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PIMC simulations of solid parahydrogen
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We have evaluated the kinetic energy of the center of mass of solid parahydrogen at T =18.9 K,
and four different densities, by means of path-integral Monte Carlo computer simulation, using the
pairwise additive Lennard-Jones potential. The results have been compared with the available ex-
perimental neutron data of Herwig et al. [Phys. Rev. B 41, 96 (1990)]. The agreement between ex-
periment and simulation is excellent for the kinetic energy but not as good for the pressure. There
are indications that the use of a more realistic pair potential would increase the agreement with the
experimental pressure data without destroying that of the kinetic energy.

I. INTR&DUCTION

The momentum distribution of atoms, in quantum
solids and liquids, can be determined with good precision
usiIlg dccp 1Ilclastic IlcutI'OIl scattcl lng. This cxpcI imcn-
tal technique, which is characterized by a large momen-
tum transfer Q, has now become more widely available
with the recent development of the intense spallation
neutron sources at Argonne National Laboratory (USA)
and at Rutherford Appleton Laboratory (UK). For in-
stance, the momentum distribution of li.quid helium has
been determined experimentally by many authors at
different temperatures and densities.

Because of its large (incoherent) scattering cross sec-
tion hydrogen is the ideal candidate, among quantum
solids, for a deep-inelastic-neutron-scattering experiment.
Due to its relatively high compressibility, it is also not
difFicult to determine its properties over a relatively large
range of densities. Recently, Langel et al. have per-
formed a deep-inelastic-neutron-scattering experiment on
solid molecular hydrogen (at 10 K and a pressure of 0.1

MPa). The experiment was then extended to a larger
density range by Herwig et al. who designed a sample
cell allowing to reach pressures up to 200 MPa at a tem-
perature of T =18.9 K. From the experiments the aver-
age translational kinetic energy of molecular, almost pure
( =99.8'I/o), parahydrogen was derived and reported as a
function of density in the interval p =25.96—35.42
molecules/nm . The experimental results were compared
with the variational calculation on solid hydrogen in the
ground state by Bruce, and fair overall agreement was
found.

Bruce's aim had been to give an equation of state for
compressed solid hydrogen, and therefore the explored
density interval was quite large, covering an estimated
pressure range extending from 0 to —10' Pa at T =0 K.
The calculation used a variational Monte Carlo (MC)
technique, which is a very powerful approach to the
problem but, in principle, can only give an upper bound

to the total energy, with the accuracy of the results de-
pending on the quality of trial function. In order to keep
the calculations manageable, Bruce also introduced a
number of simplifying assumptions: intramolecular in-
teractions were assumed to be pairwise additive and
spherically symmetric, particles were assumed to be dis-
tinguishable, and the model systems studied were rather
small (X=2S6). In addition, the crystal lattice was as-
sumed to be fcc, whereas solid hydrogen is now known to
be hcp, and because of the uncertainty in the intermolec-
ular potential only intermediate length MC runs were
performed, resulting in rather large uncertainties of the
numerical results. In fact, the computed kinetic energy
shows quite appreciable fluctuations in the overall density
range (cf. Fig. 2 of Ref. 5). Thus, Bruce's calculations, al-
though impressive at the time, do not reAect the recent
advances in computer technology and simulation tech-
niques, which, at present, allow direct calculations of at
least some properties of quantum systems even at finite
temperatures.

It should also be pointed out that, while most of the
hydrogen experiment was performed at 18.9 K, the com-
parison was done with a calculation performed at T=0
K, since it is generally assumed that close enough to the
ground state the temperature dependence of the kinetic
energy of the solid is negligible for all practical reasons.
This assumption was largely based on the high value of
the Debye temperature () 100 K) of solid hydrogen in
this density range. However, a temperature of 18.9 K
corresponds to about half the well depth of the inter-
molecular potential, and therefore the system cannot be
assumed a priori to be very close to the ground state.
Moreover, noting that the reported error bars are of the
same order of magnitude as the classical kinetic energy of
the center of mass at the experimental temperature, it ap-
pears desirable to compare the experiment with more
refined calculations.

The availability of proper calculations would also be an
incentive for improving the accuracy of the experiments
(and vice versa) and, by allowing a truly quantitative
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comparison, contribute to a deeper understanding of the
physics of condensed matter in this extreme temperature
region where quantum behavior becomes dominant. As a
matter of fact, from the lowest density result of Herwig
et al. , it seems to us that the accuracy of the experiment
can be increased, and therefore we have decided to per-
form a series of path-integral Monte Carlo (PIMC) simu-
lations, to calculate the translational kinetic energy of
solid parahydrogen at the same thermodynamic states
where the experiment was done. Another motivation for
performing these simulations was the desire to demon-
strate that the primitive algorithm, which is fairly
straightforward to implement and has been shown to be
convenient and useful in simulations of almost classical
Auids and solids, is much more widely applicable and
may even be used to study quite strongly quantum
mechanical S-body systems, provided that suitable extra-
polations can be made. It should be recognized, however,
that in order to utilize the full power of PIMC, such as
for the prediction of the A, anomaly in the specific heat of
liquid helium by Ceperley and Pollock, ' more sophisti-
cated algorithms may be necessary.

II. SIMULATIONS

In our calculations, the intermolecular potential for
solid parahydrogen was assumed to be pairwise additive
and, in accordance with the available experimental infor-
mation, the crystal lattice was assumed to be hcp. For
molecular hydrogen, several specific pair potentials ob-
tained either from ab initio calculations and/or fitting the
experimental data, have been suggested in the literature,
but in order to be able to compare our results with
Bruce's calculations we decided, for the time being, to
work mainly with the same (6—12) Lennard-Jones (LJ)

potential with E/ks =36.7 K and cr =0.2959 nm. As a
check on the quantitative dependence of the results on
the choice of the potential, one of the simulations was du-
plicated using a more realistic model, namely the pair po-
tential given by Norman, Watts, and Buck." Since the
molecular wave function for parahydrogen in the ground
level (U =0, J=0) is spherically symmetric and this
feature seems to be conserved even in the condensed
phase (at least at not too high density), only the spherical
component of the Norman, Watts, and Buck potential
was used in that simulation.

The number of particles was N =180 in all our simula-
tions. Although relatively small, this number should be
sufhcient to describe single-particle properties such as the
kinetic energy, which is our main concern here. The par-
ticles were assumed to obey Boltzmann statistics. The
reason for this choice, apart from the desire to keep the
PIMC program simple, was mainly based on the results
of a calculation by Poll and Miller, ' who solved the
Schrodinger equation for a pair of hydrogen molecules
and showed that the exchange contribution to the radial
distribution function is negligible above 10 K, and less
than 1% at 5 K.

The number of beads on the ring polymers (Trotter
number), which are equivalent to the quantum particles
in the classical isomorphism' was varied from I' =8 to
32 (and in one instance up to P =64). Our program is a
straightforward implementation of the primitive PIMC
algorithm, except that the "intramolecular" coordinates
of the polymer were sampled directly from a multivariate
Gaussian distribution. Thus, each Monte Carlo move
consisted of a trial set of "intramolecular" positions and
a random displacement of the "center of mass, " and was
accepted or rejected according to the usual Metropolis
criterion. The total energy was calculated using the

TABLE I. Simulation parameters for solid hcp LJ parahydrogen at T = 18.9 K. The number of par-
ticles was always N =180. The numbers in parentheses are relative to the potential function of Ref. 11.
Each run consisted of 5000X N~ passes.

P
(nm )

Box
dimensions

(nm)

ga

(nrn) P
R

(nm)

28.27

30.88

33.09

35.42

a = 1.842
b= 1.915
c= 1.805

a = 1.789
b= 1.859
c= 1.753
a = 1.748
b= 1.817
c= 1.713
a= 1.709
b= 1.776
c= 1.674

0.03

0.02

0.01

0.01

10

10

30

8
16
32

64
8

16
32

8
16
32

8
16
32

0.1353
0.1336
0.1325

(0.1948)
0.1334
0.0933
0.0877
0.0883
0.0616
0.0562
0.0569
0.0348
0.0308
0.0308

0.0462
0.0469
0.0470

(0.0476)
0.0470
0.0439
0.0448
0.0449
0.0419
0.0429
0.0431
0.0397
0.0408
0.0411

'Maximum displacement cube edge length.
Number of passes skipped between analyzed configurations (dilution factor).

'Average acceptance ratio.
rms spread (radius of gyration) of ring polymers.
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"crude" energy estimator.
Initial configurations were created by stacking together

5 X 3 X 3 copies (containing four particles each) of the
nonprimitive orthogonal unit cell of the hcp lattice. This
results in an almost cubical simulation box (cf. Table I) to
which periodic boundary conditions were applied. All in-
teractions were truncated spherically at a cutoff equal to
half the minimum edge length of the box, and potential
energies and pressures were corrected by integrating over
a uniform density beyond the cutoff. We have verified
that summing over an hcp lattice instead yields long-
range corrections which differ only by a few J/mol and
atm, respectively.

The thermodynamic conditions and the details of our
PIMC simulations are summarized in Table I. All calcu-
lations were performed at a temperature of 18.9 K and
the densities were chosen to match the experimental con-
ditions of Ref. 4. Each simulation was started from a
perfect hcp lattice and consisted of 5000XNM passes
(=moves per particle), after a 1000 X%M passes equili-
bration stage. NM is the "dilution factor, " i.e., the num-
ber of passes performed before analyzing the next
configuration. Thus averages were accumulated using
5000 configurations out of each run. xz is the accep-
tance ratio, i.e., the fraction of accepted trial moves. Its
values in Table I are rather low and decrease rapidly with
increasing density. This is so because our PIMC program
was originally optimized for systems at Quid densities. In
dense, strongly quantum mechanical systems, where the

effective distribution of "intramolecular" coordinates is
quite different from the free-particle form, our direct
sampling becomes increasingly less efficient, and an algo-
rithm based on single-bead moves might have been more
economical. We have, therefore, chosen the dilution fac-
tor such that the product of x~ and NM is roughly the
same for all simulations, i.e., a comparable number of ac-
cepted moves have been performed.

The entry in the last column of Table I is the rms
spread of the classical ring polymer. It is interesting to
note that the size, or dispersion, of the quantum particle
decreases slowly as density increases. To our knowledge,
this is the first, direct, microscopic corroboration of a
principle invoked by several authors: ' ' ' ".

~ . as the
solid becomes more compressed at lower molecular
volumes one would like to observe a region where the
solid becomes more 'classical'. . .".

III. RESULTS AND DISCUSSION

The results of our simulation are listed in Table II. In
order to study the rate of convergence of the results from
classical to quantum mechanical behavior, the number of
intermediate states (beads) was varied from 8 to 32 for all
thermodynamic states. Obviously, the results cannot be
claimed to have fully converged even for P =32, but an
extrapolation in 1/P is possible, and as a partial check on
such a procedure we have also simulated the lowest den-
sity state using P =64. The dependence of the computed
translational kinetic energy (K„) on 1/P is shown in

TABLE II. PIMC results for energy and pressure of solid hcp LJ parahydrogen at T =18.9 K. The
numbers marked "P= ~" have been obtained by linear extrapolation as a function of 1/P. The num-
bers in parentheses are relative to the potential function of Ref. 11.

p (nm )

Kinetic
energy
(K)

8
16
32

64

Expt. '

28.27

73.66
84.40
90.10

(83.78)
92.17
95. 1

101+8

30.88

83.66
97.93

105.46

112.6
122+14

33.09

93.12
110.92
119.96

128.9
131+14

35.42

103.36
125.60
137.17

148.3
146+11

Potential
energy
(kJ/mol)

8
16
32

64

—1.528
—1.504
—1.488

( —1.443)
—1.485
—1.477

—1.663
—1.619
—1.601

—1.579

—1.747
—1.688
—1.663

—1.634

—1.805
—1.725
—1.688

—1.648

Pressure
(atm)

'From Ref. 4.
From Ref. 18.

8
16
32

64

Expt. '

17.9
89.7

133.8
(185.4)
146.3
167
238

225.5
368.0
426.4

498
576

535.1

741.6
828.3

932
983

1014.2
1309.3
1442.5

1590
1551
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Fig. 1. As can be seen, the data fall nicely on straight
lines and the extrapolation for P~ ~ is readily per-
formed. From these graphs we infer that the probable er-
ror margins on our extrapolated values can at most be a
few degrees kelvin. The potential energies and pressures
were treated in an analogous way, and the extrapolated
values for translational kinetic energy, potential energy,
and pressure are also included in Table II.

Figure 2 compares the kinetic energies with the experi-
mental data and with the ground-state calculations by
Bruce. Bearing in mind that the LJ potential was not
fitted to the solid but to high-temperature gas-phase data
(Bz), ' the agreement between PIMC and experiment is
surprisingly good: our extrapolated values are well
within the error bars and perfectly consistent with the ex-
perimental data over the whole range of densities studied.
The experimental results seem to increase just slightly
less rapidly with density, but this is not significant at the
present level of accuracy. The figure also demonstrates
the necessity of actually performing the limit P~ ~, as
the values for finite P are systematically too low.

Our kinetic energies also represent a plausible interpo-
lation through Bruce's (somewhat scattered) results for
T=0 K. Thus, at T =18.9 K the kinetic energy is still
basically that of the ground state, and Herwig et al. were
justified (given the mutual uncertainties) in comparing
their results with calculations at T =0 K. We have now
shown that the experimental data may even be predicted
quantitatively, by simulations pertaining to the correct
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FIG. 2. Comparison between theoretical and experimental
data for the kinetic energy of solid parahydrogen at T = 18.9 K.
The squares with error bars are the experimental data of Ref. 4;
the stars represent the various PIMC results obtained for finite
values of the Trotter number P; the circles are the extrapolated
values for P~~; and the triangles refer to the ground-state
calculations of Bruce (Ref. 5). The full line is a quadratic fit to
the extrapolated PIMC values.
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FIG. 1. Behavior of the computed kinetic energy, K„, for
solid parahydrogen at 18.9 K, as a function of 1/P, the recipro-
cal of the Trotter number. The densities are (from top to bot-
tom) p=35.42, 33.09, 30.88, and 28.27 nm . The dashed lines
are linear extrapolations, and the values for P~ ~ are given in
Table II.

temperature, using the simple Lennard-Jones potential
for Hz.

For the pressure, shown in Fig. 3, we again find sub-
stantial agreement between PIMC and Bruce's results,
with our data being slightly higher, which is not un-
reasonable in view of the difI'erence in temperature. The
fact that we have used a slightly smaller system and a hcp
lattice is probably not significant. When compared with
the experimental equation of state for parahydrogen
given by Driessen and Silvera, ' the predictions of the LJ
model are quite good, and in fact much better than what
one is usually willing to accept from simulations: On the
average, the pressure is almost quantitatively correct but
rises too steeply at higher densities. This deficiency has
been noted before and attributed to the unrealistically
harsh repulsion of the (6-12) LJ potential. Thus, for
quantitative predictions of the equation of state a more
sophisticated interaction may be necessary.

Since our primary goal was the kinetic energy, which is
adequately reproduced by the LJ model, we limited the
investigation of more realistic interactions to a single
simulation with the spherical part of the pair potential
proposed by Norman, Watts, and Buck." This was a re-
petition of the lowest density run using P =32 beads.
The results are given in parentheses in Table II, and the
pressure is found to be somewhat higher, and the kinetic
energy somewhat lower, than for the LJ model. If the ex-
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FIG. 3. Comparison between theoretical and experimental
data for the pressure of solid parahydrogen at 18.9 K. The cir-
cles are the PIMC values extrapolated for P~ ao. The triangles
are the ground-state results by Bruce {Ref. 5). The solid line
represents the experimental equation of state given by Driessen
and Silvera (Ref. 18).

slightly outside the experimental error bars. Due to its
softer repulsion we expect the pressure for the Norman,
Watts, and Buck potential at very high densities to be
below the LJ values. Thus a carefully tailored "realistic"
potential might considerably improve the agreement with
the experimental equation of state without spoiling the al-
most perfect results for the kinetic energy.

It would be very interesting to investigate the depen-
dence of thermodynamic (and other) properties on the
form of the intermolecular potential in more detail. In
fact, in our calculations we have completely neglected ir-
reducible many-body properties, which might be respon-
sible for the small discrepancies between the simulations
and the experiment. However, from translational light
scattering experiments' ' we know that these many-
body effects are usually associated with strongly polariz-
able systems ' and can, therefore, be responsible for small
corrections only. Thus, it is gratifying to note that even
the use of a realistic pair potential already narrows the
gap between experimental and theoretical physical-
vapor-transport data. For a critical assessment of the ki-
netic energies more accurate experimental results, cover-
ing a wider temperature and density range, would be
desirable.
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