same building blocks, which gives

1 fI)''I= —
/

r ——
/

E'.
16 q r)
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A and r the initial point corresponding to E=O always
lies on the invariant parabola y=2z —1. It always lies
above the y = 1 line (i.e. , in a purely escaping region)
except for the critical value A = A, = ~2 for which it falls
onto the (1, 1) fixed point. Thus only at criticality does
the zero-energy gap disappear, as it should.

IX. LIGHT TRANSMISSION THROUGH
A THUE-MORSE MULTILAY'ER

Considering practical applications of one-dimensional
models, studies of transmission of light through mul-
tilayer media are quite appealing. In this section we

l

l

t

l

1

I
I

I

I
I

I

I
I

I

FIG. 2. SSame as ig. 1 except that only nine generations
short dashed line represents the set of initial paints (xi yi) far1) 1

transverse field with A = 1.6, r = 0.5. The arrows point to the
0 —0, 1 —0.23044, 2 —0.74, 3 —0.9, 4 —1.51, 5 —2.48,
4.757 73.

af predecessors af the (), 1) paint are platted. The lang and
the TM map corresponding to the quantum Esing model in the
iriitial points (xi, yr) corresponding to the folIowing energies:
6 —2.8, 7 —3.3273, 8 —3.54, 9 —4.3, 10 —4.734, ll—
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present results for the transmission of a transverse elec-
tric wave through a multilayer medium, which is con-
structed by arranging two types of layers according to
the Thue-Morse sequence. Unlike the previous studi. es
of light transmission through multilayer media with vol-
ume preserving trace maps, the transmissivity of light in
the present case can be understood, as shown below, with
the help of the associated basin of attractor. We assume
that the incident wave travels through a homogeneous
medium of refractive index no, and after transmission
through the multilayer construct, light is measured in a
homogeneous medium of refractive index nt.

Let the refractive index and the thickness of the jth
layer be nz and h&, respectively. If 0& is the angle that
the light makes with the normal when traveling through
the jth layer, the amplitudes of the field vectors on the
two sides of the layer can be related by using the transfer
matrix

M(h )
CCS pl' l p Sill pl

)—i pz sin p& cos pp

where pz
——knz hz cos 0&, pz ——nz cosgz, and k is the

wave number in vacuum. The transfer matrix corre-
sponding to N layers is

M( )=( " ")
If po and p~ are the values of p& corresponding to the
incident and transmitted waves, respectively, then the
transmissivity T is given by

T = 4 po pi [ J o M» + pt' Mg2+ (po pt )' IM» I'

+lM. il'+2 so pt]
' (26)

Let the refractive indices of the two basic layers of a
TM multilayer be n~ and n~ (A = 0, B = 1 in the

language of Sec. II). For simplicity we consider only nor-

mal incidence (8&
—0, pz

——nz for all j), and it is also

assumed that the refractive indices and thicknesses are
such that Pz

——P for all j. The transfer matrix M& for

the layer A is

CCSP —SCC Sill P
) ( )( —i n~ sin p cos p

The corresponding matrix M& for the B layer is obtained
by replacing the symbol A by B. Thus the transfer ma-

trices for the erst two generations of the TM lattice are
Mi = M&M& and ~2 —M&M&M&M& The trans-.
fer matrices of the higher generations are obtained from
the scheme given in Eq. (12) for m = n = 1. For sample
A and B layers, the transmissivity for six and seven gen-
erations are given in Figs. 3 and 4, respectively. These
figures show that the transmissivity as a function of P
has peaks and the number of these peaks increases with
the increase of the generation number. It is not hard to
understand this feature of T. The trace map of Eq. (20)
shows that zt+~+t ——1 for all positive k if z( ——0 and/or
z~+q ——1. For the TM multilayer medium with the trans-
fer matrices of the two basic layers given by Eq. (27), it
can be shown that the transfer matrix for all /+2+& gener-

i v I I i i I l O v

cD
C&

X O
Vi

CD

0.0 0.2 0.4 1.0

FIG. 3. Plot of the transmissivity T as a function of P
for normal incidence. The Thue-Morse multilayer medium
has six generations and the parameters are chosen as no ——1,
nA ——2, n~ ——3, and n~ ——3. The small arrows pointing
downward from the top of the figure indicate the location of
P values which give rise to an identity transfer matrix for the
multilayer of six generations.

I 1 4 4 4 I I ) r 4 I I v l vv

X c5
X3

x ~

L

C&

0.0 0.2 1.0

FIG. 4. Same as Fig. 3 for seven generations.

ations becomes an identity matrix if the trace becomes 1

as described above. Thus the transmissivity of Eq. (2|)),
for those values of P that give rise to an identity transfer

matrix, is a constant given by T, = 4 po p( (po + p()
This means that for every generation there is a dehnste

number of peaks of height T, . For six and seven gener-

ations, there are 17 and 33 such values of P as shown in

Figs. 3 and 4 by small arrows pointing downward from

the top of these figures. It can be seen from Figs, 3 and

4 that there are certain peaks that do not have arrows

above them. The heights of the peaks without arrows are

close but not equal to T, . It is interesting to note that if
the arrows of seven generations (Fig. 4) are placed on the

transmissivity plot of the six generations (Fig. 3), then,

except for the 12th, 15th and 24th peaks (counted from

the left), all the peaks become associated with arrows

above them. This can be explained by the fact that one

generation before becoming a true identity matrix, the
transfer matrix for the respective P often has a diagonal

form close to the identity matrix. Thus almost all the

peaks of the transmissivity plot are due to the fact that
the trace of the transfer matrices becomes 1 at the cor-

responding values of P. This feature is common to all

generations.
It, is to be noted that, if a new generation is added, the

number of values of P that makes the trace of the transfer

matrix equal to 1 becomes double of the number of such
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values of P for all the previous generations. This is shown
in Fig. 5. In Fig. 5, the contributions to the list of values
of P due to different generations are presented as vertical
lines of different heights. It is seen that the values of P
fall into groups. This grouping phenomenon can again
be explained by superposing the set of initial conditions
on the basin of attraction of Fig. 1. Initial conditions can
be easily calculated for the transfer matrices of Eq. (27).
We get

zo = zo = cos P, yp —zi —1 —C sill P,

the predecessors of the (1, 1) point. For six generations
of the predecessors this is visualized in Fig. 6(a) where
one can easily count the 33 interactions corresponding to
th 33 values of P marked in Fig. 4. Some self-similarities
in the cluster of P values are also evident from Figs. 5
and 6(b).

X. DIAMACNETISM IN SUPERCONDUCTIVE
WIRE NETWORKS AND

JOSEP HSON- JUNCTION ARRAYS:
THE THUE-MORSE CIRCUIT

yi ——1 —C sin 2P, Ordered sets of superconducting elements (wires,
Josephson tunnel junctions, or proximity effect junctions)
have been produced by using electron lithography and
other techniques and a large number of experiments

e

have studiea Aux quantization in these two-dimensional

Evidently, C ) 2 for a nonperiodic s stem: U

( —) sin P. One can easily eliminate P from these
expressions. The set of initial values of th TMe map is
then the parabolic segment:

a

I
1

1
\

\

\

\

I
I

I

I

I

I

I
I

I
I

yi ———[4zi + 4(C—2)zi + 4 —3C]; 1—C ( zi ( 1 .

Particularly, P = 0 corresponds to the initial point (1, 1).
That explains the regular form of the transmissivity in
Figs. 3 and 4 reminiscent of what we called the "Bloch-
l'k" b d

~ ~

like bands arising in the excitation spectra around such
periodic orbits of the trace map as the (1 1)

' t '
he, ~ poin in this

case. The value P = vr/2 corresponds to the point (1—
, 1) also on the y= 1 line. As P would increase further

abov )

on, the initial point would move as a pendulum th
a ove parabola, explaining thus the periodic character of
the transmissivity as the function of P.

Evidently, the special values of P corresponding to the
constant peak heights of the transmissivity as described
above, correspond to the intersections of the parabolic
segment of the initial values of the TM map with the
subset of the basin of attraction of the point (1, 1) of Fig.
1 that contains only the given number of generations of

0

0.995

0.990

0.985

0.99
X

1.01

0.2 0.4 0.6 0.8 1.4

FIG. 5. Plot of / as a function of P. Here the values

matrix is an identity matrix. It can be seen that every new
generation doubles the number of all previous P values. Some
self-similarity in the plot is also noticeable.

FIG. 6. Sameme as Fig. 1. The bold long and short dashed
ine represents the set of initial points {zi,yi) of the TM

map corresponding to light transmission through multilayer
me ium with nA ——2 and n~ =3. 6 (a) and 13 (b) generations
o t e predecessors of the (1, 1) point are plotted. In (b)—
the immediate vicinity of the (1, 1) point —the segment of the
initi point parabola shown, corresponds to P C (0, 0.0025) .
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(2D) systems with an emphasis in periodic arrays. How-

ever, several groups have recently performed experi-
ments with superconducting ordered nonperiodic struc-
tures with either fractal or quasicrystalline geometry.

It is the purpose of this section to study the frustration
induced on 2D Thue-Morse networks by an applied mag-
netic field and its eKect on their superconducting diamag-
netic properties. In particular, we calculate the associ-
ated superconducting-normal phase boundary, T,(II). In
these systems, a continuous variation of the applied mag-
netic field allows the unique possibility for a fine tuning of
the geometry-induced frustration. Note that the concept
of frustration arises naturally in physical systems with
competing interactions (or constraints). The lattices con-
sidered here have two types of elementary plaquettes: one
denoted by t (for large) and the other denoted by s (for
small). Also, the ratio of the elementary plaquette ar-
eas is equal to an irrational number (which we will arbi-
trarily choose to be r, the golden mean) for all the lat-
tices considered here. This geometric constraint implies
that the magnetic fIux cannot satisfy quantization in all
the plaquettes simultaneously. We have considered 8

the linearized Ginzburg-Landau equations (for the super-
conducting networks) and the linearized mean-field ap-
proximation to the frustrated XY' Hamiltonian (for the
Josephson-junction array).

which is essentially a tight-binding Schrodinger equation
for an electron of charge 2e hopping on an N site lattice
immersed in an external magnetic field. J p is the analog
of the hopping transition amplitude, the order parameter
g~ is the complex wave function at the o.th site, and
(k~T) i is the energy eigenvalue. T, is the highest value
of T for which Eq. (30) has a nontrivial solution, i.e. , it
maps onto the band edge of the tight-binding Schrodinger
equation.

B. Superconductinl; micronetworks

In order to compute the upper critical field of a su-
perconducting micronetwork near the second-order phase
boundary, in the context of mean-field theory, we need
to solve the linearized Ginzburg-Landau equation. It
has been shown that this approach leads in general to
an eigenvalue problem, which is best expressed in terms
of the order parameter values at the nodes. If node n
is linked to n nodes via strands of length I p (P
I, . . . , n), the basic equation at node n is

) Ape' &/sin( ) = —A ) cot ( ~),

A. Josephson-junction arrays

Let us now consider a Josephson-junction array in an
externally applied magnetic field. The Hamiltonian for
such a system is given by

(28)

where p is the phase of the superconducting order pa-
rameter A =~ A

~

e'~, (n, P) denotes all pairs of near-

est neighbors, A p
——

@ J A. dl is the circulation of the
vector potential A along the bond linking n and P, and
Co ——ch/2e the elementary fiux quantum. Even for reg-
ular periodic lattices, this Hamiltonian is very difFicult to
analyze in the presence of frustration. We will, therefore,
solve it in the mean-field approximation. The order pa-
rameter to be used is the canonical average of the phase
factor, i.e. ,

where Ap is the value of the order parameter at node P,
and (, the coherence length. Also, g, = (0(T«/bT) ~

where bT = T„—T. Thus, the superconducting state
must satisfy bT ) T„((,/(0) . For a lattice where
L p

= I is the same for all links (e.g. , square, trian-
gular and Penrose networks), Eq. (31) reduces to that of
a Landau-level structure of a free-electron gas in the same
geometry, i.e., a, tight-binding Schrodinger equation. In
summary, in the context of mean-field theory, the vari-
ation of the highest eigenvalue as a function of the Aux

per plaquette [either small (s) 4, , or large (t) 4t ] deter-
mines the eIITect of the frustration on the superconducting
transition temperature.

If the array lies in the zy plane, and a magnetic field
B is applied perpendicular to the array, then with our
choice of gauge being A = Bzy, the phase A p can be
written as A p

——
@ B(yp —y )(z + zp)/2, where z

and y~ are the z and y coordinates of the center of grain

(e'~ ) = — dpi dp~ e'~ ez
(29)

C. Strip-type Thue-Morse networks

where Z is the partition function for N superconducting
grains. Carrying out the complete calculation gives a set
of N coupled nonlinear equations, for the N unknown
complex phase order parameters g . For the particular
case when 7 is near T„ the phase variables are small, and
so, therefore, are the expectation values. For this case,
we can obtain the linearized mean-field equation

In this section we compute T,(4) for 2D Thue-Morse
superconducting networks that are periodic in one di-
rection. More specifically, we assume the networks to
have a structure of a rectangular net with a uniform lat-
tice spacing in the y direction and a variable spacing in
the z direction (strip-type geometries). The mean-field
equations (31) for a wire network can be reduced to a
one-dimensional form:
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relative size of the spectral gaps. After this prelimi-
nary discussion of several basic features of the TM se-
quence, we focused on a detailed and systematic study of
its electronic properties by using a trace-map approach
expressed in terms of Chebyshev polynomials of the first
and second kind. We derived the trace map for a gener-
alized Thue-Morse sequence, which is kmo-dimensional,
and proved it to be area nonpreserving. As a particular
case, we obtained the simple tracemap for the original
TM chain. The geometrical significance of the general-
ized map and its attractor has been discussed and illus-
trated. Furthermore, we can predict the structure of the
spectra without going through the iterations of the TM
trace map. We have illustrated the power of this method
by considering two systems: the quantum Ising model
in a transverse magnetic field and a diagonal electron
hopping problem. Moreover, we analyzed and computed
(i) the transmission coeIIicient for electromagnetic waves

propagating through a TM multilayer and (ii) the aperi-
odic critical temperature obtained when varying the flux
applied perpendicularly to a TM-ordered superconduct-
ing wire network or Josephson-junction array.
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