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Phenomenological model of vortex dynamics in arrays of Josephson junctions
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A phenomenological model for arrays of 3osephson junctions is developed in the continuum
limit. This model gives a unified treatment of various types of behavior in arrays, such as
charge solitons, vortices, collective modes, and the mass of the vortex. This model is then used
to describe vortex dynamics when there is no pinning. We calculate the fiux-Bow resistivity due
to vortex motion as well as consider the possibility of ballistic motion of vortices. We compare
these results to the analogous situations in a conventional superconductor as well as for granular
systems.

I. INTRODUCTION

Arr ays of 3osephson junctions provide a convenient
and controllable model system to study the efFects of
quantum mechanics on a macroscopic scale. For such
a system of Josephson junctions the phase of the or-
der parameter and the number of superconducting elec-
trons on each junction form a pair of conjugate dy-
namical variables. Although these variables are usually
considered within the framework of quantum-mechanical
dynamics, the purpose of this paper is to develop the
dynamics by considering these conjugate variables clas-
sically. In addition, the discrete nature of the array will

not be considered in detail here when calculating physi-
cal properties. Hence, we will take the long-wavelength
limit of the array so that the system can be considered
as a continuum.

In Sec. II the energy storage in the array will be found
first in the discrete array so that a well-defined transfor-
mation can be made to the continuum limit. The energy
will be taken to be stored in three parts: in the Josephson
junction, in the electric field, and in the magnetic field.
With this form for the energy, one would usually have
to develop a time-dependent Ginzburg-Landau theory to
study the full dynamics of the array. Furthermore, the
dissipation would need to be included by constructing
an action that is nonlocal in time. Special cases of this
theory have led to separate descriptions of several phe-
nomena in the arrays, such as charge solitons, vortices,
collective modes, and the mass of the vortex. In this
paper we choose a simplifying model, which replaces the
time-dependent Ginzburg-Landau equation by a simpler
Schrodinger-like equation and in which the dissipation
is modeled in a phenomenological manner. We will re-
fer to this approach as the macroscopic quantum model
(MQM). The MQM is a good phenomenological model
of a superconductor, and we explore a similar model for
the array so that we can form a unified picture of its
properties. We feel that such a unified model makes the
interrelations among the various properties more mani-
fest as well as that it provides a concise physical picture

that can shed light on the many implicit assumptions in
the more general theories.

Therefore, in Sec. III the Lagrangian and the equa-
tions of motion for the array will be found within the
MQM. The stationary solitonic solutions to these equa-
tions of motion are shown in Sec. IV to be of two types:
charge-carrying solitons and Aux-carrying vortices. Fur-
thermore, we will mainly restrict our discussion of the
arrays to the classical regime in which the Josephson en-

ergy of each junction is much larger than its charging
energy. For such nonclassical arrays, the superconduct-
ing array can undergo a transition to an insulating phase.
In practice, the normal-state resistance of each junction
must be smaller than a kilohm to ensure a classical de-
scription.

In Sec. V a dispersion relation will be found in the
classical dynamic limit and will be shown to be similar
to the propagating plasma mode found in superconduct-
ing filaments by Mooij and Schon. Also from the motion
of vortex solutions, one finds that the vortex can be con-
sidered a particle with a mass that moves in a force-free
environment. In Sec. VI the dissipation due to the Bow of
vortices is developed in the diA'usive regime. Here an in-
tuitive argument (along the lines of the Bardeen-Stephen
model) is made for the effective flux-flow resistance and
viscosity in the absence of pinning. Our intuitive argu-
ment further assumes that the moving vortex maintains
its spatial integrity and does not excite other modes, such
as spin waves or collective switching of the junctions. The
Magnus-like force, which leads to a Hall resistance, is not
considered, since estimates indicate that it is negligible.
We find that the mean free path of the vortices is many
lattice spacings. In contrast, for typical conventional su-
perconductors the mean free path is much smaller than
a coherence length. Because the lattice spacing plays the
role of the coherence length, the vortices in the array
are in a physically diAerent regime than in a conven-
tional superconductor. This long mean free path in the
arrays means that if moving vortices are injected into a
force-free regime, they can still be detected many lattice
spacings away. Moreover, if the length of the array is
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smaller than the mean free path, the vortices can move
ballistically. In the Appendix we find the mass, energy,
and force on a vortex when it is near a boundary and
show that the presence of a boundary does not affect the
motion of vortices if the array is wider than a few lattice
constants.

II. ENERGY STORAGE IN ARRAYS

Consider a two-dimensional array of identical Joseph-
son junctions as shown in Fig. 1. In the absence of any
applied currents, the energy R' of the array is given by

W = WJ + WE + R'gy,

) ( (p['+ 1 j] p[i j])

+(V [) j + 1] —
V [i j])') . (4)

In the continuum limit it is convenient to define an en-
ergy density )8; so that the energy W; = f& u); d)), where
U~ is the volume of the superconducting array. The
"thickness" in the z direction of the two-dimensional ar-
ray is taken to be d, and the superconducting properties
do not vary in the z direction. The Josephson energy
density is then

2)r
wJ — v'~0+ A~

I

2d Cp )

where WJ is the energy stored in the Josephson junctions,
R'E is the energy stored in the electric field, and W~ is
the energy stored in the magnetic field. Each of these
energies will be considered in the discrete array and then
the continuum limit will be taken.

The energy due to the Josephson junction itself is given
by'

~~ = &~ ) .(1 —cos (p['+ 1 j] —V'[' j]))
~ ~

)2

+Eg ) (1 —cos (p[i, j+ 1] —@[i,j])) . (2)

where the subscript 3 signifies that only the perpendic-
ular component of the vector is used, that is, the compo-
nent in the plane of the array.

The energy O'E stored in the array in a static electric
field is just the electrical energy stored in the capacitive
part of the network and is given in terms of the scalar
potential /[i, j] on each by

Here Eg = @pI /(2)r) is the Josephson coupling energy,
where C o is the Aux quantum and I, is the critical current
of a single junction. The gauge-invariant phase @[i,j] at
the position [i, j] is

@[i,j] = 8[i, j] + (2)r/4p) A ds,

I. +l, j ~ ~ ~

where 0[i,j] is the phase of the macroscopic wave function
(order parameter) at the site, A is the magnetic vector
potential, and ds is a line element across the junction. In
this paper we will only consider the array when the phase
differences are small enough so that Wg can be expanded
to lowest order in the phase differences to become

where only nearest-neighbor contributions to the energy
are considered. The capacitance to ground for each ele-

ment is Cp. The capacitance between nearest neighbors
is C, which consists not only of the geometrical capaci-
tance but also a part due to quasiparticle tunneling. In
the continuum limit, in analogy to the Josephson energy,
the electrical energy WE can be written in terms of an
energy density mE, which is

(7)

where the lattice spacing of the array is p. In most anal-
yses of arrays, u)~ is usually approximated by Eq. (7)
even with time-varying fields. However, to study the
full dynamics one must include the electrical energy due
to the time-varying part of the magnetic vector poten-
tial. This means that 7'~P(z, y) must be replaced by
V'zp(z, y) + OA~/0& in the second term of Eq. (7). The
first term of Eq. (7) can be left unchanged because any
contribution due to the time variation of A, will result
in a current in the z direction (as seen in the next sec-
tion), but currents are restricted in the plane of the array.
Therefore, mE is taken as

u)~ =, [P(z, y)] + —V'~ P(z, y) +&o BAg
2 dp 2d Bt

FIG. 1. A two-dimensional array of josephson junctions
on a square network with lattice constant p.

for the fully dynamical situations.
It is interesting to note that mE can be thought of as
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TABLE I. Comparison of the energy densities and equations of motion form the macroscopic
quantum model for (I) the continuous 3D superconductor and (2) the array in the continuum limit.

Energy density

Phase-voltage
relation

Continuity
equation

Amperes law

Gauss' law

Continuous 3D
superconductor

tvI,- =, " (&8+ ~ A) +, " „(Vn,)'
—V'

tv~ = 2„' ('7 x A)

+ a~ (ri'~n", )

~, Q+T J, =0
Q = q*(n", —n)

J = — ' W+~~Ve
P, p A~ . 27?'

$ 2 Tyl*
Pp~ = ~( ~)~

V'x B=PoJ ~ +go a(~E}

C=E'p

F ~y BA

Q= —..~ (Vy+ —,'-, A)

2D array in the
continuum limit

~Q+ t7& J, =0
Q = q*(n". —n)

J.= — A+ ~%~8
Pp/2 . 2wJ

x2 +nd
&

= 4~&E

7' x B = pp J, + po ~, (7E')

E' = —&I — 7'~ P + ~, A~
Q = „",P ——„'7g 'VgP+ ~, Ag

the energy due to an electric field E' in an anisotropic
dielectric medium. The electric field is

BAgE' = ——i, — T~P(x, y) ~
d Ot

The equations of motion describing the fields and cur-
rents follow from the Lagrangian density 8 which can be
written as

* 0 * *hn —tv—tc + tv~ —tvgy —(n~ —n) tI

tvgg ——B /(2po) = (V' x A) /(2po) (1Q)

where B is the magnetic fl.ux density.

III. EQUATIONS OF MOTION

The energy density, which is equivalent to Eq. (8), can
be written as tvE = E' 7 E'/2 where 7 is the effective
dielectric tensor and is listed in Table I.

The third and final way in which the energy is stored
is in the magnetic field. The energy density m~ due to
the magnetic field is given by

Here m~ is the kinetic energy density, and n is the back-
ground charge density needed to make the array overall
neutral. The corresponding energy densities and result-
ing equations of motion for continuous superconductor
are listed in Table I.

In applying the M@M to the continuum limit of the
array, we assume that the equations of motion follow
from its Lagrangian density, which is the same form
as Eq. (11) but with tv' replacing tv'-. The correspond-
ing energy densities are also listed in Table I.

The Euler-Lagrange equation for the density n+ gives
the first equation of motion for the 2D array as

Having found the energy densities, we can now find

the dynamic equations of motion by appealing to the

M@M, which models the superconductor as a collision-
less electron gas in a positive background. Although the
M@M model is not the full theory of superconductivity, t

it does explain most of the basic equations of a super-
conductor such as the London equations, flux quantiza-

tion, and the 3osephson equations. For example,
in the continuous three-dimensional (3D) superconduc-
t, or, the MQM describe the superconductor by a macro-
scopic order parameter 4(r, t), which is of the form

4(r, 5) = gn", (r, t) exp [te(r, t)j, where n* is the density

of superconducting electron pairs.

0 2tr—0(r, t) =
Ot

'
@o

When written in terms of the gauge-invariant phase y,
this is just the Sosephson phase-voltage relationship,
namely, Op/Bt = (2a/4O)v, where v is the voltage. A
comparison of this equation of motion with its analogous
one for the continuous 3D system reveals that the array
has fewer terms. This is because mJ does not depend
on the density, since the critical current I, is considered
fixed.

The Euler-Lagrange equation for the gauge-invariant
phase &p gives the continuity equation for the array as
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+V'g. J, =0.
t

Here Q = q*(n", —n) is the excess charge. The current
density is assumed to be only in the plane of the array
and is given by

3, (r, t) = —
2 l A(r, o+ 9+8(rt)),, (14)

1 / @o

po Ag ( 27l'

where A J = QC od/(4poEJ) is the usual Josephson
penetration depth.

The third equation of motion for the array, Ampere's
law, follows from the Euler-Lagrange equation for A and
is

V x B = poJ8 + po —(VE )t

The Euler-Lagrange equation for the scalar potential
P gives the fourth and final equation of motion as

2+C (, 1+ r/2r&) (19)

where r~ ——ro2/d is the decay length. Usually t ~ )) ro so
that in such granular systems the charge solitonic solu-
tions decay with a much greater length scale.

Just as the Maxwell equation for the charge led to a
charge soliton, the Maxwell equation for the current (Am-
pere's law) leads to a flux soliton. For stationary fields,
Ampere's law [Eq. (15)j becomes

screens out the point charge at large distances.
It has been assumed that the electric field is confined

to the the plane of the array in deriving the charge soli-
tonic solution. This is a good approximation for arrays of
small Josephson junctions. However, in granular films
the electric field can be in the free space outside of the
film, where the potential satisfies Laplace's equation. In
this case the solution to such a problem has been found
by Pearl and can be approximated by

This can be seen to be Gauss's electric law by using the
integral form of Gauss's law with a dielectric tensor.

Equations (12), (18), (15), and (16) are the four equa-
tions of motion for the array, and they are listed in Table
I. In the following sections, some solutions to these equa-
tions will be found.

IV. STATIONARY SOLITONIC SOLUTIONS

Two types of stationary singular solutions can be found
for the equations of motion for the array when all the
measurable fields are independent of time. One solution
carries electric charge and the other carries flux.

In one-dimensional arrays of capacitors, charge-
carrying solitonic solutions have been found. Recently,
such solutions have been found in 2D systems. These
2D solutions follow from the time-independent form of
Gauss's law for the array, which from Eq. (16) is of the
form of a scalar Helmholtz equation, namely,

0 = tan ' y/z. (21)

(For distances larger than the penetration depth of the
superconductor, the phase decays exponentially. ) Equa-
tions (14), (20), and (21) can be combined to show that
the magnetic flux density in the plane of the array satis-
fies

7' B —
2 B = —

2 b2(r)i, .
1 @p

J J
(22)

In the free space outside of the array, the magnetic field
again satisfies Laplace's equation. Again Pearl has
found that the magnetic field in the plane of the array
can be approximated by

2~A2J 1+ r/2A~ p
(23)

V xB=ppJ»
and the current density is still given by Eq. (14). Quan-
tized vortices are described near their core by a phase
given by

Q= d, 4 —d&i4dp
(17)

Here the efFective penetration depth for the flux is
Ag = A2~/d.

When the excess charge is a point charge so that
Q = —(e/d)bq(r), (r is the radius in polar coordinates),
the resulting potential in the plane of the array is given
by

e
I~o (r/ro),2xC

where I~p is the modified Bessel function of order zero.
The decay length of the potential is r o = p+C/Co.
Hence the field due to the point charge is confined mostly
to a region of rp about the charge. This means that
the charge solitonic solution has no net charge associated
with it in an infinite system because the array of junc-
tions along with the capacitance to ground completely

V. DYNAMICS

Eckern and Schmid have found the dispersion rela-
tion for collective modes related to the electric potential
and, hence, related to the charge solitons, for the array
in the continuum limit. These modes exist as long as the
magnetic field does not contribute greatly to their prop-
erties. On the other hand, when the magnetic field is
applied perpendicular to the array, vortices form in the
array. Furthermore, these vortices will move under the
influence of a driving current. It has been shown that
these moving vortices can be described as a particle with
a mass M„. From the equations of motion in Sec. III,
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47r~Eg 2 Cp 0 p
@2 -L 2 A(2 & cIg2

(24)

This equation results in the following dispersion relation:

we will first find the dispersion relation for the scalar
potential and then discuss the motion of a vortex.

A classical dispersion relation can be found by com-
bining the time derivative of the continuity equation
[Eq. (13)] with the Josephson phase-voltage relation
[Eq. (12)] and Gauss's electric law [Eq. (16)]. If the time
rate of change of A is small enough, then this proce-
dure reduces to the wave equation found by Eckern and
Schmid, namely,

A stationary vortex at the origin has a phase near its
core 0 given by Eq. (21). When this is inserted into the
time-independent form of Eq. (26) one obtains the usual
equation of a stationary vortex [Eq. (22)], which gives
the Aux density B&(i /Ag) in Eq. (23).

To find the magnetic flux density for a moving vortex,
we assume that the moving vortex maintains the same
phase distribution of Eq. (21) as it moves with a constant
velocity u. Therefore, if the center of the vortex is at
rs —(u t, u&g), then the phase of the moving vortex near
its center is

0(t) = tan
z —u t

c2k2
S

1 y (c,k/0)
(25)

If we assume that the resulting 8 is only in the z direc-
tion, then substitution of 0(/) into the Eq. (26) gives

C,C,p, ('a'0. &Vx Vo+
2+A2 2~p2 g cjt~

(26)

Here c = gd/(poC) = AJQ is a velocity of propagation.

where c, = (2+p) Eg/(COCO) and 0 = (2~) Eg/(C40).
For low values of k (long wavelengths), the dispersion re-
lation is acousticlike with a velocity of propagation c, .
For shorter wavelengths the dispersion relation saturates
at the Josephson plasma frequency O. An approximate
crossover in k occurs at ro, hence, when the acous-
ticlike mode has a wavelength shorter than the screen-
ing length ro of the charge soliton, the acoustic mode
can no longer propagate. At these shorter wavelengths
the array undergoes a collective oscillation where each
junction is oscillating at its Josephson plasma frequency.

The acoustic mode is the two dimensional version of
the propagating plasma mode in thin superconducting
filaments that was predicted by Mooij and Schon4 and
by Kulik. In fact, if the analysis done in this section
is done for a one-dimensional superconductor with the
appropriate capacitance to ground, then one gets ex-
actly the velocity of the one-dimensional mode given by
Mooij and Schon. Consequently, this also means that a
linear array of Josephson junctions should give rise to
this mode so that the propagating mode for the one-
dimensional charge solitons is the Mooij-Schon mode.
The reason the propagating plasma mode survives in our
two-dimensional array is that the charge of the soliton is
completely screened out, thereby allowing for the forma-
tion of an acoustic branch in the dispersion relation.

We now find a wavelike equation that describes the
magnetic properties of the array, in analogy to Eq. (24),
which describes the electrical properties of the array.
This equation can be written in terms of 8 by com-
bining the curl of the superconducting current density
[Eq. (14)] with Ampere's law [Eq. (15)]. Then by us-
ing the definition of E' [Eq. (9)] and the phase-voltage
relation [Eq. (12)], we find

1 10~B
A~ c2 Bt2

TsB, (r, t) —
~ B,(r, t) ——1 1 02B, (r, t)

B,(r, t) = B," (~r —ut ~/A, n), (29)

where A, rr
——Ag 1 —(u/c) . In other words, the moving

vortex has the same magnet flux profile as a stationary
vortex that moves, but it has an effective penetration
depth that undergoes a I orentz transformation. In this
paper we will assume u &( c.

To understand the full dynamics of a moving vortex,
it is necessary to find not only its magnetic flux, but
also the electric field that it generates due to its motion.
It has been shown that the effect of the electric field is
equivalent to considering the vortex as a particle of mass
M„.

Before giving a detailed calculation of this mass, con-
sider the following qualitative argument. If the vortex
moves with a speed u, then the phase will change by ~
as the center of the vortex crosses a lattice parameter in
the time u/p. Therefore, we expect that 6&p/6t —xu/p.
From the phase-voltage relation [Eq. (12)], we can es-
timate that an average voltage (v) appears across the
array that is given by (v) = Cou/(2p). Now the elec-
tric energy R"~ is stored in the capacitors, so that for
C )) Co, W~ P, . C(P;~) /2 where the sum is over
all the capacitors and P; z is the potential across the ca-
pacitors. If we estimate the sum of the squares of the
potentials as proportional to the square of the average
voltage, we find with a proportionality constant of p that
W~ pC@ou /(8p ). Hence we see that W~ acts like a
kinetic energy term with the mass of the vortex given by
M„yCC20/(4p2). To be consistent with the value of
the mass found by Eckern and Schmid, namely,

M„= C4 /(2p ),
we must demand that p = &.

2 62 (r —ut) i, , (28)
@o
A~~

which the time-dependent form of Eq. (22). The time-
dependent solution to Eq. (28) for a vortex is then
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To see in more detail how the vortex develops a mass,
the energy R' is found for a moving vortex when its ve-

locity is such that u && c. It is assumed that the moving
vortex maintains the same phase distribution of Eq. (21)
as it moves. Therefore, let the center of the vortex be
at (zo(/), yp(/)), so that the phase of the moving vortex
near its center is

„„»—yp(t)
z —zp(f)

'

From Eqs. (5) and (10) we find that for a moving vortex
the energy stored in Wp and W~ is just the energy stored
in a stationary vortex, Fv —— C'p/(2+%&) ln (2A&/().
Here g is a cutoff length for the vortex. For a vortex in
a continuous superconductor, ( is just the core radius.
By carefully considering the array-to-continuum limit, it
has been showns that for the array ( = p/i/2x. Because
E„d eos not depend on the velocity of the vortex, it is a
constant oA'set to the energy, which does not contribute
to describing its dynamics.

The dynamical contribution to the energy of the mov-

ing vortex in the infinite array is then determined only
by m~. The moving vortex generates a scalar elec-
tric potential through the Josephson phase-voltage re-
lation of Eq. (12) and this potential depends explicitly
on the velocity (zp, yp) of the moving vortex. (The
contribution from the time rate of change of the vec-
tor potential is again assumed small and is neglected. )
VVhen m~ is integrated over all space, the integral
must be cut off not only at ( for short distances but
also at A~ for large distances because of the approx-
imate solution of the phase used. This integration
gives Wa = M„(z~ + y2) /2. Here M„ is the effec-
tive mass of the vortex, and M, = rnp + M~, where
mo = [4'pCo/(2+p )] In(A~/() and Mi ——4pC/(2p ). Be-
cause C )) Cp, the contribution of mp to the total mass
is negligible so that M, Mq. Hence, the energy stored
in the moving vortex is just the energy due to a parti-
cle of mass M„moving in a force-free environment. For
C 10 F and p 1p,m, then M„0.01 m„where
m, is the mass of the electron. This mass can change if
the vortex is near a boundary. However, in the Appendix
we show that these boundary eA'ects are negligible if the
vortex is a few lattice spacings away from the boundary.

v: C'pQ~Ly Ag . (33)

The power P dissipated by the current supply is then

P =iv = iCpu Lyn, . (34)

These two global considerations, however, do not deter-
mine what u is. Nevertheless, the global requirement for
power loss can be connected to the local description of
power loss by noting that the equation of motion of a sin-
gle vortex demands that each vortex dissipates a power

necessary to look at the power dissipation on the length
scale of (. Therefore, it is necessary to return to the dis-
crete array to calculate the power loss due to the vortex
motion.

Consider the discrete array shown in Fig. 2 in which a
current i is put through the array. The array is taken to
have a period p, and to have a length in the z direction of
L~ = Np and in the y direction of L&

——Mp. The current
i is sent in the y direction and is passed through the array
from bulk superconducting contacts. The magnetic field
is assumed greater than H, ~, so that the average distance
between vortices in the array is much less than A~. This
number of vortices assures that the current will flow, on
the average, uniformly down the array. Therefore, on the
average, a current of j = i/N flows down each column
of the array. Under these conditions, the vortices will

experience a Lorentz-like force that will move the vortices
in the z direction. In this section the array is assumed to
be a viscous medium, which causes the vortices to move
with a constant velocity u . More specifically, we model
the force on each vortex by the usual flux flow model so
that"

dD~ CpiM„+gu
dt L

Here g the viscosity of the medium to flux flow and is a
phenomenological parameter that will be determined.

For the moving vortices Faraday's law demands that a
voltage v appear across the array, in the direction of the
current Row, such that

VI. TRANSPORT OF VORTICES

In the presence of a magnetic field B perpendicular to
the array, vortices form. In the continuum limit these
vortices form an array with a density n„= B/@p If.
an applied current is put through the array, these vor-
tices will move and dissipate power. A phenomenological
method is proposed to model the flux flow in the array,
analogous to the Bardeen-Stephen model for the 30
system. [In this model we assume that the spatial struc-
ture of the vortex given by Eq. (27) is stable and that the
moving vortex does not excite other dissipative modes in
the system. ] In the array, just as in the 3D system, it is

i. (f) v x
lO, I1 C I, I]

Ux
X ~X x Ly=Mp

X X
[ I,O]

Lx= Np

FIG. 2. The array with a current i Sowing. A vortex is
shown at the position [1/2, 1/2].
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PJ due to the viscous medium. If the vortex moves with
the steady-state velocity u, then

PJ —gu (35)

Assuming that each vortex dissipates power indepen-
dently, then the total power dissipation is

P = PJn, I Iq. (36)

where y = 2 as used before. Comparison of this with
Eq. {35)gives

g = 4 0/(2R~ p ) = M„/(R~ C) . (38)

Having found the viscosity in terms of local parame-
ters, we can now find the velocity and also the voltage
generated by the vortices. The steady-state velocity can
be written in terms of g by using Eq. (32), namely,

u = iC'o/(nL ) = »R~p'/{@oL ). {39)

The voltage due to the moving vortices is given by
Eq. (33) which can be characterized by an equivalent Aux
flow resistance per square, R&, namely,

Ra = 2Bp Rx/@o. (4o)

R& is similar to the Aux fiow resistance in a continuous
3D system and in a long Josephson junction.

To justify the qualitative model, we now give a more
detailed calculation of the voltage and losses due to vor-
tex motion. Consider the voltage generated across each
junction as the vortex moves. Let the junction have the y
coordinate of 1/2 as shown in Fig. 2. Then in analogy to
Eq. (31) for the continuum limit, the phase across each
junction due to the moving vortex is given by

By considering the origin of the power loss in each junc-
tion, we can then determine the parameters, such as g,
u, and P.

The origin of PJ is first given by a qualitative argu-
ment. The voltage generated by the moving vortex across
the junction at [i,j] is denoted as P; i. Since each junc-
tion has some resistance R; i, the power loss due to each
junction is just the sum of the resistive losses, namely,
Pg = P, P, R,. . . If we assume that each junction is
characterized by the same average effective resistance
R~, then P~ Rz P; . P; . . As in the argument for
the mass, we again estimate the sum of the squares of all
the voltages as proportional to the square of the average
voltage (v). Consequently,

P. = ~~' '. /(4R p') = ~' './(2R p')

The power loss through each junction is just this poten-
tial times the current I through the junction. The sum
of all these power losses is the same as that given by in
Eq. (34). Note, however, that the largest voltage drop
bv occurs across the junction nearest to the core of the
vorte~ and over which the core transverses. We will call
such a junction the "core" junction.

At time t = 0 the core junction is that junction be-
tween the nodes [0, 1] and [0, 0] in Fig. 2. Consider the
voltage bv = /[0, 0] —/[0, 1] across this junction in the
direction of the current flow. VVith Eq. (42), this voltage
difference can be seen to have a Lorentzian line shape
given by

bv =Co p 1

2vru~ t'2 + p2/(2u )~

This voltage has a full width at half maximum (FWHM)
of p/u, which is the time it takes the vortex to cross one
cell. The maximum voltage across this junction occurs
at t = 0 and is given by bv' = 240u~/(mp). However, for
the Lorentzian line shape, the average voltage (bv) that
occurs across all the junctions as the vortex moves across
the sample is just the total Aux divided by the FTHM
time, that is, {bv) = Cou /p. Hence, (bv) is nearly equal
to bv', so that the average power dissipation is nearly
equal to the maximum power dissipation, showing that
most of the power dissipated across a junction occurs
when it is a core junction.

The fundamental assumption of our phenomenological
model of the flux Bow is that the power dissipated is as-
sumed to scale with the average power dissipated across
the core junctions. Each of these junctions dissipates an
average power of I (6'v). Therefore, P is proportional to
the power loss of each core junction times the total num-
ber of vortices, namely, P = ni (bv) n,„L~L„/N, where n
is a constant of proportionality. Putting (bv) into this
equation gives that P = o, iC ourn„L&. Comparison with
Eq. (34) shows that n = 1. Therefore, if Pq is the power
dissipated across one of the core junctions, then one has
the intuitive result that P = Pjn„I. I.&. For the mo-
ment PJ will be taken as a phenomenological parame-
ter that is known for a single junction. A comparison
with Eq. {34) determines the velocity of the vortex as6:PjL /(iC 0). This velocity gives a voltage accord-
ing to Eq. (33), which is equivalent to a flux flow resis-
tance per square

Rrr = Bp R, /C , 0

where

R, = Pg/I (45)
(41)

@[i,i] =— (42)

For the Josephson phase-voltage relation of Eq. (12) gives
the potential as

Here R, is the effective resistance that describes the
power loss of a single junction.

Note that in our argument, we have assumed that the
power loss is just I (v); that is, just the product of the
average current and the average voltage. More accu-
rately, we should calculate the average of the instanta-
neous power, iv, for each junction, and then average this
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quantity over the time it takes the vortex to cross the
sample. The assumption is analogous to the approxima-
tion used in Eq. (37), where we estimated that the sum
of the squares of the all the voltages is proportional to
the square of the average voltage. Therefore, we expect
the same proportionality constant of y = 2, so that for
a resistively shunted junction, we have R, = 2R~. In a
similar manner, the viscosity can now be found by using
Eq. (39); therefore, we again find a result nearly iden-
tical to the more qualitative argument, g = C'0/(p R, ).
In fact, most of the results of the qualitative argument
can be made identical to the more detailed results by
replacing B, with 2R~.

The effective resistance has the following interpreta-
tion. Recall that PJ is the power loss in a single junc-
tion. Because the moving vortex determines the potential
drop, then PJ is the power dissipated in a single junction
when it is voltage biased and a current I is flowing. Con-
sequently, B, is the resistance of a single junction when
it is voltage biased. We note this model of the effective
resistance assumes that the moving vortices do not create
additional quasiparticles. However, Eckern and Schmid
have suggested that the additional quasiparticles are in-
deed created, especially when the vortex creates a voltage
near the gap voltage. This means that the effective re-
sistance, especially in the subgap regime, can be smaller
than given by our model.

Now that all the parameters in the equation of motion
for the vortex [Eq. (32)j have been determined, the time-
dependent motion of a vortex can be discussed. Con-
sider the case of a current i driving an array of vortices
in a magnetic field as in Fig. 2. In steady state the vor-
tices attain a terminal velocity of u . If the current is
suddenly turned off, then the vortices will continue to
move but their velocity will decay exponentially in time
as u (t) = u exp( t/r„), wh—ere r„=M„/il = R,C/2.
With this velocity the vortices will travel a distance zy
before coming to rest, where

der of h/A. For lower driving currents, the vortex will

go slower, but its speed will still be of the same order
of magnitude. Hence, we see that in both systems the
speed of the vortex is about the same. The difference in
the mean free paths must then be due to the diferent
relaxation times. In the array, we found this to be of the
order of the RC time constant r~c for the junction. For
a junction of 1 kQ and 10fF, then 7~~ 10 s. For
a 3D superconductor the corresponding time constant is

= eo/o o, the charge relaxation time. For a granular su-
perconductor with a resistivity of about 100 pQ cm, then
r, 10 s. Hence, the difference in the mean free paths
comes about from the vastly different relaxation times for
the vortices in the two systems. Therefore, vortices in an
array can have zj ) (, whereas conventional supercon-
ductors usually have z~ && (, and thus arrays open the
possibility of studying vortex motion in a different phys-
ical regime.

Because R, is a nonlinear function of I, it is possible
to have the vortices go much further than zy. To obtain
the longest decay time, one needs to have the current i as
small as possible. One way to achieve both of these crite-
ria is to drive the vortices in one region to the maximum
velocity and then inject them into a region where there
is no current and no magnetic field. In this second region
the vortex velocity will decay with a time constant that
is much longer than in the first region and so it will go
much further. Specifically, if the efFective resistance per
square in the first region is R~ and in the second region
is Ryy, then Byy can be much larger than Ry. In this case
the vortex will go a distance ly before coming to rest,
namely,

lz
—u r„= pP, (R,)—1 I f Rail

4n I ( Ri p

A summary of the parameters for a vortex is given in
Table II along with the parameters for the continuous
3D superconductor for comparison.

(46)
VII. SUMMARY

and P, (R) = 27rI, R C/@0 is the Stewart-McCumber pa-
rameter. This calculation for zy is analogous to the cal-
culation of the mean free path for electrons in the normal
state, so that zy is the mean free path for the vortices.

For P, in the range of 1000 for an array and the cur-
rent a fraction (say 0.1) of the critical current, then the
zg is about 10 lattice spacings (or equivalently, coherence
lengths). This distance should be contrasted with that
for a 3D continuous superconductor, where zy is of the
order of 10 of a coherence length. To understand why
a vortex in an array goes nearly a million times further
(measured in coherence lengths) than a vortex in a usual
3D superconductor, consider the velocity and relaxation
times of each system. If a vortex is driven by the max-
imum applied current, I, in an array, and the depairing
current density in a 3D system, then the vortex will go
a coherence length in both systems in the time of or-

In this section we discuss some of the assumptions of
our model that will effect the motion of vortices and sum-
marize the main results of this paper.

The first important assumption is that the arrays are
classical, such that EJ ) E~. The second important as-
sumption is that the vortex solution is not only stable
but also that it preserves its integrity as it moves. It
is possible that a moving vortex will excite other dissi-
pative modes in the array that could effect the value of
the flux flow resistance. Furthermore, experiments show
that for high driving currents the array goes from flux
Row behavior to modes that correspond to the switch-
ing of rows. In this paper we have assumed that the
driving current is low enough so that this switching is
not important. However, no theoretical criterion has yet
been developed to determine when this behavior changes,
but experiments suggest that the higher the P, the lower
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TABLE II. Comparison of the parameters for vortex motion for (1) the array in the contin-
uum limit and (2) the continuous 3D superconductor. For the continuous 3D superconductor the
quantities are defined as foHoms: J~ is the applied transport current, the depairing current is
JJ, = 4p/(3%3xppA (), the charge relaxation time is r, = e/op, the magnetic time is r = o'pppA,

and the upper critical field is B,2. For the array, A, = 2R„ for a resistively shunted junction.

Mass
Mv

+ 2C
2p2

for M1 &) m, o
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tC~
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the driving current needed.
The third important assumption for applying our con-

tinuum model to a discrete array is that the vortex moves
fast enough so that the geometry of the array does not ef-
fect its motion. I,obb et al. have shown that there is an
energy barrier to Aux motion, E@ which is equal to about
0.2EJ for a square array. Therefore, for our model to ap-

ply, the kinetic energy of the vortex must be great enough
to overcome this barrier. In other words, M„u2 ) 0.2Eg.
This is equivalent to p, (I/I, ) ) 0.4. For a typical value
of I = 0.1I„this implies that p, ) 40. Nevertheless, Aux
can still fiow for smaller P„because the transport current
will lower the energy barrier by tilting it by an energy
4pI. This lowering of the energy barrier will mean that
a depinning current will have ta be exceeded before Aux

can Bow. Indeed, the equation of motion for the position
of a vortex in the presence of such barriers has the same
form as the equation far the phase of a single resistively
shunted junction with the shunt resistance given by +e-
Therefore, t,he diA'erential Aux Aow resistance above this
depinning current, will then be the same as the Aux Raw
resistance found in this paper.

The fourth important assumption is that we have as-
sumed that there is na Magnus-like force on the vor-

tex, which tends to move the vortex in the direction of
the applied current and causes a Hall eA'ect. Although
there has been no calculation of the Magnus-like force
on a vortex in an array, we estimate the Hall angle
by using the result for the Hall angle in the continu-

ous superconductor. There the Hall angle is given by
tan0~ = rI/(eCon+d). By analogy for an array we find
tan OH = h AR„/(m~p~R, ), which for most classical ar-
rays is negligible.

The Mth assumption is that we have ignored the eAects
of boundaries on the vortex. motion. In the Appendix
we show that the mass of the vortex can change near
the boundary. However, if the array is more than a few
lattice spacings mide, these eA'ects can be neglected.

In summary, we have found the equations of motion
for an array in the continuum limit. Tmo types of soli-

tonic solutions exists: charge solitons and Aux vortices.
The dynamics for charge solitons were characterized by
a dispersion relation, and exhibited modes analogous to
the Mooij-Schon modes in a one-dimensional supercon-
ductor. The dynamics of vortices for classical arrays
were described by using the mass of the vortex. Most
of this paper, then concentrated on the dynamics of vor-
tex motion in classical arrays when there is no pinning.
A phenamenological model of Aux How was presented in
which the power dissipation occurs mainly on the junc-
tions near the center of the vortex, which we called the
core junctions. By considering the dissipating in the core
junctions, we found a viscosity for vortex motion. This
viscosity results in a flux Bow resistance that is analogous
to that found in the Bardeen-Stephen model for a contin-
uous 3D superconductor. Furthermore, it was shown that
the motion of vortices in an array can be nearly ballistic,
and that the mean free path for vortices can be many
lattice constants (and, hence, many coherence lengths).
This is in contrast to a continuous superconductor, which
has a mean free path of the order of a millionth of a co-
herence length. This means that the motion of vortices in
a classical array is in a physically difkrence regime than
the 3D superconductor. For e'ample, in a classical array,
there exist the possibility of detecting ballistic vortices.
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APPENDIX A: MASS, ENERGY, AND FORCE
OF VORTEX NEAR A BOUNDARY

The mass of the vortex is eR'ected by the boundary and
can depend on the direction of its motion with respect
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to such a boundary. However, the complicating eKects of
the boundary will be shown to be negligible if the position
of the vortex is greater than about a lattice spacing from
the boundary.

Assume that the vortex in the array is confined to the
semi-infinite half space for z ~ 0 and that a bulk 3D su-
perconductor is placed along the y axis. Let the vortex
be along the z axis at the position zo. The eA'ect of the
bulk superconductor will be modeled as making the cur-
rent density near the boundary normal to the boundary.
The method of images can be used to ensure this bound-
ary condition by placing an image vortex of the same sign
at the position —zo along the z axis. The total current
in the 2D superconducting region z ) 0 is

~ (r) =
2 [I'(lr —»l)4+ 1~(lr+ rpl)'y], (Al)

27CpoA J
where rp —(zp, 0) and the unit vectors are in the direc-
tion of the polar angles about the vortex and its im-
age respectively. Also I~(r) is the spatially distribution

of the currents which is the curl of the magnetic field
given in Eq. (23).ig The force on the vortex, then, is the
Lorentz-like force and is given by F (zp) = Cp J'(zp)d,
where J'(zp) is the sum of all the current densities from
all the other vortices, evaluated at the position zo of the
vortex. By using an image vortex we find that this force
can be described as the result of an interaction energy
W;„i given by W;„t,-—— m—Eg ln [zp/(Ag + zp)j. The total
energy of the vortex also includes the self-energy E~ of
the vortex and the energy in the 3D superconductor.

The motion of the vortex near the boundary is not only
complicated by the additional potential that the vortex
experiences but also by the fact that the mass of the
vortex changes near the boundary. Because the electric
field changes due to the boundary, the mass will also
be expected to change. The phase of the wave function
0 is the sum of the phase of the vortex and its image.
The calculation of the energy stored in the electric field
leads to a mass M„(z,) for the vortex traveling in the
z direction near the boundary of

@2

where zy ——z+ zo. Note that the integral can be ex-
tended over all the 2D space because of the symmetry
of the problem. For large distances from the boundary,
M„~, ~ M„because the eA'ect of the image is neg-
ligible. Qn the other hand, M„~, p 2+zpM„/p 0,
so that near the boundary this mass is zero. This can
be understood because the vortex and the image create
electric fields about their centers that are oppositely di-
rected, since the image is moving in the opposite direc-
tion. Therefore, when the vortex nears the boundary the
total electric field will tend to cancel out. Furthermore,
for zo about a lattice spacing, the boundary efFects due
to the mass are negligible.

The mass M&& can also be found for the motion
parallel to the boundary we find M&& ~, ~ M„and
M&& ~, 0 2M . Another important boundary eA'ect is
when the boundary is free-space rather than a supercon-
ductor. Then the image is of opposite sign and the func-

tional limiting forms of M, ~ and M&& are interchanged.
In other words, for a vortex moving near a free-space
boundary M, approaches 2M„but M&& vanishes.

Another important boundary configuration is the vor-
tex in an infinitely long strip of width 6 that it bounded
by a 3D bulk superconductor. To satisfy the boundary
conditions an infinite series of positive images are needed.
For narrow strips such that 6 && A~, the corresponding
interaction energy is W;„t(zp) = n EJ ln cos (7rzp/b).

Therefore, there is always a confining potential that
ensures that the vortex is pushed back towards the center
of the strip. Near the center of the strip, in fact, this
confining potential is parabolic. If the vortex samples
only the region near the center, then it will see only the
parabolic potential and will have quantum energy levels
separated by the resonant frequency of up —~xpA/(2b)
so that the resonant frequency depends on the width of
the confining strip.
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