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Pairing in two dimensions: A systematic approach
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A systematic study of pairing fluctuations in two dimensions about a BCS-like mean-field theory
is performed. It is based upon the large-N limit of models with symplectic [Sp(N)] symmetry. The
leading corrections to the critical temperature and the chemical potential in two dimensions are
found to be of order (lnN)/N and do not significantly alter the physical scenario of the mean-field

theory. The results are applicable to models with short-range attractive interactions between

opposite-spin electrons, e.g., the negative U Hubbard model or the t-J model.

I. INTRODUCTION

It has by now become quite clear that the electronic
properties of the high-temperature superconductors in
cuprates like La2 „Sr„Cu04 (Ref. 1) and YBa2Cu306+
(Ref. 2) are dominated by the two-dimensional CuOz lay-
ers found in all of these compounds. Despite the intense
theoretical activity generated by these observations, there
remains a paucity of systematic results on superconduc-
tivity in two dimensions. In the case where the electrons
are tightly bound into nonoverlapping Cooper pairs and
the problem can be mapped onto an interacting Bose gas,
systematic results are available. As shown by Popov and
Fisher and Hohenberg an expansion can be made for the
thermodynamic properties of a dilute Bose gas which
satisfies the condition

ln In(1/na ) ))1,
where n is the density and a is the range of the interac-
tion between the bosons.

In this paper we shall provide a systematic treatment
of Auctuations about the opposite limit of overlapping
Cooper pairs where the BCS theory is a good first ap-
proximation. Nonsystematic treatments of this limit
have recently been carried out but found that strong in-
frared fIuctuations lead to large shifts in the chemical po-
tential p and suppression of the critical temperature for
the onset of superconductivity, T„ to 0; these unphysical
effects persist even after interactions between the Cooper
pairs have been included.

Our calculation is a large-N expansion based upon gen-
eralizing the SU(2) spin symmetry of the electrons to the
symplectic groups Sp(N) [note Sp(1)=SU(2)j. Such ex-
pansions were recently used to study frustrated quantum
antiferromagnets and superconductivity in the t-J model
at zero temperature. We shall present our calculation in
the context of a negative-U Hubbard model, although the
results are rather more general and can be applied to oth-
er models with a short-range attraction between the
opposite-spin electrons, e.g. , the t-J model. ' '" At tem-

peratures well away from T, the validity of the expansion
requires that

N»1. (1.2)

lnN»1 .

We shall study the model

(1.3)

H= —t yct.c, —
() "'

—p, g (c; c; —2Nv), (1.4)

where c, creates "electrons" at the site i of a d-
dimensional cubic lattice. The index a=1, . . . , 2N and
identifies the electrons as Sp(N) spinors. The tensor cP is
the 2N X2N matrix

—ya13
0;P (1.5)

which generalizes the familiar e tensor of SU(2) to Sp(N).
The interaction term in 0 favors on-site pairing of elec-
trons into Sp(N) singlets. For N =1 H reduces to the
Hamiltonian of the negative-U Hubbard model. Finally,
the chemical potential p must be adjusted to maintain an
average on-site density of 2Nv electrons per site (v is the
filling factor).

At N = ao, the BCS decoupling of the interaction term

Near T„ long-wavelength Auctuations must be treated
with some care. By a careful consideration of the large-N
expansion we will show that infrared divergences are cut
off by a small "mass" in a manner that is reminiscent of
Popov's calculation. We find that in this critical region
validity of the large-N expansion imposes the more
stringent requirement
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FIG. 1. Mean-field value of the critical temperature T, /t of a
negative-U Hubbard model on a square lattice with hopping pa-
rameter t and a quarter-filled band (v= —').

becomes exact. The critical temperature T, and the
chemical potential p can be determined by solving the
BCS (Ref. 6) equations. In Figs. 1 and 2 we show the
values of T, and p (T, ) as a function of U/t for the
quarter-filled band v= —' on a square lattice. These re-
sults have the following asymptotic limits:

r

t
—at/U

TO
c

—t for U/t ((I
0 —U for U/t »1 ' (1.6)

where a is a constant of order unity.
Finite N fluctuations lead to shifts in these quantities

which have the following form in d =2:

—(Ult)' '

(t/U)(T, '/t—)' for U/t «I
B —'

(U/t)' for U/t » I .

(1.8)

It is important to note that the above results are valid
for any finite value of U/t. However, it is clear from the
asymptotic expressions quoted above that the limits
U/t ~ ~ and N~ ~ do not commute. In this paper we
have taken the N —+ ~ limit first. In the case with
U/t ~ ~ first, the system is expected to behave as a gas
of bosons with hopping amplitude t /U; such a regime is
not observed in the present calculation.

We also note that in the presence of a coupling to elec-
tromagnetic fIuctuations, a two-dimensional supercon-
ductor is not expected to have a true phase transition.

This expansion indicates that the mean-field results for p
and T, are quite stable and, unlike Ref. 7, a new physical
regime does not emerge when the one-loop fluctuations
have been included. For small N there can be large re-
normalizations of various parameters, but we expect the
mean-field picture to be essentially correct. The func-
tions A ( U/t) and 8 ( U/t) are determined in this paper.
The results are summarized in Figs. 3 and 4 which show
3 and B for v= —,

' on the square lattice. We have

—T,'/t
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FIG. 2. Mean-field chemical potential p /t for the model of
Fig. 1. The bottom of the band is at —4t.

FIG. 3. Coefficient 2 (U/t) of the (lnN)/N correction to T,
[Eq. (1.7)] for the model of Fig. l.
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We have decoupled the quartic term in (1.4) by the
Hubbard-Stratanovich field +, . The fermions can now be
integrated out leading to the formal expression

Z= %, ~ %,* ~exp —NS%, ~, 2.2
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FIG. 4. Coefficient 8(U/t) of the (1nN)/N correction to p
[Eq. (1.7)] for the model of Fig. l.

However, for a su%ciently large London penetration
depth there will be a very rapid crossover at the critical
temperatures calculated in this paper. See Ref. 12 for
further discussion on this point.

The outline of the rest of this paper is as follows. In
Sec. II we will set up the general framework for the
large-N expansion on H for all d away from T, . In this
regime there are no subtleties and a simple order-by-
order series in 1/N exists. We will discuss the
modification of this expansion as T approaches T, in Sec.
III and also obtain expressions for the functions 3 and B.
The extension of these results to the t-J model is briefly
discussed in Sec. IV. The basic points are recapitulated
in Sec. V. Finally in an Appendix we will present a
renormalization-group-based analysis which shows that
higher loops do not affect the results of Sec. III.

II. GENERAL FRAMEWORK

xexp —I dryP

0

rg c,t c ———g 4,'8 ~c; c;&() "'
+H. c.—p g ( c; c; 2Nv ) . —

=X
U

(2.1)

In this section we will set up the framework for the
large-N expansion for the thermodynamic properties of
the Hamiltonian H. We will begin by examining temper-
atures well away from T, in d ~ 2; under these conditions
standard methods can be used to perform a simple
power-series expansion in 1/N for all the physically
measurable properties of H in both the low- and high-
temperature phases. The modification of the analysis
when the temperature approaches T, in d =2 will be dis-
cussed in Sec. III.

We begin by expressing the partition function associat-
ed with H as follows:

Z =I g 2)c; (7 )2)c; (r)2W; (7 )2) p; ( 7 )

where S is a calculable functional of 0';(r). The prefactor
N now guarantees the existence of a 1/N expansion as
long as all the parameters in S are of order 1: this will be
the case well away from T, . Instead of displaying S in its
full complexity we anticipate some of our subsequent re-
sults by retaining only a few terms. We will ultimately
only be interested in determining the coe%cient of the
(1nN)/N corrections to T, and p; the logarithmic depen-
dence on N will arise from singular infrared Auctuations
which appear near T, . It is not dificult to verify a pos-
teriori that none of the following approximations will
modify this coeKcient. Also, away from T, the following
approximations will lead to numerical changes but not
modify the structure of the perturbation theory. The
gain will be a considerable simplification of the discus-
sion.

1. We will retain only the zero frequency component
of 4;(r). The logarithmic terms arise from the purely
classical thermal fluctuations of the d =2XF model. The
finite frequency Auctuations of %' are dissipative in nature
near T, and well described by a time-dependent
Ginzburg-Landau model. ' The fluctuation-dissipation
theorem guarantees that all of the thermodynamic prop-
erties can be obtained from a purely static thermal ensem-
ble. ' The action will therefore be expressed solely in
terms of the field

P;= —I dr+;(r) .
1

I3 o
(2.3)

Z =exp
NVF0

*exp ——S

(2m )
(2 4)

S= d x KV +r + — +2pv

where we have set the lattice spacing to unity and V is the
volume of the system. The parameters K, r, and U are
functions of p and T and are given by

z 4 1 I d k f k+q1 —f(E ) — (e )

U (2m )" &k+q+ Ei
—2P

(2.5)

2. The expansion of S in powers of f will be truncated
at order ~g~ . Furthermore the coefficients of the ~@~

and ~g~ terms will be expanded in momentum and only
certain low-order terms retained. All of the omitted
terms are subdominant near T, .

These steps lead to the following effective action:
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d "k 1v= „31 —2 c„+2~„—p 'cz
(2m )" 4(E„—p)

(2.6)

Here Ek= 2t g—cosk is the fermion dispersion rela-
tion and f is the Fermi function

1

(x —P)/T+ 1
f (x)= (2.7)

The large-X expansion proceeds by expanding about a
saddle point value of /=go, chosen to be real. The value
of Po will be one that minimizes the free energy density
7= —(T/NV)lnZ. Infrared divergences will appear in
d =2 in the equations determining $0 but these will can-
cel order by order in 1/N in any physically measurable
quantity. The Auctuations about go will be parametrized
as

FIG. 5. Graphs nominally of order 1/N for the self-energies
X and D. Arrows must be placed on all the lines and all com-
binations summed over.

divergences to cancel. We evaluate (~g, ~ ) from Eq.
(2.9) and obtain

4=4o+fi . (2.8)

The f, Iluctuations will be controlled by a normal (X)
and anomalous (D) self-energies leading to the following
normal (G) and anomalous Green's functions (F):

Kk+ —XkG(k)=(g((k)g)(k)) =-
N [Kk'+r —r(k)]' —D'(k)

(2.9)

(2.15)

2v no & yl')
Bp

which is well defined for all d and r &0. The chemical
potential is determined by the condition BV/Op =0 which
gives us

F(k)=(,(k), ( —k) ) =-=T D(k)
N [Kk +r —X(k)] —D (k)

The stationarity condition 89'/Bgo can be shown to be
equivalent to either go=0 or where

Br r T dk 1

Bp v N (2~)" Kk —2r
(2.16)

r =X(0)—D(0) . (2.10)

To leading order in 1/N the self-energies have the
values

X= —2$0u, D = —gou . (2.11)

Ig r/v (2.12)

For the rest of this section we will assume that we are in
the low-temperature phase which has go&0 and r (0.
Equation (2.10) now leads to the result

n,o=—a+o d "k=2 J d f(Eq) .
&p (2~)"

(2.17)

In Eq. (2.16) we have dropped terms proportional to
BK/dp and Bv/Bp, ' these will turn out to be subdominant
in the critical region considered in Sec. III.

The superAuid density p, is an important physical
quantity and will be used in determining the critical tem-
perature. It can be obtained by coupling g to an external
transverse vector potential and evaluating the current
response. A standard calculation gives

The next order requires evaluation of the diagrams shown
in Fig. 5 while using the Green s functions from Eq. (2.9).
Evaluating the diagrams and solving Eq. (2.10) for $0 we
obtain to order 1/N

2IVX
Ps

r 2T
v N (2m) Kk 2r N—

(2.18)

p2— r T p d k 2%k~ —r
(2~)d Kk'(Kk' —2r)

(2.13)

Tv
1

A

4~NK~r~ k,
(2.14)

We expect this series to exponentiate to Po -k o with
a=(Tu)/(4mNK~r~ ). However, in the physically measur-
able ( ~@~ ) =@0+(~f&~ ) we expect all the infrared

Notice that fluctuation correction to $0 diverges in d =2
at all temperatures. If we cut ofF the log divergence by a
small momentum ko we find

The leading term in the superAuid density can be checked
to be consistent with the value of the exponent a quoted
above [the relationship a = I/(2', ) is expected to be ex-
act to all orders in 1/N (Ref. 4)]. Provided ~r~ is of order
1, all of the above expressions define a consistent 1/X ex-
pansion. Other physical quantities can be calculated in a
similar manner.

III. CRITICAL REGION

In this section we will extend the previous analysis into
the critical region in two dimensions. The phase transi-
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tion is of the Kosterlitz-Thouless' type driven by the un-
binding of vortex pairs, and occurs when the superAuid
density reaches the universal value' '

p, =2/vr . (3.1)

r =0, no =2v, (3.2)

which determine the values of T, and p . The solutions
I

We note in passing that none of the results of this section
would be modified if we had instead used the condition
p, =0 to determine T, (as was done by Popov ). The
shift in T, between these two criteria is of order 1/N
while the fluctuation effects considered below lead to a
shift of order (lnN)/N.

At N = ~, the critical temperature and the chemical
potential are determined by solving the equations

lnN
(3.3)

The corrections to T, and p have the form shown in Eqs.
(1.7) in the Introduction with the coefficients 2 and B
given by

of these equations are shown in Figs. 1 and 2 as a func-
tion of U/t for a quarter-filled band (v= —,'). For small
U/t, T, —te '~U (ct is a constant of order 1), and

p -const. For large U/t, T, ——p-U.
Upon examining the fluctuation corrections we see that

the terms which are nominally of order 1/N are singular.
We now assert that the leading correction to T, can be
determined simply by solving Eqs. (2.16), (2.18), and (3.1)
self-consistently. This is easily done and we find that, at
Tc~

1 1 Br ~no
+V

2~% 2 Bp Bp

& ar ar an2' 2 Bp BT BT

Bno Br Br Bno

Op aT ap aT

~no Br Br ~no

Bp BT Bp BT

(3.4)

evaluated at p=p and T = T, . The numerical values of
3 and B are shown in Figs. 3 and 4 for v= —'. For small
U/t, 2 ——T, /t and B ——(t/U)( T, /t) . For large
U/t, 2 — B ——

( U/—t)~
It now remains to verify that terms that were nominal-

ly of higher order in 1/N do not modify the above result
when r takes the anomalously small value of Eq. (3.3).
Individual graphs which are nominally of order 1/N
will be infrared divergent in the low-temperature phase.
However, these divergences must cancel when all the
terms have been collected. The resulting expression will,
however, be singular as

~
r~ ~0. In particular we expect it

to be quadratically divergent in d =2; the final result will
be of order

for the "electrons" c;:
c; =f, bt. (4.1)

Here the f, are fermions which carry spin while the spin-
less bosons b; keep track of the holes. The local con-
straint of the t-J model is

f J' +btb =N (4.2)

b f t~abi' y (yapf t~t )(y ~sf y)
(~j) (t'j &

+g A,; (f;J; + b; b; N) +pg(—b,tb, N, 5 ) . —

for every site i. We will consider the following Hamil-
tonian:

The leading dependence on ~r~ should have no In~r~ fac-
tors. Using (3.3) we see that this correction is of order
1/(N lnN) which is subdominant to the corrections al-
ready considered. In the Appendix we use the renormal-
ization group to explicitly demonstrate the absence of
any additional corrections to (1.7) and (3.4), as suggested
by the above scenario.

IV. EXTENSION TO THE t-J MODEL

The Sp(N) based large-N approach to the t Jmodel-
was studied in Ref. 9 at N = ~ and T =0. Superconduct-
ing ground states of various symmetries were found.
Here we show how the results of Secs. II and III can be
easily extended to this model.

First we recall the model and the notations of Ref. 9.
The constraints on electron occupation present in the t-J
model are implemented by the following representation

(4.3)

The last two terms enforce the local constraint (4.2) and
fix the average hole density at N5 (5 is the doping frac-
tion). In the large-N limit the b bosons condense com-
pletely at N = ~ and T =0; thus ( ~ b, ~ ) =&N5. The
critical temperature for superconductivity is of order uni-
ty: at these temperatures (

~ b,
~
) will have corrections

only at order 1/N. These Auctuations can therefore be
neglected and for all of the subsequent analysis we may
replace b; by &N5. The exchange term in H,J may be
decoupled by the link field

(4.4)

The subsequent analysis is now very similar to that per-
formed on H IEq. (1.4)] with the exchange constant J
playing the role of the negative U in H. The main
difFerence is that while the pairing field in (2.1) was com-
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pletely on site, the field 5; takes values on the links. De-
pending upon values of r /J and 5 different superconduct-
ing states will be obtained characterized by difFerent spa-
tial distributions of the 6; . Near T, we only need to
focus on the appropriate linear combination of the 6,-

which is becoming massless: the efFective action describ-
ing these critical fluctuations will have a form identical to
S [Eq. (2.4)]. The subsequent analysis is very similar to
that of Secs. II and III and (lnN)/N corrections to T, can
be obtained.

1
2I"1 + U41 (A2)

(A3)

These equations can be easily integrated to yield

ing the How equations. We begin by presenting these How
equations for small r1 and v41, and dropping all other cou-
plings. To 1owest nontrivial order we obtain

V. CONCLUSION
U41

= V4e (A4)

The symplectic groups Sp(N) [Sp(1)-=SU(2)] were used
recently to develop systematic theories of frustrated
quantum antiferromagnets and a mean-field theory of su-
perconductivity in the t-J model. In this paper we have
shown how this large-N expansion is also a usefu1 tool in
studying finite temperature pairing fIuctuations in two di-
mensions. A separate development which was useful in
the present analysis was the theory of the dilute Bose gas
in two dimensions of Refs. 4 and 5. As was the case in
this theory, our analysis also found that a small "mass"
regulated the infrared singular pairing fluctuations near
T, . Shifts of order (lnN)/N in T, and p were found.
However, the basic physical picture of the BCS-like
mean-field theory —of a Fermi liquid condensing due to
an attractive pairing interaction of quasiparticles-
remained intact.

U4
r = r+ l e21

Nm
(A5)

l=l Nmr

U4

1

2
' (A6)

and the minimum value of r1 is

where r1 0 —=r, etc. The crucial term here is the one
linear in I in (A5). It arises from "resonance" due to the
identical initial growth rates ( -e ) of rI and u4&. In the
following we assume U„)0. We see from (A5) that for
r) 0, r1 Aows monotonically to + ~ as l~ ~ indicating
that the system is in a disordered phase. For r &0, how-
ever, r1 decreases initially before turning around. The
minimum value of r1 occurs at
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APPENDIX

In this appendix we will use the renormalization group
to demonstrate that the (lnN)/N corrections in Eqs. (1.7)
and (3.4) are not affected by higher-order terms. We will
examine the following partition function:

Z = *exp —I.

L = f d x I&@I +ii@1 + g
i

N"

(A 1)

obtained from expanding the action S in Eq. (2.2) to all
orders in f, rescaling i' by 1/i/N, and setting K/T =1.
All the coupling constants U2„are of order unity. We are
interested in the critical value of r =r, at which a phase
transition occurs in this model for large N.

The renormalization-group transformation proceeds by
integrating out fields in a momentum shell of width e,
followed by an appropriate rescaling of fields and coordi-
nates (see Ref. 5). This results in scale-dependent cou-
pling constants r1, v41, . . . which can be obtained by solv-

where we have assumed that r))1/N. When r&
——1,

then the increase in r1 for l ) l can no longer be trusted
and the system can be considered to have reached the or-
dered phase. Solving for this condition we find the criti-
cal value of r = r, at which the phase transition occurs,

V4
r, = — (lnN) .

2N~
(A8)

I*=—,'(lnN) . (A9)

We now examine the efFects of higher-order terms. We
will consider the modification of the Aow equation for U41,

Eq. (A3), by a second-order term

dv41 2 2—2v41
N v41 . (A10)

Upon integrating this we find that Eq. (A4) is modified to

v e4
21

4

1+v4(e ' 1)/(Nn. ) —1+U4e '/(N~)
(Al 1)

for large N. Using this result, we solve for r1 from Eq.

For (lnN))) 1 the previous approximations are justified.
It is now easy to see that this critical value of r is precise-
ly the one that would be obtained from the calculation in
the main part of the paper —compare Eq. (2.18). We also
note from Eq. (A6) that the value of l =I* associated
with this value of r is
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(A2) and obtain

U4 1r= r+ I ——ln 1+ e
N~ 2 Nm

21 (A12)

For l = l * and (1nX) ))1 we now observe that the

difference between the expressions (A5) and (A12) can be
neglected. The subsequent analysis therefore remains un-
changed.

A similar analysis can be carried out to show that none
of the v2„couplings for n ) 2 affect the leading (1nN)/X
term in r, .
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