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Quantitative description of hysteresis loops induced by rf radiation in long Josephson junctions
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The effect of an applied rf signal on the radiation emitted from a long Josephson junction is exam-
ined by means of a model based on the sine-Gordon equation. This system exhibits a variety of in-
teresting phenomena, e.g., chaos and hysteresis. The hysteresis loop is examined in detail. These
simple analyses show that for rf frequencies larger than a certain threshold value no hysteresis is ex-
pected. This is verified in numerical simulations where the frequency and length of the junction
have been varied.

I. INTRODUCTION

The study of the dynamical behavior of long Josephson
junctions is of fundamental as well as practical interest.
From a theoretical point of view the system shows a rich
variation of nonlinear properties which are suitable for
detailed investigations of, e.g. , nonlinear wave dynam-
ics' and chaotic states. Further, the system is suit-
able for testing perturbation approaches. From an appli-
cations point of view there have been suggestions for the
use of Josephson junctions in such diverse fields as
microwave-oscillator amplifiers and data-processing sys-
tems. ' '"

Previously, ' ' we examined the inhuence of an ap-
plied rf signal on the radiation emitted from a long
Josephson junction by means of a model based on the
sine-Gordon equation. The microwave pump signal was
applied to one end of the junction. Thus the system was
modeled by a perturbed one-dimensional sine-Gordon
equation with appropriate boundary conditions describ-
ing the inhuence of the rf signal. The rms value of the
voltage of the emitted signal was calculated and used to
evaluate the response of the junction. Various interesting
phenomena were found depending on the amplitude of
the rf signal: period-doubling sequences or bifurcation
trees (devil s staircase), chaos, quasiperiodicity, and hys-
teresis. However, only a single frequency of the applied
signal and one length of the junction were considered.
This system has also been considered in Refs. 8 and 9
where perturbation techniques were applied to describe
chaotic dynamics of a nonequilibrium kink.

In the present paper the hysteresis loop is investigated
in detail. Thus the inAuence of variations in frequency of
the applied signal and length of the junction on the emit-
ted radiation is examined analytically and numerically.
Further, the infl. uence of variations in the loss parameter
is considered.

The hysteresis loop consists of an upper and a lower
branch, respectively. The upper branch can be ascribed
to a breather-mode frequency locked to the driver while

the lower branch can be ascribed to a solution obtained
from the linearized system. ' However, expressions can
be developed describing the limits for the existence of the
branches as a function of the applied frequency and
damping parameter. Combination of these expressions
gives a threshold value for the frequency, i.e., for larger
frequencies the hysteresis loop disappears. The threshold
value compares we11 with numerical experiments. Fur-
ther, the upper branch disappears for lower values of the
frequency.

The paper is outlined as follows: Section II contains a
description of the model and the analytical results which
can be obtained from simple energy considerations and
from the knowledge about the breather solution. In Sec.
III the numerical experiments and the comparisons with
the analytical results are presented. Finally, Sec. IV con-
tains the conclusion.

II. MODEL AND ANALYTICAL RESULTS

In this section the model used to describe the dynami-
cal behavior of long Josephson junctions is outlined and
results from simple analysis presented. The mathemati-
cal model used to describe the dynamics of a long Joseph-
son junction is a perturbed sine-Gordon equation. The
perturbation includes a dissipation term. The equation is,
in normalized form,

—P„=sing+ aP, ,

where P is the phase difference between the two super-
conducting films. The spatial variable is measured in
units of the Josephson penetration depth
AJ=(h/2edpoJ)' and the time in units of the recipro-
cal plasma frequency coo

' where coo=(2eJ/hC)'~ . Here
J is the Josephson current density, d is the magnetic
thickness of the barrier, and C is the capacitance per unit
area. The loss parameter o.' is defined through the rela-
tion a =G ( h /2e JC) ' ~, G being the shunt conductance
per unit area. The loss parameter models dissipative
currents (quasiparticle currents).
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When an oscillating magnetic field H, singlet is applied
to one end (in this case the right end) of the junction, per-
pendicular to the length of the junction and parallel to
the plane of the barrier, the boundary conditions for the
phase difference P at the ends are

I
I

I & I I
I

I I I I4

P (O, t)=0 (la)

P„(l,t)=a singlet, (lb)

where a =H, /JXJ and I are the normalized magnetic
field strength and junction length, respectively. Here we
assume that the influence of an external magnetic field is
felt only through the boundary conditions (lb), and not
through Eq. (1) which describes the dynamics of the inte-
rior of the junction.

Equations (1) have been solved numerically. The nu-
merical solution is based on a stabilized hopping
scheme. ' In Fig. 1 we show the results from such a solu-
tion in terms of the rms value of P, (at x =I) as a func-
tion of the applied amplitude a. The specific parameter
values in Fig. 1 are as follows: frequency co=0.7 and
length l =5. The loss parameter (a=0.2) is held fixed.
In order to simulate an experimental situation we follow
the procedure from Ref. 14. Thus for a =0 we use Oat in-
itial conditions [P(x,O) =0 and (t, (x,O) =0]; a is then in-
creased gradually by an amount Aa [using a ramp func-
tion a„, =a„d+(Aa/50)t for t (50]. The steady state is
typically obtained after t =500; each run is continued to
t =1500. After calculation of the last eight rms values of

the computations are stopped, restarted (the initial
conditions now being the previous solution), and a is
gradually increased. This procedure is continued for
a &2.5 with ha=0. 005. %'hen a =2.5 is reached the
sign of Aa is changed and the procedure repeated until
a =0 is obtained. Note that the rms value of P, is defined
as the square root of the following quantity:

((t', ) =~y2~ J
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In Fig. 1(a) the resulting curve for ha )0 is shown, while
Fig. 1(b) shows the corresponding curve for b,a (0. For
each value of a, eight consecutive values of the rms value
of P, have been plotted. This allows us to identify period-
ic solutions as well as solutions up to eight periods. In
Fig. 1(a) it is seen that the rms value changes rapidly
(from 1.14 to 1.61) for a„,i, =1.160 and enters another
branch (referred to as the upper branch). This change
corresponds to a change in the wave dynamics. For
a ) 1.455 the resulting dynamics give a scattered set of
dots corresponding to a chaotic time response. The
response is again periodic for 1.930 & a & 2. 160 but enters
a chaotic regime for a & 2. 16. The dependence of the dy-
namics on the amplitude of the applied rf signal is
perhaps seen more clearly in Fig. 1(c) where we have
shown the differences between the values of ((P, ))'~
displayed in Figs. 1(a) and 1(b). Here the periodic
responses are represented as lines. Thus the regions with
no hysteresis are represented by the zero line, the hys-
teresis loop by a line diA'erent from zero, and the chaotic
time response by the sets of scattered points. We do not
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FIG. 1. The rms value ((P, ) )' vs the applied amplitude a.
Parameter values are l =5, a=0.2, and co=0.7. In (a) the am-
plitude has been increased from 0 to 2.5 in steps of Aa =0.005
while (b) shows the corresponding curve for a decreasing from
2.5 to 0 in steps ha = —0.005. (c}shows the diA'erence between
the values of ((P, ) )'~ shown in (a) and (b). The hysteresis loop
is seen between a =0.75 and a = 1.16, corresponding to a&,I, and
a„,q, respectively.
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intend to characterize the chaotic time response in detail
in the present investigation. However, a priori we expect
that low-dimensional chaos as well as turbulent behavior
will characterize the dynamics in the scattered regions.
From Fig. 1(b) it is seen that this branch can be extended
to lower values of a. The upper branch exists down to
a&,h=0. 750 where the rms value decreases rapidly (from
1.70 to 0.54) and returns to the lower branch. In Ref. 14
the existence of the hysteresis loop was explained by iden-
tifying the modes sustaining the different branches. Thus
the lower branch is sustained by a solution to the linear-
ized equations (la) and (lb), while the upper branch is
sustained by a breather solution.

The spatial solutions sustaining the upper and lower
branches are shown in Figs. 2(a) and 2(b), respectively.
In Fig. 2(a) the amplitude is a =0.75 which is close to the
threshold value for the existence of the upper branch.
Here the spatial mode is well described as a breather
solution. In Fig. 2(b) the amplitude has been decreased to
0.74—the spatial mode corresponds to the solution of the
linearized version of Eq. (1). The solutions are indeed
quite different.

In the following we give expressions for various thresh-
old values. Note that the solution to the linearized equa-
tion fits the numerical results perfectly for lower values of
the applied a, e.g. , for a &0.6 in Fig. 1.' The mode sus-
taining the upper branch was identified as a breather fre-
quency locked to the driver signal and placed symmetri-
cally with respect to the right end of the junction. Thus
the mode sustaining the upper branch is given by the
breather solution

': (b)

FIG. 2. The spatial solutions sustaining the upper (a) and the
lower branches (b) in Fig. 1. The amplitudes of the applied rf
signals are 0.75 (a) and 0.74 (b). Time evolution has been fol-
lowed in 50 time units.

P(x, t)=4tan 'I [(1—co )'~ /co] sin(cot+8b, )/cosh[(1 —co )'~ (x —1)]] (2)

In order to determine an expression for the lower thresh-
old value aI,h for the upper branch we apply the usual
perturbation approach. ' Define the energy

4H= —16vra sin '(1 —co )' +8m[(I —~)/(I+~)]'~2 .

H= f [ —,'P + —,'P, +(1—cosP)]dx . Thus for AH=0 we get an expression for the lower
threshold value

Time differentiation of H and use of Eq. (1) yields al,&=2a[(1+co)/( I —co)]'~ sin '(1 —co )'~ (7)

dH /dt = af P,—dx +P„P, l o .
0

(4)

5H= —a f '"f'ytdx «+ f y.y, l. (« . = (5)

In a stationary situation the energy change in one period
of oscillation is zero. Close to the threshold value the en-

ergy input is at a maximum, forcing the phase angle 0=0
in Eq. (2). Insertion of the breather solution in Eq. (5)
yields"

Here the first term represents energy dissipation while
the latter term represents energy input. In one period of
oscillation the energy change is

a„,h=2(1 —co ) . (8)

From Eqs. (7) and (8) it is seen that the hysteresis
phenomenon will disappear for large values of the fre-

Now, an expression for the upper threshold, a„,h, can be
given applying the following argument. The solution sus-
taining the lower branch can be found linearizing Eq. (1).
When the amplitude a exceeds the maximum value of the
spatial derivative of the breather solution corresponding
to the applied frequency a switch from the lower branch
to upper branch occurs. The maximum spatial derivative
for a breather of frequency co is
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1/2

a sin (1—co )
z ixz

1+co
(9)

In Fig. 3 the relations for a«h and a„,„, Eqs. (7) and (8),
are shown as a function of the frequency co. The points
are obtained from a full simulation of Eq. (1). In the next
section the numerical results will be discussed.

1.0

0.0 l

0.0 0.2 1.0

2.0
(b)

quency, i.e., for values of co where a„,h&a«h. Thus the
following relation between the loss parameter and the fre-
quency gives the upper value of co for the existence of the
hysteresis loop:

III. NUMERICAL RESULTS

In this section we compare the analytical expressions
for the various threshold values obtained in the preceding
section. Thus we have examined the inhuence of various
parameters (frequency, length of junction, and loss pa-
rameter) on the width of the hysteresis loop. Further, we
show some examples of the dependence of ((P, ) )' on
the applied amplitude a.

A. Analytical versus numerical results

In order to compare the analytical results and the nu-
merical simulations we have performed a set of numerical
experiments like the one resulting in Fig. 1. The solid
curves in Fig. 3(a) are obtained from Eq. (7) (lower) and
Eq. (8) (upper). For a certain value of co the distance be-
tween the curves gives the width of the hysteresis loop,
i.e., a&,h

—a„,h. For values of co larger than the value cor-
responding to the intersection of the curves Lcorrespond-
ing to Eq. (9)] no hysteresis is expected. The loss parame-
ter in Fig. 3(a) is a=0.2. For this value of the parameter
we have determined a&,h and a, ,h for l =2.5, 5.0, 7.5 and
10.0; see Fig. 3(a). In accordance with the analysis in the
preceding section we see that the hysteresis loop disap-
pears for co larger than a certain value. However, for
values of co(0.55 the hysteresis loop disappears as well.
This is surprising and seems independent of the length of
the junction and the value of the loss parameter. Fur-
ther, the threshold values determined numerically are in-
dependent of the length of the junction for l ) 5.

From Eq. (7) it is seen that a«h scales with the loss pa-
rameter. In Fig. 3(b) we have shown the threshold values
obtained analytically and numerically for +=0.25 and
0.3. Again we see that the hysteresis loop disappears for
large values of co, but also for smaller values of co. In gen-
eral a good agreement between the threshold value IEq.
(7)] and the numerical results is observed.

0:l-
L

0.0 L, , I I I I I I I I I I I ~~ I I

1.00

FIG. 3. Comparison between the analytical expressions for
the threshold values and numerical results for a=0.2 (a). The
solid curves are Eq. (7) (lower) and (8) (upper), respectively. The
points are obtained numerically and various lengths have been
considered: I =2.5 (diamonds), l =5 (squares), l =7.5 (aster-
isks), and I =10 (triangles). In (b) a comparison is shown be-
tween the analytical expressions for the threshold values and
numerical results for o;=0.25 (squares) and a=0. 3 (triangles).
The solid curves are obtained from the analysis.
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FIG. 4. The rms value l (P, ) )'~ vs the applied amplitude a
for 1=5, co=0.87, a=0.2, and a has been increased in steps of
0.005. Note that this value of ~ is right above the threshold
value for the existence of the hysteresis loop.
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