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Nonlinear electromagnetic rectification of BCS-paired electrons at a superconductor surface
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A theory describing nonlinear electromagnetic rectification of BCS-paired electrons at a
superconductor-vacuum interface by means of a monochromatic, plane electromagnetic wave in-
cident at an oblique angle is presented. On the basis of a recently constructed nonlinear-response
tensor, the forced nonlinear dc-current density is analyzed. A fundamental integro-diA'erential
equation incorporating the Meissner screening of the nonlinear response is established, and the pre-
vailing dc-current density and the associated magnetostatic field are determined assuming the BCS-
paired electrons to be specularly reAected from the surface. A self-consistency requirement for the
forced nonlinear current density which has to be obeyed for any specular-reAection model is de-
rived, and polarization selection rules for the incident electromagnetic field are established. For
temperatures above the transition temperature, the present theory describes nonlinear electro-
magnetic rectification in a collisionless unpaired jellium. In the final part of the present work, the
possibilities of achieving nonlinear electromagnetic rectification using incident waves of frequencies
around the plasma edge, i.e., far above the superconducting gap frequency, are investigated. It is
predicted that polariton-plasmon and plasmon-plasmon interactions can give rise to optical
rectification.

I. INTRODUCTION

In the wake of the discovery' of high-T, supercon-
ductors, another domain of applications for solid-state
optics is emerging. The primary reason that supercon-
ductor optics has become of interest stems from the fact
that the high-T, materials have much higher supercon-
ducting gap energies than the ones previously known.
Hence, it is reasonable to expect optical studies in the in-
frared and far-infrared wavelength regime to contribute
significantly to a better understanding of the electro-
dynamic properties of the paired many-body state of the
electrons. Although the central theme in superconductor
optics is concerned with the pairing interaction, it turns
out that the new superconductors possess a number of
other fascinating optical properties: e.g. , plasma-edge
resonances in the visible or near-infrared region, pro-
nounced anisotropy effects, exotic interband phenomena
arising from complicated band structures, and interesting
Raman and excitonic interactions.

Recently ' the present author has suggested that the
nonlinear optical properties of the superconducting state
be investigated. In centrosymmetric superconductors,
even-order nonlinear phenomena are of special impor-
tance for studies of the paired-electron state, since the
pairing effect is basically of a nonlocal nature and since
only nonlocality allows even-order nonlinear effects to
occur in the bulk of a centrosymmetric medium.
Thus, within the framework of the BCS-pairing approxi-
mation, a qualitative nonlocal microscopic theory of
second-harmonic generation has been developed. Ele-
ments of this theory have also been analyzed numerical-
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Second-harmonic-generation studies also open up the
possibility of investigating the interaction of light with

the superconducting phase in the outermost atomic layers
of the surface due to the fact that the inversion symmetry
of the paired many-body state is broken in this region.
Since nonlinear processes of odd order are allowed in the
local (London) limit, these processes are expected a priori
to be less sensitive to the pairing effect itself. On the
basis of the phenomenological Ginzburg-Landau theory
of superconductivity, ' a local theory of third-harmonic
generation has also been formulated. ' By extending this
theory to include spatial changes in the order parameter,
it is possible to give a simple phenomenological descrip-
tion of the second-harmonic-generation process. ' A
reduction of the nonlinear, nonlocal theory to the
Ginzburg-Landau limit and a comparison of the results
obtained in the two formulations remain to be carried
out.

Emission of nonlinear light from even-order processes
gives rise to a net transfer of momentum to the paired
many-body state. This electromagnetic rectification pro-
cess, which also exists in the normal state, is especially
important in the superconducting phase because the dc
current generated can Aow without resistance. A theory
describing nonlinear electromagnetic rectification related
to second-harmonic generation has been put forward by
the present author. ' In this theory, special emphasis is
devoted to a calculation and a subsequent discussion of
the nonlinear, nonlocal response tensor of a homogeneous
BCS-paired jellium.

In the present work, I shall undertake a theoretical
study of the nonlinear rectification process in the case
where a fundamental, plane-wave electromagnetic field is
incident on a sharp superconductor-vacuum interface at
an oblique angle. The rectification process is termed non-
linear since it exists only if nonlinear processes are taken
into account in the field-rnatter interaction. By incor-
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porating only lowest-order nonlinear effects, the
nonlinear-response function (the coefficient of
rectification) is independent of the intensity of the funda-
mental field. Three interesting articles, ' ' in which ex-
perimental observations of transient laser-induced
currents in YBa2Cu307 —y are reported, are of immediate
relevance to the present work. The authors of Ref. 16 at-
ternpt to understand their observations with various
well-known mechanisms and argue that another hitherto
unidentified mechanism must give rise to these laser-
induced signals. In Ref. 18, it is concluded that the
laser-induced dc-current flow (i) can be induced over a
large wavelength range of the incoming electromagnetic
field, (ii) is nonlinear at each wavelength, (iii) scales as the
sine of the angle of incidence of the laser beam for small
angles, and (iv) is electric-dipole forbidden. Although it
is not possible at the present stage of the art, both for
theoretical (difficult and comprehensive numerical calcu-
lations are needed) and experimental (ultrahigh-vacuum
experiments are necessary to avoid surface contamina-
tion) reasons, to make quantitative comparisons between
the theory presented here and the experimental results of
Refs. 16—18, it is worth emphasizing that the theory
given below is in agreement, from a qualitative point of
view, with the requirements of points (i)—(iv) stated above.
It is noticed in Ref. 17 that room-temperature measure-
ments suggest that the Ineasured signals scale with the
sample resistance as observed in photon-drag studies of
tellurium single-crystals.

An alternative method of detecting the electromagnetic
rectification phenomenon might be based on the principle
that the magnetic Aux —and hence the dc current —in a
superconducting ring is quantized. Since it is possible to
detect a single quantum of fIux in a superconducting ring,
the smallest possible amount of a rectified current, name-

ly, that stemming from a single-nonlinear-photon pro-
cess, should thus be detectable. In no other solid-state
system does it seem feasible at present to investigate opti-
cal rectification processes at this single-event level.
Furthermore, one would expect to be able to investigate
nonlinear processes in the quantum-optical limit for the
intensity of the fundamental beam. Electrodynamic
rectification in a superconducting ring should also occur
if the incident field has a frequency (far) below the gap
frequency. This may imply that low-lying excited states
having a net angular momentum and displaced from the
ground state by an amount of energy much less than the
gap energy can be studied via the nonlinear rectification
phenomenon. Recently it has been predicted" that the
nonlinear coefficients describing second-harmonic genera-
tion and electromagnetic rectification for frequencies
close to the superconducting gap are enhanced by 2 or-
ders of magnitude as the system is cooled below the tran-
sition temperature. It is possible to extend the present
theory to include efFects associated with the variation of
the electron density at the surface. In turn, this may en-
able one to study, on the microscopic level, the profile of
the dc-current density in the outermost atomic layers of
the surface. Such an analysis might yield a more detailed
picture of dc surface currents in conventional-
superconductor experiments.

The present paper is organized as follows. In Sec. II,
the field-induced dc-current density is studied and expli-
cit expressions for the forced nonlinear current density
and the free Meissner current density are given. In Sec.
III, a fundamental integro-differential equation for the
static vector potential is presented. Next, within the
framework of the well-known specular-reAection mod-
el, ' ' an appropriate integro-differential equation for
the vector potential in a semi-infinite superconductor ex-
hibiting translational invariance parallel to the surface
plane is established. This integro-differential equation is
of major concern in the remaining part of the paper. In
Sec. IV, the prevailing nonlinear dc-current density and
the associated magnetostatic fields inside and outside the
superconductor are calculated. To perform this calcula-
tion, it is assumed as an additional boundary condition
that the first derivative of the nonlinear current density in
the direction perpendicular to the surface vanishes at the
surface. An important self-consistency requirement for
the forced part of the nonlinear current density is ob-
tained. Furthermore, the relation between the forced
current density and the incident field is investigated, and
polarization selection rules for the electromagnetic
rectification process are established. In Sec. V, we spe-
cialize our results to a description of the rectification
phenomenon that one would expect in a collisionless nor-
mal state. It is of interest to consider the possibilities for
generation of nonlinear dc currents by means of optical
fields, i.e., fields having frequencies somewhat above the
superconducting gap. Thus, in Sec. VI, it is predicted
that electromagnetic rectification can be established in a
BCS-paired jellium with incident fields having frequencies
in the vicinity of the plasma edge via polariton-plasmon
and plasmon-plasmon interactions. This conclusion is
drawn on the basis of a pole-structure analysis of the
forced nonlinear current density. Finally, the elec-
tromagnetic rcctlflcatloIi process ls studlcd wlthlIl thc
framework of a hydrodynamic model. ' In this model,
which is especially adequate for numerical treatments,
only the above-mentioned collective excitations are al-
lowed. For temperatures not too close to the supercon-
ducting transition temperature, the hydrodynamic model
predicts that the nonlinear response function increases
proportionally to the square of the gap parameter. This
means that one would expect an enhancement of 2 orders
of magnitude in the nonlinear coefficient of the high-T,
superconductors relative to that of the lower-T, ones pre-
viously known.

In Ref. 11, in the context of optical second-harmonic
generation, some numerical results are presented for the
so-called semilocal response tensor in the hydrodynamic
approximation. Apart from a sign (see Ref. 5), this semi-
local response tensor, which is responsible for a part of
the second-harmonic response, is identical to the one
used in the present work to describe the electromagnetic
rectification process.

II. FIELD-INDUCED dc-CURRENT DENSITIES
A. Forced nonlinear current density

The lowest-order nonlinear interaction between a
monochromatic, plane-wave electromagnetic field and an
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infinitely extended spatially homogeneous superconduc-
tor with BCS pairing has been investigated by the present
author. It was demonstrated that the second-harmonic
generation stems from three basic processes: (i) simul-
taneous two-photon excitation, (ii) double nonlocal exci-
tation, and (iii) semilocal excitation. In comparison, the
nonlinear electromagnetic rectification phenomenon was
shown to originate only in the semilocal processes.

In a generalized description, valid for a spatially inho-
mogeneous Cooper-paired superconductor, the forced
nonlinear dc-current density, Jo (r), induced at space
point r by means of semilocal (SL) interaction processes is
given by

Jo (r)= —,'[E*, (r;co)f Ro(r, r', co) E,(r', co)d r'+c. c.],
(1)

RO —R (r)( r)(, z,z;&), (3)

wh««~~ = (x,y, 0) and rt~
= (x ',y ', 0). When the response

tensor has the form given in Eq. (3), it is convenient to
Fourier transform the constitutive equation (1) in the
coordinates perpendicular to the z axis. Hence, we write
the quantities Ro(r~~

—
rI~, z, z', co) and E,(r;co) in the forms

I=(2~)-'f" R,(z, z', Q„,~)e' ~~
'~~ '~~ d'g (4)

For a medium exhibiting translational invariance un-
der infinitesimal displacements perpendicular to the z axis
of a Cartesian (x,y, z) coordinate system, the response
function has the form

where Ro(r, r', co) is a nonlocal vectorial response function
relating the nonlinear dc-current density at point r to the
fundamental field, Ei(r', co), at neighboring points r'. In
Eq. (1), Ei(r', co) is the complex amplitude of an assumed
monochromatic fundamental electric field, Ei(r, t ), viz. ,

E,(r, t)= —,'[E,(r;co)e ' '+c.c.], (2)

with co denoting the circular frequency. The semilocal in-
teraction is so named since, in order to obtain the in-
duced current density at r, one requires the product of
the local field (complex conjugated) E*, (r;co) and the field

E,(r', co) prevailing in neighboring points r' weighted by
the response function Ro(r, r', co ). The presence of the
nonlinear dc response of the superconductor is closely re-
lated to the well-known Meissner effect in the sense that
the local interaction stems from certain off-diagonal ele-
ments of the diamagnetic current-density operator.

E,(r;co)=(2vr) f E,(z;Q~~, co)e " '~d g

and the semilocal current density as

J' (r)= —'[ '+'( )+ ' '( )]

where

J~+&(r)=(2ir) —2 J J~+~(z ~ Q )e' ll 'll d2g

and

Jo '(r) = [Jo+'(r)]* .

By inserting Eqs. (3)—(8) into Eq. (1), one obtains

(8)

and

Jo ( 'qlI (2') f Ei (z;Qll qll' co f Ro(z, z';QII'co) Ei(z', Qll'co)dz' d g((,

Jo '(z;q)~)=[JOI '(z; —q~~)]* . (10)

In the special case where the fundamental field consists of a single Fourier component perpendicular to the z axis, i.e.,

1

where 5(Q~~
—

K~~) is the two-dimensional 5 function, one has

Jo+ (z;0)=(2m') Ei(z;Kll, co)f Ro(z, z';Kil, co) Ei(z';Kll, co)dz' .

Since only the Fourier component Jo+'(z;0) is nonzero in
the present case, the nonlinear current density can de-
pend only on z, i.e., Jo"=Jo"(z ).

It is of importance for our subsequent analysis of the
nonlinear electromagnetic rectification, carried out
within the framework of the semiclassical infinite-barrier
(SCIB) model, ' ' to consider the semilocal response of
a homogeneous superconductor. Thus, for a medium ex-
hibiting translational invariance also in the z direction,
one has

Ro =Ro( r —r', a) ) .

Involving now the Fourier transformations

E,(z;Q~~, co)=(27r) ' J E,(gi, Q~~, co)e ' dgi, (13)

Jo '(z;Qii)=(2~) ' J Jo+'(gi, Qii)e
' dgi, (14)

Ro(z z Qll ~) (277) f Ro(gi Q~~ ~)

xe ' dg, , (15)
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one obtains, by combining Eqs. (9) and (13)—(15), the rela-
tion

Jo+'(q)=(2~) 1 Ef(Q —q, co)

XRo(Q, co) E,(Q, co)d'Q (16)

Jo (0)=(2n) Ei (K,co)Ro(K, co) Ei(K, co) .

The semilocal response tensor Ro(Q, co) has been calculat-
ed' within the framework of the pairing approximation.
The result obtained for a Cooper-paired jellium is the fol-
lowing:

with Q Qll+~~e, and q qll+g~ ' e being a unit vec-
tor in the z direction. If the fundamental field is just a
monochromatic plane wave, i.e., E,(Q, co)=E,(K,co)5(Q—K), Eq. (16) is reduced to

Re
Ro(Q, co) = — Mo(Q, co),4m' V

where

(18)

1 1
Mo(Q, co) = g (2k+Q) (u ku z+q —vkvk+q )

k k+Q ~ k k+Q
(f~ —fk+q)

2 2 2 2+ (vkuk+q u k k+q )
k Ek+Q

1

Ace+ Ek+ Ek+Q
(1 fk fk+—q— (19)

In Eqs. (18) and (19), —e, I, and k denote, respectively,
the charge, the mass, and the wave vector of the electron.
The normalization volume of the superconductor is V. In
the derivation of Eq. (19), relaxation phenomena, e.g. , im-
purity scattering, have been neglected. This implies that
Mp and hence Rp are real quantities. The probability am-
plitudes u„and v for the pair state (v$, —yc1) being
empty and full, respectively, and the quasiparticle distri-
bution function f„can be expressed in terms of the gap-
dependent quasiparticle excitation energy E (a =k or
k+q) in the usual way.

B. Free Meissner current density

The forced dc current density, Jo (r), generated by the
fundamental electromagnetic field will give rise to a dc
magnetic field inside the superconductor. In turn, this
magnetic field will be partly screened by the induction of
a linear dc-current density in the vicinity of the surface.
This, in the present context, the so-called free dc-current
density (or Meissner current density), is responsible for
the famous Meissner eff'ect in the linear electrodynamics
of superconductors. The Meissner current density is
linearly and nonlocally related to the prevailing magnetic
field inside the superconductor. To determine the pre-
vailing magnetic field, a self-consistent solution to the
electrodynamic problem must be determined (cf. Sec. III).
By denoting the self-consistent solution for the dc vector
potential (in a suitable gauge) by Ao(r), the Meissner
(M ) current density at space point r is given by

JMo(r) = f So(r, r'). Ao(r')d r' . (20)

In the case where the superconductor exhibits
infinitesimal translational invariance parallel to the
plane z=0, the response tensor has the form So(r, r')
=So(r~~ —

rI~, z, z'). By writing the components of Jo (r),
So(r~~

—
rt~~, z, z'), and Ao(r') in the generic form

Jo (z;Qii) —f So(z,z, Qii) Ao(z';Qii)dz' . (22)

In the case of complete translational invariance, i.e., for
So(r, r') =So(r —r'), one has, by introducing

Z(R~ Rli) (2~) f Z(Q& Qll) Q (23)

the algebraic relation

Jo (Q) =So(Q). Ao(Q) . (24)

Within the pairing approximation, the linear response
tensor So(Q) is given by the well-known expression

ZIR)(, z, (z')]=(2~) J ZIz, (z');Ql]t-' " "d g(~,

(21)
where Rll=rll rll or rll

—
rll one obtains in the mixed

Fourier representation

So(Q) =—
2

ne eh
m 2m

2 , f~ fk+q-g (2k+Q)(2k+Q) (u~uk+q+vzvk+q)
Ek+Q k

, 1 —fk —f~+q
+("k+qvw I +qua)

k+Q k
(25)
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where n is the conduction-electron density, I is the unit
tensor, and (3 stands for the tensor product.

the superconductor, the driven nonlinear current density
Jp (r) is a prescribed function of r.

III. FUNDAMENTAL INTKGRO-DIFFERENTIAL
EQUATION FOR THE STATIC VECTOR POTENTIAL

A. General case

In order to determine the Meissner screening of the
nonlinear dc-current density induced by the fundamental
electromagnetic field a self-consistent solution for the
vector potential Ap(r) is needed, cf. Eq. (20). Once
Ap(r) is obtained, the prevailing dc-current density

Jp(r) =Jp (r)+ Jp (r) (26)

inside the superconductor can be found. By combining
the magnetostatic Maxwell equation V X Bp(r) =ppJp(r),
where Bp(r) = V X Ap(r), with the explicit constitutive
equation for the Meissner current density [Eq. (20)], one
obtains the following inhomogeneous integro-differential
equation for the vector potential:

With a knowledge of the fundamental electric field inside

VX[VX Ap(r)] ppf— Sp(r, r') Ap(r')d r'=p Jpp(r) .

(27)

B. Semi-infinite superconductor with translational
invariance parallel to the surface

E(r, t ) = —,
' [(2~) E,(z;Kll'co)e II 'll +c.c. ] . (28)

Since the vector potential in the present case is a function
of z only, one obtains in the mixed Fourier representation
the following integro-differential equation for the self-
consistent vector potential:

It is not possible in the general case to obtain a closed-
form solution for the vector potential in Eq. (27). Hence,
to make progress in our basic physical understanding of
the nonlinear electromagnetic rectification phenomenon
we shall consider the case where the superconductor oc-
cupies the half-space z )0 [in a Cartesian (x,y, z) coordi-
nate system], the rest of the space being vacuum. Fur-
thermore, we shall assume that the superconductor ex-
hibits translationally invariant properties parallel to the
surface. Now, if the superconducting electrons interact
with a plane, monochromatic electromagnetic wave of
frequency co incident from vacuum at an oblique angle
O=arcsin(cpKll/cp), where Kll is the component of the
wave vector parallel to the surface, the fundamental elec-
tric field inside the superconductor is given by

BA '0
(I—e, Ice, ) +pp f Sp(z, z', 0) Ap(z', 0)dz'+ [J(') '(z;0)+(J(') '(z;0))*]=0,

az2 0 2

where, cf. Eq. (11),

p ( '0) 2~) Ef 'Kll'co f Rp(z, z', Kll, co) Ei(z', Kll, co)dz'
0

(30)

We emphasize here that although not indicated explicitly
in the notation, Jp~+'(z, 0) is a function of both Kll and co.
In turn, the nonlinear dc-vector potential Ap(z;0) will, of
course, depend on the frequency and the angle of in-
cidence of the fundamental field.

a phenomenological microscopic surface model for which
many calculations can be done analytically.

In the specular-reflection model, quantum interference
effects at the surface are neglected. ' ' Consequently,
the response functions are given by

Sp(z, z', 0)=Sp(z —z', 0)+Sp(z+z', 0) a

C. Specular-reAection model

In order to determine the vector potential Ap(z;0) in
the vicinity of the superconductor-vacuum interface, the
surface-sensitive response functions Sp(z, z', 0) and
Rp(z, z', Kll, co) have to be calculated. In the present
work, a widely used phenomenological microscopic sur-
face model, namely, the so-called specular-reAection mod-
el, ' ' is the basis for the determination of the response
functions. The specular-reAection model allows us to ex-
press the surface response in terms of the bulk response
tensors which in Fourier-transformed form are given by
Eqs. (18) [with (19)] and (25), using the appropriate values
for Q. Although it would be highly desirable to construct
a theory that goes beyond the specular-reflection model,
it is felt that substantial insight can be gained with use of

Rp(, z;Kll, co) —Rp( —;Kll,cp)+ p( + ';
ll) ),

where

1 0 0
0 1 0
0 0 —1

(33)

To solve Eq. (29) within the framework of the semiclassi-
cal infinite-barrier (SCIB) model, i.e., the specular-
reflection model with the neglect of quantum interference
effects at the surface, we introduce the effective fields



10 298 OLE KELLER 43

A' (z;0)=e(z) A (z;0)+e( —z)a A ( —z;0),
and

(34) The SCIB model allows us to rewrite the Meissner and
semilocal current densities in terms of the effective fields.
Thus, one has

~)=e(z)E (z Kii ~)

+e( —z)P E, ( —z;K„,~)

where 8 is the Heaviside unit-step function.

(35)
J, "(z;O)=f" S,(z —z', O). A (z', O)dz

and Jo ' (z;0)= —,'[Jo+" (z;0)+c.c. ], with

(36)

Jo+ ' (z;0)=(2m) [E& (z;K~~, co)]*f Ro(z —z';K~~, co) E& (z 'K[~ co)dz' .

On the basis of the above considerations, it is realized that the integro-differential equation

(37)

a A' (z;0)(I—e, cue, )
'

+go f So(z —z';0) Ao (z', 0)dz'
az2 oo

+ (2m') [E& (z;K~~, co ] Ro(z —z 'Kll'~ E) 'Kll'~)dz +po

within the framework of the SCIB model, has the same
solutions as Eq. (29) in the half-space z )0.

IV. PREVAILING MAGNETOSTATIC FIELDS
AND dc-CURRENT DENSITIES

In the following we shall, taking Eq. (38) as a starting
point, determine and discuss the prevailing magnetostatic
fields inside and outside the superconductor and the asso-
ciated nonlinear dc-current density in the Cooper-paired
jellium.

A. Nonlinear static vector potential

To solve Eq. (38), it is convenient to introduce a
Fourier decomposition of Ao (z;0), viz. ,

where

Go(q~, o) = [(e,e, —Y)qz+poSO(qi 0)]

a a, „(z 0+;O)/az

go=2 ahoy(z~o+;0)/az

(41)

(42)

E& (z;K~~, co), Ro(z —z';Kl, co), and So(z —z';0) one can
derive an expression for the Fourier amplitude
Ao~(q~, o). Thus, by multiplying Eq. (38) with
exp( —

iq~z ) and integrating over z from —~ to ~, one
obtains the following result for the Fourier amplitude of
the dc-vector potential:

Ao (qy 0)=Go(qz 0) [go po o (q&, 0)], (40)

Ao~(z;0)=(2m) ' f Ao (q~, o)e '
dq~ . (39) and

By means of the inverse transformation of that in Eq. (39)
and the corresponding inverse transformations of

I

Jo (qg, o)= —,
'

I Jo '(qj, o)+[J(')+'( —q„o)]*]
with

J' '(q, o)=(2 ) f [E; (K —q, Kl, )]*R (K,K~~, ) E; (E,K~~, )dK (44)

For notational simplicity we have omitted to add a super-
script "eff" to Jo'+'(q~, o) and Jo (q~, o). It appears from
Eqs. (39)—(44) that the dc-vector potential inside the su-
perconductor in the specular reflection model can be ex-
pressed in terms of the bulk response functions, the actu-
al wave vectors being qxe and K=E&e +K~~ for So and
Ro, respectively. Hence, in the following we shall use the
notation So(q~, o):—So(q~e, ), Ro(lt j,K~~, co):—Ro(K, co),

Jo '(qj 0)—:Jo+ (qye ) Ao (qj 0)= Ao (qye, ), and
E; (Kj +qj& K~~, co)=E; (K+q~e„co).

It is a straightforward matter to show from Eq. (25)

I—e,e, e,e,
JVO(qi) Ao(qi)

(45)

where

that So(q~e, ) is in diagonal form in our Cartesian (x,y, z)
coordinate system. By means of the transverse (T)
So(q~) and longitudinal (L) So(q~) response functions,
which are functions of the scalar quantity q~, only, it is
realized that Go(qze, ) can be written in the form
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~o(qi)=1 Po(qi) qi

~o(qi)=C Po(qi) .

(46)

(47)

One should notice that Gp(qie, ) plays the role as a
Fourier-transformed magnetostatic Green's function, re-

lating the vector potential to the source current density
in Fourier space.

The magnetostatic vector potential inside (z) 0) the
superconductor now can be obtained inserting Eq. (40)
[with Eq. (45)] into Eq. (39). Since Ap~(z )0;0)
= Ap(z;0), we obtain

++I —e,e, e,ez
A,(z;0)=(2~) ' + [go —ppJp (qie. )]

JVp(qi) JVp(qi)
z)0, (48)

or, equivalently,

Ap(z;0)=(2~) ' f A'p(qi)

Vo Ji "(qie. )

JVp(qi )

iq&z
e dqz, (49)

SL
qiJ(~ (qie ) ;q p+'

e ' dq, =O.
~pT(qi)

(53)

A final simplification of Eq. (53) can be achieved by not-
ing that

By comparing Eqs. (50) and (52), it is realized that the
self-consistency relation can be written as

where J~~
=(3.—e,e, ) Jp and Ji =e, (e, Jo ) are the

semilocal current densities parallel (~ ~) and perpendicular
(l) to the surface, respectively.

B. Self-consistency requirement

If one calculates

lim [(I —e, e, ) Ap(z;0) ]
z —+0

from Eq. (49) and combines the result with Eq. (42), one
realizes that in order for our theory to be self-consistent
we must require

iq&0
i qxe

gp T dqi 1

Since

q', J~, '(q, e, ) gWp (q, )

is an even function of qi, Eq. (51) thus shows that the
self-consistency relation in Eq. (53) can be reformulated
in the form

lim J'„'(q,e, )=0.
q&

—+ oo
(54)

The requirement in Eq. (54) is fulfilled for the collective-
mode model discussed in Sec. VI.

The quantity J~~ "(qie, ) is an even function of qi, since the
effective semilocal current density parallel to the surface
is an even function of z, i.e.,

J'""(z 0)=J""(— 0) .

SL
~| 0 ql J~~

dqy
JVp(q~)

(50)
C. Additional boundary conditions

and nonlinear current density

using the shorthand notation

iq&z iq&0
lim ( )e ' dqi —= ( )e ' dqi .

z~O

The self-consistency requirement in Eq. (50) can be
simplified considerably utilizing that

A complete determination of the nonlinear vector po-
tential Ap(z;0) [Eq. (49)] requires a knowledge of
go=(gp, gp ~, 0). Once go is known, the static vector po-
tential outside the superconductor can be calculated. To
obtain go, the so-called additional boundary conditions
(ABC' s) are needed. For the specular-refiection model,
these are

iq&0+

f E(qi) dqi=nilim E(qi), .
q&

—+ co
(51)

lim [e, go(z;0)]=0
z~O

(55)

if F is an even function of qi. Now, since q J IJVp(qi ) is
an even function of q~ with the limiting value —1 for

[Sp (qi )~ ne /m f—or qi ~ ~ ], one has
d d'p(z;0)

lim (7.—e, Is e, ).
z~O dz

(56)

iq&0
qg

dq~=1 .
JVp(qi )

(52)
where

cPp(z; 0)=Jp (z;0)+Jp (z;0) (57)
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is the total current density at a distance z from the sur-
face.

Let us demonstrate that the condition [Eq. (55)] that
the normal component 80(z;0)—:e, cPO(z;0) of the total
current density vanishes at the surface is already fulfilled,
using the self-consistent vector potential in Eq. (49).
Since

+'o(z; 0)= f S, (z —z';0) A, ,(z';0)dz'+ Js"( p)
oo

(58)

where Ji"(z;0)=e,.Jo (z;0), as one readily realizes via
Eq. (36), one obtains by taking AD, (z';0) from Eq. (49)

SL

yi(z p)= — f f So(z —z';0)e ' dz' e ' dq|+Jj~ (z 0)
2rr — JVO (qi )

(59)

Because the integral over z' equals So (qi), it follows im-
mediately from Eq. (47) and the Fourier expansion of
Ji"(z;0) that one has

40(z;0) =0 . (60)

We have demonstrated now that the total dc-current den-
sity perpendicular to the surface is zero everywhere and
thus also at the surface [Eq. (55)].

It is expected that the current density is independent of
z, since the equation of continuity V.80=0 requires that
a8,(z; O) Iaz =O.

The additional boundary condition in Eq. (56) that re-
quires that the derivative with respect to z of the tangen-

tial component,

8((z;0)= (3.—e, e, ).&F0(z;0),

of the total current density vanishes at the surface en-
ables us to determine go. To calculate go, we take as a
starting point the following equation for the total current
density parallel to the surface:

8'g(z;0) = f So (z —z', 0)(1—e, oo e, ). Ao(z', 0)dz'

+Js~(z;0) . (61)

By inserting the expression in Eq. (49) for Ao(z;0) into
Eq. (61) and changing the order of integration one ob-
tains

A(z 0)=(2~) 'f," ' f S,'(z —z', 0)e "' ' ' dz' e""dq +J"(z O) .
Ao(qi )

Utilizing Eq. (46) and that the integral over z' equals SDT(qi ), Eq. (62) can be written as
I 2 SL

go . So (qi ) ~'q~z 1 ~ qi
~~

(qie ) iq~~8 (z;0)= e ' dqi — e ' dqi .2' —~ JVOT(qi ) 2vr —m ~OT(q )

(62)

(63)

By calculating dSI (z;0)/dz, by noting that the functions q&So (q „)/JVo(qi ) and qi J~~ (qie, )/JVo(q~ ) are even functions
of qJ and by utilizing that q iSO ( qi ) IJVD ( qi )~ ne Im for qi ~ ~, it follows, via Eq. (5 1), that

d 8,'~(z;0)

dz z~0

ne
4 SL

go+-,' lim
2m 'q~ ~ ~or(q )

(64)

and thus via the ABC in Eq. (56)

g, =—,lim [q', J'„"(q,e, )] .
q~~ oo

By inserting Eq. (65) into Eq. (49), the nonlinear dc-vector potential Ao(z;0) inside the superconductor has been com-
pletely determined in terms of the prescribed Fourier components Jo"(qie, ) of the forced nonlinear current density.

D. Nonlinear magnetic field inside and outside the superconductor

The self-consistent nonlinear dc magnetic field inside the superconductor, Bo(z ), is obtained by inserting Eq. (49) into
the expression Bo(z ) = V X Ao(z;0). Thus,

cc SL Ql lq~ZBo(z)= e, X [go —
poJ~~ (qie, )] e dqi .

277 JVO(qi )
(66)
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One should notice that Bp(z ) does only depend on the component of the forced nonlinear current density parallel to the
surface. This is to be expected since the total current Aows parallel to the surface. The magnetic field just inside the
surface is given by

2 q, P+
oo SL g JBp(Z~0 )= e, X [gp

—
ppJ~~~ (qie )]—T dq&2 77 oo ~p(q, )

(67)

By means of Eq. (S 1) and the self-consistency requirement
in Eq. (S4), Eq. (67) can be reduced to

Bp(z~O+) =
—,'e, Xgp

—c) A p (z ~0+;0)/c)z

a~, „(z-0+;0)/az

where the second equality is obtained from Eq. (42). The
result in Eq. (68) can, of course, be obtained directly from
the equation Bp(z ) = V X Ap(z;0) in the limit z ~0+.

The translational symmetry parallel to the surface dic-
tates that the nonlinear magnetic field in the vacuum, Bp,
can be a function of z, only, i.e. , Bp =Bp(z). In turn,
since the Maxwell equations imply V Bp =0 and
V'XB =0, it follows that BB /Bz=BB /Bz=BB, /
Bz=0. Hence, Bp is also independent of z. To calculate
the constant value of Bp, the boundary conditions for the
magnetic field are employed. Since the normal corn-
ponent of Bp is continuous at the surface and since the
current density g(~(z;0) is nonsingular at the surface
(z~O+), the tangential component of the magnetic field
must also be continuous at the boundary. This implies
immediately [cf. Eq. (68)] that

E. Fundamental field and forced nonlinear current density

where the Fourier-space propagator Gi(K, cp) is given by

eKg) eK eKgl eK
G, (K, co) = +

~i (K, co) JV, (K, cp)

The denominators

(7l)

JV, (K,co) = CO

Cp

ia (K, cp)

&pter

—E 2

The strength of the forced nonlinear current density
depends on the Fourier spectrum of the fundamental field
inside the superconductor, cf. Eqs. (43) and (44). Within
the framework of the specular-refIection model, the
Fourier amplitude of the fundamental field can be deter-
mined by the same procedure as used in the normal me-
tallic state. Thus, to obtain the result for
Ei (Ki, K~~, cp), etc. , one need only to replace the normal-
state linear conductivity tensor by the corresponding su-
perconducting one in the normal-state expression for the
field. Doing this, we find

E', (K,cp)=G, (K, cp) g), (70)

Bp =
—,'e, Xgp . (69)

In terms of the wave-vector spectrum, J~~ (qie, ), of the
forced current density, the prevailing nonlinear current
density [Eqs. (60) and (63)] and the associated magnetic
fields inside [Eq. (66)] and outside [Eq. (69)] the supercon-
ductor have now been obtained. It is a remarkable
feature that only the transverse Meissner response kernel
Sp(qi) [via JVp(qi)] contributes to the nonlinear elec
tromagnetic rectification process.

A', (K, co) =
Cp

icr (K, cp)

EpCO
(73)

contain the transverse [cr (K, co ) ] and longitudinal
[cr (K, o) ]cparts of the linear conductivity tensor
[o (K,cp)] of the superconductor at the fundamental fre-
quency. On the basis of the general expression "

o (K,cp) = I —— —g (2k+ K) (2k+K)IA7 co 2rrI ~ k

2 1
k k+K+UkUk+K) (fk fk+K)

Ek+K —Ek+&~

1

Ek+K Ek

2 1+("k+Kvk Uk+K" k) ( fk fk+K) EK+K k

1+
Ek+K +Ek +Ac@

(74)
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the transverse and longitudinal response tensors are ob-
tained from the relation

Since Ro(K, co) =Ro(K, co)ez, one has choosing the plane
of incidence to coincide with the x-z plane

c7(K, co) =(I—eKSe/)cy (K,co)+e~eKcr (K, co)

(75)

Ro(K, co) Kii
Ro(K, co) EP(K, co)= ~ g, x,

JV i (K, co)
(76)

In Eqs. (71) and (75), eK denotes a unit vector parallel to
the K direction. The quantity g&=(g& „g& y, 0) in Eq.
(70) is determined by the boundary conditions for the
fundamental electromagnetic field at the surface, of
which an explicit expression is given below.

With a knowledge of E&, the forced nonlinear de-
current density can be obtained from Eqs. (43) and (44).

as can be seen with use of Eqs. (70) and (71). Hence, it is
realized that in order to obtain electromagnetic
rectification an irrotational (L) part is needed in the fun-
damental field inside the Cooper-paired jellium. Since
only J~~ (q~e, ) is needed to obtain the dc-magnetic field

and the associated dc-current density we make use of the
equation

(I—e, c3 e, ).[E; (K, —q„K„,co)]*=

to get

(Kj —q~)

JV', ([K'„+(K,—q, )']'", )

JV [Kii+ K, —qi)']' co)

+
g*, e„

JV, ([K~~+(K~ —q~) ]',co) K)~+(K~ —q~)

(77)

(7.—e,e, ) Jo'+'(q~e, )=(2~) f
Kii Ro(K, co)

dK~,
JV', (K, co)

(78)

(K~ —qq)

IJV, ([K'„+(K,—,)']' ', )I* [JV ([K'„+(K —
q )']'",

X
g&, xg t,yey

'„+(,—,)' IJV, ([ '„+(,—,)']' ', )]*

where e and e are unit vectors along the x and y directions. Our final result for the Fourier amplitude of the forced
nonlinear current density flowing along the surface is obtained by inserting the expression in Eq. (78), plus an analogous
one obtained by the replacement qj ~—

qz and a complex conjugation, into

J~~ (q~e, )=—,'(I —e,ee, ) I Jo+'(q~e, )+[Jo+'( —q~e, )]*] . (79)

F. Polarization selection rules

The possibilities for achieving nonlinear electromagnetic rectification depend on the state of polarization and on the
angle of incidence of the fundamental field. To investigate the polarization selection rules, we use the continuity of the
tangential components of the fundamental electric and magnetic fields at the surface to express the quantity g& in terms
of the amplitude E', (K;,co) of the incident (i) fundamental field,

E', (r, t) =
—,'[(2') E', (K;,co)e ' +c.c. ] (80)

outside the surface. In Eq. (80), the incident wave vector is K;=K~~+KI e„where KI =[(co/co) —
K~~ ]' . As the

outcome of this calculation one obtains

g&, x
=

iK~O-+
JV (K co) K'K2JV, (K, co)

4~E",y(K, , co)

2
CDI(

Kq Kq+ Kq

(81)

and

g&,y
= 4rrE'i'(K, , co)

iK~D

&+
KI JV, (K, co)

(82)

where E &' and E '&' are, respectively, the p- and s-

polarized components of the incident field amplitude.
It appears from Eq. (78) that in order to obtain a

forced nonlinear current density, g& „must be nonzero.
This means according to Eqs. (81) and (82) that an s-
polarized incident field cannot give rise to electromagnet-
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ic rectification. If the incident field is p polarized,
g& =0, so that the forced current density is parallel to
the plane of incidence [cf. Eq. (78)]. In turn, it follows
from Eqs. (63) and (66) that also the self-consistent
current density is parallel to the plane of incidence and
the magnetic field is perpendicular to this plane. If the
incident light has both a p and an s component, J((z;0) is
not confined to the scattering plane, nor is Bo(z ) perpen-
dicular to this plane. The magnetic field, however, is al-
ways parallel to the surface plane.

V. COLLISIONLESS NORMAL STATE

In the last decade, the optical second-harmonic genera-
tion in centrosymmetric metals has been extensively in-
vestigated. The associated dc reaction on the conduc-
tion electrons of the metals has not been studied until
now. To observe this optical rectification process in the
normal metallic state, one would like to increase the elec-
tronic relaxation time significantly relative to that of con-
ventional second-harmonic-generation experiments. Usu-

ally, impurity scattering and electron-phonon interac-
tions are the main sources for the conduction-electron
damping. Thus, it is suggested that nonlinear optical ex-
periments be performed on especially pure samples at low
temperatures.

The theory presented in the preceding sections applies
to the collisionless normal jellium state when setting
T) T, . The analytical expressions for the response ten-
sors Ro(K, co), So(p~e, ), and o (K, co) are much simpler in
the normal state than in the superconducting state. The
transition to the normal state (NS) is obtained following
the standard procedure. Thus, one obtains, for the non-
linear response function in Eq. (18), the formula'

NS NS

Ro (Q, co)=—,g (2k+Q)
2m m V i5CO+ E,k E,k+q

(83)

The expression for the linear conductivity tensor is re-
duced to the well-known form '

2
ine 2i eA'

m co co 2m

Ns Ns—g (2k+Q)e(2k+Q) (84)
i6CO+ Ck E,k+q

in the normal state. The expression for So(Q) in the normal phase can be obtained easily from Eq. (84) utilizing the re-
lation

So (Q)= limricocr (Q, co)] .
co~a

Thus,

(85)

Ns
2

S (Q)= — I—
m

2 NS NS—g (2k+Q)e(2k+Q)
2m V ~k ~k+Q

(86)

It is important from a quantitative point of view to be in the possession of closed-formed expressions for the response
tensors in Eqs. (83), (84), and (86). By replacing the Fermi-Dirac distribution function by a step function ( T =0 approx-
imation), i.e., f„=e(k~—

~a ~ ), where 0 is the Heaviside unit-step function, it is a straightforward, but tedious matter
to carry out the summations over k space (see the Appendix). By introducing the "classical" ( u ) and "quantum-
mechanical" (z) nonlocality parameters u =co/(QU~) and z =Q/(2k~), respectively, U~ being the Fermi velocity of the
electron, one obtains the following expression for the nonlinear response function:

3 2

Ro (Q co)= u 1+ [1—(u+z) ]ln +[1—(u —z) ]lnNs ' F 1 2 u+z+1 u —z —1

4~ pm~ 4z u +z —1 u z+1 eq, (87)

where e&=Q/Q. If the magnitudes of the relevant electromagnetic wave vectors are small in comparison to the Fermi
wave vector (z « 1), Eq. (87) is reduced to the form

3 2
NS

e kF u —1
Ro (Q,co;z~O)=, , u 2+u ln

477 Amco u+1 e&. (88)

To lowest order in u ', one obtains, from Eq. (88), the previously established' hydrodynamic result

ne
Ro (Q m'z~o)Ihyd, .= 2 3Q2m co

(89)

The analytical expressions for the transverse (o T ) and longitudinal (eris) parts of the linear conductivity tensor are
well known. ' ' ' Thus
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Ns(q )
3lne
Spl CO

z +3u +1— [1—(z —u) ] ln +[1—(z+u) ] ln
4z z —u —1 z+u —1

(90)

and

2 2
Ns 3ne u

2lm co
1+ [1—(z —u) ]ln +[1—(z+u) ]ln

4z z —u —1 z+u —1
(91)

Utilizing Eq. (85), it follows that the transverse (So r)
and longitudinal (So „)parts of the Meissner kernel are

I

and

JV, (Kii, l~„co)=0 . (97)
3 2

SNs (g )— (1—z ) z+1
z +1- ln

2z z —1
(92)

and

SNs (g) 0 (93)

respectively. One should emphasize, in relation to Eq.
(93), that only the gauge-invariant, transverse part of
the Meissner kernel contributes to the dc-current density
and the associated magnetic field [cf. Eqs. (46), (63), and
(66)]. In the small-wave-vector limit (Q «2kF), one ob-
tains, to lowest order in z, the hydrodynamic result

S, ', (Q) „r„.———"'
(94)

m 2kF

for the transverse part of the free dc response. The classi-
cal Boltzmann-equation expression and the hydrodynam-
ic result for o T (Q, co) and crL (Q, co) are well known and
need not be reproduced here. By comparison of Eqs. (87)
and (91), it is realized that Ro and crL are related via
the simple equation

To investigate the nonlinear electromagnetic recti-
fication process associated with the excitation of the
above-mentioned collective modes, we consider the gen-
eral expression for the forced nonlinear current density
[Eqs. (78) and (79)]. In the complex Ki plane, the in-
tegrand of Eq. (78) has poles at

+~L +[( L)2 K2 ]1/2 (98)

Ki =qi+(~i )*=qua+I [(a. )*] —
K~~ ]

'~ (99)

To ensure that these poles, and those given below, do not
lie on the real K~ axis, an infinitesimal small but positive
imaginary number is added to the frequency, i.e. ,
~=—co+i 0+. Hence, choosing Im~~ )0, the pole at
Ki =Iri lies in the upper half-plane. Since JV, and JV& are
even functions of Ki, the poles in Eqs. (96) and (97) are
always symmetrically placed with respect to the origin.
To determine the remaining poles of the integrand in Eq.
(78), we note that the solutions to [A'&(K, co)]*=0 and
[JV, (K,co)]*=0are K =+(a. )* and K =+(Ir")*, respec-
tively. This implies that the rest of the poles are located
at

2Hz co

Below T„ the relation between these two quantities is
more complicated mainly because of the different ways in
which the coherence factors enter the expression for
Ro(g, co) and crL(g, co) [cf. Eqs. (18), (19), and (74)].

Ki=qi+(I~i)*=qua+I[(I~ )*] —
Kii ]' . (100)

choosing (Iri ) = + [ [(Ir )*] —
K~~ ]

' and (Iri )*
=+ [ [(I~ )*] —

K~~ ] ', the principal interval for the ar-
guments is (

—n, n) With the a.dditional choice Immi )0
(for vi = [(Ir ) —

K~~ ]' ), the poles
VI. ELECTROMAGNETIC RECTIFICATION BY

POLARITON-PLASMON AND PLASMON-P LASMON
INTERACTIONS

A. Pole structure of the forced nonlinear current density

and

—p T(q, )
—=qi —(IrTi)"

pL(qi) =qi—
(101)

(102)

JV, (Kii, lri, co) =0 (96)

For frequencies in the vicinity of and above the plasma
edge, the fundamental field inside the BCS-paired jellium
is dominated by that associated with the excitation and
propagation of polaritons and plasmons. In implicit
form, the inverse dispersion relations for polaritons
[I~ =Ir (co)] and plasmons [Ir =lr"(co)] are determined
by the conditions JV& (v, co) =0 and JV& (~,co) =0, respec-
tively. In the actual case, where the wave-vector com-
ponent along the surface (i.e., K~~) is fixed, the wave-
vector components perpendicular to the surface of the
polariton (Iri ) and plasmon (Iri ) are given implicitly by

are located in the upper half-plane of the complex K~
plane. Introducing the quantities

(103)

it is possible to show that the residues associated with the
(assumed) first-order poles Ki, —pT*, and —pL are given
by %L, —%T, and —%L*, respectively. By (i) neglecting
possible branch-cut contributions, and (ii) noticing that
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I (K, —q, )'/[W, (K~~, K, —q„~)]"+K
~~

/[N", (K~~, K, —q„~)]*
I /[K

~~

+ (K, —q, )'] 0
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for K~~q~+iK1 so that the integrand in Eq. (78) has no poles at K1 =q1+iK~~~, residue calculation in the upper half-
plane gives

—,'(I —e,e, ) Jo+'(q1e, )=
4~

(;—q, )' '„ Ig1, I'e.
+

[A', (K, "—q, )]* [JV, (K, —q, )]* K„+( —
q )

(104)

g 1,xg 1,yey L L+ Ro(K~~, K1,CO)A L( K~~, K1,co)
q1 ' ~)] 1CL

2
1 1' 3' [K2 + [ ( T)gc ]2] 1/2~L(K ( T)e }

KIIg, , I e„RO(K(, q1
—( 1)*, }PL(K)(, 1, )

(1c*) [K +[q —(1c")*]]' JV, (K, q
—(1c )*, CO)

Ej = —q~+sc~,

q, +
(106)

(107)

The poles associated with the integrand occurring
in the expression for ()(—e,e, ) [Jo+'( —q1e, ) ]' are
determined from the condition [A', (K,co)]"=0,
JV1(K~~, K1+q, co)=0, and JV1(K~~, K1.+q1, co)=0.
This means that the corresponding poles are located at
the following positions:

K1 =+(1C1 )*, (105)

I—(1cj")*,pT = —q1+1c1, and pL = —q~+1c~, and the cor-
responding residues are —%L*, AT, and AL, respectively.
The distribution of all the upper half-plane poles in the
integrand of J~~ (q1e, ) is tabulated in Table I. We notice
from this table that the poles associated with
(I—e,e, ) J01+'(q1e, ) can be obtained from those ap-
pearing in (I—e, c31e, ) [Jo+'( —q1e, )] by a mirroring in
the imaginary axis. For completeness, the values of the
residues connected to the various poles are also indicated
in Table I. On the basis of the pole structure obtained
above, we obtain, by contour integration in the upper

The three poles in the

—,
'

( I—e, I3 e, ) [J(')+ '( —
q1 e, ) ]

*=
4m.

upper half-plane are located at half-plane, the result
I

[q1 —
(1C~ )*] K~~

A', (K~~, q, —
(1C1 )*, CO) A'", (K~~, q1

—
(1C1 )*, CO} K~~ + [q1 —

(1C1 )*]

g1,xg1y ye K
+ Ro (K((, —

(1C~ ), CO)AL(K((, 1C1,CO)
L

JV, (K((, q~
—

(1C1 )*, CO) a.L*

K
2

K~~R (K~(, 1 q1, co)A (KT)~, lc1,co)
, , I e +g1,g, e1 g 7 [K2+( T )2]1/2[~L(K ~T ~)]s

K'„Ig, „I'e,R,*(K~~, ~,'—q„~)WL( „, ,', )
(108)

In order to determine in the collective mode approxi-
mation, the forced contribution to the current density
JII(z;0), and the magnetic field Bo(z), one has to calculate
the pole contributions to the integrals

n SL
q1 J~( (qge~ ) q'q

I~„&—= e '
dq~, n=1 and 2

2n —~ Jg(q2 }

(109)

[cf. Eqs. (63) and (67); magnetic field, n = 1; current densi-
ty, n=2]. By inserting Eq. (104) into (109), it is realized
that poles are located in the complex q~ plane at the posi-
tions

Pole locations Associated residues

K

+T —Kl glT

PL =KiL

( L)g

TABLE I. Pole structure of the forced nonlinear current den-

sity J~~"(qze, ) in the complex Kj plane. The pole locations in

the upper half-plane and the associated residues are tabulated.
Notice that the poles are placed symmetrically with respect to
the imaginary K, axis.
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qt =Kt + (Kg )

q~ =Kt + (Kt )*,
q~

= (K~ )*+Kt,

q~=(Kt)*+Kt .

(110)

(112)

(113)

TABLE II. Pole structure of I („) in the complex qI plane.
The pole locations in the upper half-plane and on the real axis
and the associated residues are tabulated together with the de-

generacy of each pole position. Only the poles in the three
upper rows of the table give a net [polariton-plasmon (TL} and
plasmon-plasmon (LL)] contribution to I ~„I.

qt =(Kj ) +Kg

qt = (K~ )*+K~,

qt =(Kt )+ (Kt )*, (116)

and at the positions given in Eq. (111). The poles in the
upper half-plane or on the real axis stemming from Eq.
(108) are at the following positions: qt =(K~)*+Kt (pro-
vided that ImKt ) ImK~ ); [twofold-degenerate residues:

T( (), t, co ) and %L(K((,K~, co ) ], qt = (K~ )*+Kt [on the

The poles located in the upper half-plane are
q~ =K& —(Kz )*, qt =Kt —(Kt )*, and, provided that
ImK~ ) ImKt, q~ =(K~ )*+Kt. For the first two poles,
the associated residues are —AT(Kl, K~, co), and

AL(—Kl, Kt, co), respectively. The pole at qt =(K~ )*+Kt
is twofold degenerated and the two related residues are
(in case) %„(K~~,Kt, co) and Ar(Kl, K~, co). One pole is lo-
cated at the real axis, namely, at q~=2ReK~. This pole
also exhibits twofold degeneracy with residues

,'&L(K—~~,K„~) and —,'AL(K~~, K„co). The remaining poles
in Eq. (109) are obtained via the contribution from Eq.
(108) to the integrand. Thus, by direct inspection, one lo-
cates poles at

Pole locations

2/ IIH/Ci

2 ReKi

K~+(K~ )*
sf Im(K~ —~~ ) & 0

(K,")*+K',
if Im(K —~ ) &0

Degeneracies

1

1

1+1

Associated residues

L

and

AL

(+) (
—

)
~(pg) ~(g) + I (g) (117)

real axis, and with twofold-degenerate residues:
L KIl'K~'co ]' q~ Kt (Kt )* [residue,

—AL(Kl, Kz, co) ]. A tabulation of the final pole structure
and the associated residues is presented in Table II.

Now, a straightforward, but tedious contour integra-
tion in the upper half of the complex qz plane allows us
to determine I („). It turns out from such a calculation
that the poles on the real axis (q~ = 2 ReK~ ) and the poles
qt=Kt+(Kt)* and qt=Kt+(Kt)* give no net contribu-
tion to I (,). In explicit form, one thus obtains the follow-
ing result:

where

I ( )
= Ro(Kl ~ )AL(Kl ~ )

L L

4a KL

(K )

KT
~g) ~

e +g) g ) e Rr(Kl, Kg cu)

[Kt —(K~ )"]"
X expI i[Kt (Kt )*]z—j

JVo(K~ —(Kt )')

K~( (2i ImKt )"
Ig, .l'e, WL(K,

,
, K&, ~) r L exp[ —2(lmKt)z]

KL
' '

JPO(2i ImKj )
(118)

and

III', „,'= „R*(Kl,—( ")*, )W*(Kii, , )
4w

2
K

KT

[K~ —(Kt )*]"
~gt ~

e +g f g, e AT(Kl, K~, co) expIi[Kt —(K~)*]z]
JVo(K~ —(K~ )*)

(2i ImKt )"
(g, ( e„AL(K~~, Kt, co) exp[ —2(lmK~ )z]

JVo(2i ImKt )
(119)
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The polariton-plasmon contribution to the electromag-
netic rectification process is given by the
terms containing the factor

exp[i (Relci —Remi )z]exp[ —(Imlci + Immi )z]

lowing asymptotic behaviors:

lim JV, (Kll, K+qi, co)= lim ( —q~i)
q&

—+ oo q&
—+ oo

(121)

and its complex conjugate. The plasmon-plasmon contri-
bution, which only can give rise to a nonlinear
current density in the scattering plane, is given by the
terms containing the spatially nonoscillating factor
exp[ —2( 1m~i )z].

B. The quantities go and g, in the pole approximation

m ~Li(K„, ~+q
q~ —+ oo co

2
COp1—

2

(122)

where co =[ne /(meo)]'~ is the plasma (circular) fre-
quency. By combining the results in Eqs. (121) and (122)
with the fact that

lne
(120)

with IC=Ki Ki, (Ki)*, or —(Ici)*, one obtains the fol-

To determine the prevailing nonlinear magnetostatic
field and the associated dc-current density in the
collective-mode approximation, one has to calculate go
via the asymptotic expression in Eq. (65). Since

lim cT Kll' Ic+qi' co) = lim cr Kli' Ic+qi' co
q~ —+ oo q~ —+ oo

lim R (Kll, ~+qi, co) lim q
q&~ oo q&~ oo

(123)

it is a straightforward matter to demonstrate that the
terms in Eqs. (104) and (108) which contain Ro(Kll, qi

Ro(Kll qi (Ici)*, c ), R *(Kll, zi —qi., m),
and R o (Kll, Ici —qi, co) do not contribute to go. Hence,
by means of the relation in Eqs. (121) and (122), one ob-
tains, by inserting Eqs. (104) and (108) into Eq. (65), after
a few steps of algebraic manipulations,

mKII
go=

4m inc

R 0 (K
ll

& +i &
~ )+L(K

ll
& +i &

~ )

KL

Ro (Kll, —(Ici)*, co)JRL(Kll&KJ &co)

KL

2 2
KIIco

Ig i,.I'e.
CO CO

g1,xg i,y L L g] xg~y e L g g LRo(Kll, Ici, co)AL(Kll, ~i, co)
'' R—o (Kll, —(~i )*,co)Ai (Kll, lci, co) e

KL KL
(124)

It is a noteworthy feature that go depends on the polariton field only via the quantities g& and gi y In the pole ap-
proximation, these are given by

gi, x
= 2coKl E",~(K;,co)

2
KT

2
coKT

l l l
i +KT KT

AT(K ll, Ki & co ) +
'2

II L
AL(Kll, Ki & co )

KL

(125)

gi, y
= 2E' (K, , co)

T
Kl T

i 1+ . AT(Kll Ici co)
Kl

(126)

C. Hydrodynamic model

In the preceding part of this paper, the electromagnetic
rectification stemming from polariton-plasmon and
plasmon-plasmon interactions has been discussed without
reference to a specific model for the linear and nonlinear
bulk responses. By using excitation frequencies in the vi-
cinity of the plasma edge, it is reasonable to describe the
collective excitations on the basis of the well-known hy-
drodynamic model. For this model, nonlocal effects
can be neglected in the transverse part of the linear-
response tensor so that the polariton and plasmon disper-
sion relations take the forms

Kl
CO CO

2 2
2—K

a

1/2

I=T or L, (127)

Rp(Kll, Ici & co) —P(co, T)KL

where

(128)

where a T =co~ and aL =3a(co, T), possibly with co replaced
by ~+i/r to account, via a damping constant T ', phe-
nomenologically for irreversible relaxation processes.
The quantity 3a(co, T) is the diffusion coefficient for the
superconducting phase. Its explicit expression can be
found in Ref. 29. For frequencies somewhat above the
gap frequency, 3a equals the diffusion coefficient of the
normal state, i.e., 3a=3uF/5. The residues AT and %L
to be used are given also in Ref. 29 (use only the local
value for AT). In the near-local (hydrodynamic) approxi-
mation one obtains for the nonlinear response function
Ro the following explicit result:
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P(co, T)=— a'e'
12m m cu o k&Tm Ek Ek

dk .
(fico) (2—Ek )

(129)

In the normal state, p is reduced to p(co, T ) T, )

= —ne /(2m co ), cf. Eq. (89). The normal-state value of
p is also the value obtained at frequencies far above the
gap frequency. From Eq. (128), one obtains

RD (K~~,
—(ici )*, co) =P (co, T)(icL )*,

where ict ——
K~~

—ici e, is obtained by mirroring (M) icL in
the surface plane. In the collisionless limit (r—+~ ),

III p
On the basis of Eqs. (127)—(129), together with the

relevant ones from Ref. 29, explicit expressions for the
prevailing dc-current density and the associated magnetic
field can be obtained in a way which is adequate for nu-
merical studies.

For the lower- T„conventional superconductors,
specific superconducting features can probably be
neglected in Eqs. (127)—(129) since the plasma frequency
is far above the gap frequency. For the high-T, super-
conductors, the situation is more complicated since the
plasma frequency is lower and the gap frequency higher.

Even when lower- T„conventional superconductors
are considered, specific superconducting efT'ects are still to
be expected in the electromagnetic rectification process
due to the presence of the Meissner screening in Eq. (63)
[SD (qi ) and JVD(qi) being involvedj, and the function
JVD(qi ) in the forced parts of Eqs. (63) and (66). Finally,
let us point out that while it is impossible to describe the
generation of the forced nonlinear current density within
the framework of a local model, the free Meissner current
density can in some case be treated on the basis of a local
(London ) approach. It is so because nonlocal effects
occur only in even orders of qi in SD (qi ). In the London
limit, So is given by

RNS(Q ) y fNsAe

2m' V

2k+ Q
i5CO+ E,k E,k+q

2k —Q
%CO+ Ek q Fg

(A 1)

The form in Eq. (A 1) is readily obtained making the sub-
stitution k —+k —Q in the summation containing the
quantity (2k+Q)fk+&/(A'co+Bi, —

Ei, +&). As is usual, we
then replace the summation over the closely spaced k
points by an integral over k space, i.e., V 'gk( )

~ f ( . )d k/(8w ). Since R0 is an uneven function
of k„and k in a Cartesian (k, k, k, ) coordinate system
having the k, axis along the direction of Q, one must
have RD ~~e&. Thus, it is realized that the integrals which
have to be calculated are of the types

(2k, +Q)fk d k
(A2)

By introducing spherical coordinates (k, 9, @),performing
a trivial y integration, and making use of the T=O ap-
proximation fk =e(kF —k), the two integrals of Eq.
(A2) takes the form

APPENDIX: CALCULATION
OF ANALYTICAL EXPRESSION

FOR RD (g, co) IN T =0 APPROXIMATION

To obtain an analytical expression for RD (Q, co) let us
rewrite Eq. (83) as follows:

2 p 2/2

3m k~T — 8~

as is well known.

(130)

"Fy~ (2k cos0+Q)k sin0 d9dkI+ =

Performing the 0 integration, one obtains

(A3)

1I+ =
47r'p

4 2a+ kF a+ Pk——kF — +Q f k ln dka++ k
(A4)

a+ a+ PkF—2

ln
2p2 a++pkF

2(x+
+Q1 4I — . ——k

4m. p

where a+ =%co+ A Q /(2m) and P=A' Q/m, and then after some integration by parts,

kF2 a+kF
(A5)

Finally, by utilizing the relation

a+ PkF u +z
a++PkF u +z+ 1

(A6)

writing down the expression for I+ —I, and carrying out a number of trivial algebraic manipulations, one obtains the
expression for R0 (Q, co) given in Eq. (87).
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