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Nonlinear analysis of the modulational instability of a tachyonic wave train
in the damped dc-driven sine-Gordon model
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It is known that a near-linear solution (a train of densely packed kinks) of the underdamped sine-
Gordon equation with a dc driving term has a region of modulational instability in the tachyonic re-

gime, in which the train s velocity exceeds the limit velocity of the sine-Gordon model. In the
present work a nonlinear analysis of this instability is developed for the slightly overcritical case. A
system of coupled evolution equations for two complex amplitudes of the growing disturbances is
derived, and it is demonstrated that the instability gives rise to a pair of coupled small-amplitude
waves of modulation traveling along the underlying wave train. A physical implementation is pro-
posed in terms of an I-V characteristic of a long Josephson junction described by this model. It is
shown that, at the point where the instability sets in, the I-V characteristic suffers a break. A corre-
sponding jump of the differential resistance is found.

I. INTRODUCTION Eq. (2), but impose the following relation on the density
and velocity of the train:

The present work is devoted to the perturbed sine-
Gordon (SG) system,

V=F/up . (4)

(5 =(()0(x, t)

—:pz+p ( V —1) 'sin(pz)+, z =x —Vt, (2)

where p is an arbitrary parameter that determines the
period of the train, L =2m/[(I —V )' p], and V is the
train's velocity. The kinks are strongly overlapped if
I, «2~, i.e., it is assumed that

p'i 1 —V'i »1. (3)

Throughout this paper, it will be assumed that the pa-
rameters in Eqs. (1) and (2) take the values a « 1, F»1,
and p ))1.

If the terms on the right-hand side of Eq. (1) are taken
into account as perturbations, in the lowest approxima-
tion they do not alter the form of the wave train given by

P« —P„+sing = —a/, F, —

which is one of the fundamental dynamical models of
"one-dimensional" condensed-matter physics (see the re-
cent review'). In particular, Eq. (1) finds a very impor-
tant physical application as the model of the dc-biased
damped long Josephson junction (LJJ), under the as-
sumption that the bias current is distributed uniformly
along the junction.

As is well known, the unperturbed SG equation
(a=F =0) has exact stable stationary solutions in the
form of solitary kinks and periodic trains of unipolar
kinks (in the LJJ theory, a kink corresponds to a Quxon,
i.e., to a topological soliton carrying a quantum of the
magnetic flux). In the limiting case, when the kinks in
the periodic train are strongly overlapped, the solution
takes the following form:

0&v= V —1«1, (6)

i.e., the fundamental assumption (3) takes the form

p U))1.
To develop an analytical treatment, it will be necessary to
assume that the inequality (7) is strengthened to the form

pv ))1

[the inequality (7) is a corollary of those (8) and (6)].
The rest of the paper is organized as follows. In Sec.

II, the nonlinear analysis of the modulational instability
near the threshold is developed, assuming that

In the unperturbed SG model, the solution (2) is always
stable in the normal case V& 1, and it is unstable in the
"tachyonic" case V) 1. However, the dissipative term in
the perturbed equation (1) may be stabilizing. It has been
demonstrated in Ref. 3 that the solution to the perturbed
equation given by Eqs. (2) and (4) remains stable in the
normal case, and for the tachyonic case the dissipation-
induced stability condition is

F & F„=Vy( V' —1)'" .

In the range F &F,„, the wave train (2) is subject to the
modulational instability, which has an oscillatory charac-
ter. However, this instability has been investigated only
in the linear approximation in Ref. 3. The objective of
the present work is to investigate a nonlinear regime that
sets in via the instability, and to analyze its physical man-
ifestations. This will be done for the case when the "ta-
chyonic" velocity is close to its limiting value:
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0 & (F„F—) /F„«1
[see Eq. (5)]. A system of coupled nonlinear evolution
equations for two complex amplitudes of the modulation-
al disturbance is derived. These equations give rise to a
stable stationary solution that may be interpreted as a
coupled pair of waves of modulation traveling on the
background of the underlying wave train.

In Sec. III, physical manifestations of this nonlinear re-
gime are analyzed in terms of LJJ's. The main experi-
mentally observable dynamical characteristic of the
damped dc-biased LJJ is its I-V characteristic, i.e., the
dependence of the mean voltage,

U= —(P, ), (10)

with ( . ) standing for spatial averaging, upon the bias
current density F. In the region where the solution given
by Eqs. (2) to (4) is stable, the I Vcharact-eristic is, as a
matter of fact, defined by Eq. (4) as, according to Eq. (2),
(P, ) = —pV. I consider a change of this unperturbed I V-
characteristic generated by the instability. The main re-
sult is a discontinuity of the differential resistance

Eq. (4), the inequality (5) guarantees that Rey is negative,
which is just the stability condition. Inserting Eq. (13)
into Eq. (1) and going beyond the framework of the linear
approximation (in the case of the instability), one should
expand the nonlinear term sing in powers of a, and b, up
to the third order, assuming that

ao, b2-a, b, , (16)

see Eqs. (22) and (25) below. At the second order of the
expansion, one obtains, in accordance with Eq. (16), the
following equations:

a +aao = —(i/2)(a *, b, a,—b i ),
b +ab2 2ipu—b2 ia—pvb2 = (i/2)a, b, ,

(17)

(18)

where the overdot stands for d/dt, and the asterisk desig-
nates the complex conjugation.

As it follows from Eqs. (14) and (15) and the underlying
assumption (8), the frequency Imy is much larger than
the instability growth rate Re@, provided Rey )0. Thus
it is natural to represent the amplitudes a

&
and b

&
in the

form

at F =F„:
a, ( t) = 2, (t)exp[i (pu + ,'pu )t], —

b, (t) =B,(t)exp[i(pu + —,'pu )t], (20)

R =e ' at F —F„—+0+,
R=2a ' atF —F„~O—.

(12a)

(12b)

Thus Eqs. (12) yield a prediction that can be verified in an
experiment. At last, some concluding remarks are sum-
marized in Sec. IV.

II. THE NONLINEAR ANALYSIS
OF THE MODULATIONAL INSTABILITY

A perturbed solution to Eq. (1) will be looked for in the
form

P(z, t) =$0(z)+ {a,(t) exp[ —,'ip( V+1)z]

+b, (t)expPip ( V —1)z]

+b2(t)exp[ip ( V —1)z]+c c ]+ao.(t.),

Imy =+pu,
Re@= —a/2+(2p&2u )

(14)

(15)

[the signs + in Eqs. (14) and (15) are mutually indepen-
dent]. It is easy to see from Eq. (15) that, with regard to

(13)

where po is the unperturbed solution given by Eqs.
(2)—(4), the amplitudes a„b, , and b2 are complex, while

ao is real. The term -exp[ip ( V+ 1)z] has been dropped
in Eq. (13), as it would give a negligible contribution to
the solution to be obtained [see Eq. (22) below]. The per-
turbed solution (13) is taken in the form which provides a
maximum growth rate y of the modulational distur-
bances in the linear approximation. Reformulating the
results of Ref. 3, one can find that

in order to separate the rapidly oscillating exponents
governed by Imp and the slowly varying preexponents
3, and B, governed by Rey. Analogously, the ampli-
tude b2 will be represented in the form

b2(t) =B2(t)exp[2i(pv + ,'pv )t],— (21)

with the slowly varying preexponent Bz. Inserting Eqs.
(19)—(21) into Eq. (18), it is easy to see that, in the lowest
approximation, the amplitude B2 is adiabatically
enslaved by the ones A, and B, :

B2=(2apv) 'A, B, . (22)

At last, using the relation (22), one can close the evolu-
tion equations for 3& and B, at the third order of the ex-
pansion. After some algebra, these equations can be
brought into the following eventual form:

2, +(i/4)p 'B, + —,'aA, —(8ap v) 'lB,
l

—(i/8)p -'IB, I'B, =0,
Bi —(i/2)(pu) '3, + —,'aB, +(4ap v ) 'l Ai l B,

(23)

+(i/2)(pu) 'lB,
l 3, +(i/4)(pv) 'B, A*, =0 .

(24)

In principle, Eqs. (23) and (24) as well include terms, re-
spectively, -ao 3, and -aoB„ that account for cou-
pling of the first harmonics of the disturbance to the
zeroth harmonic [see Eq. (13)]. However, these terms
may be omitted, as they give a negligible contribution to
the solution obtained below. As to the amplitude ao of
the zeroth harmonic, it is governed by Eq. (17) which, on
inserting Eqs. (20) and (21), takes the eventual form
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ao+ado= —(i 12)( 3 *, B i
—A &B &

) . (25)

It is straightforward to see that the linear parts of Eqs.
(23) and (24) recover the familiar expressions (14) and (15)
for the imaginary and real parts of the instability growth
rate. To follow the transition from the subcritical (stable)
to the supercritical (unstable) region, it is convenient to
employ the quantityf:F ——ap (26)

as the control parameter, so that Eq. (4) takes the form

v =flap .

As we are interested in the range defined by Eq. (6),
0 & v « 1, it will be assumed that

Eqs. (19)—(21), the instability gives rise to two coupled
waves of disturbance traveling on the background of the
underlying wave train $0(z) Isee Eq. (2)], viz. , the distur-
bance wave with the smaller amplitude A, and the larger
wave number k, —= —

—,'p ( V+1)= —p, and the one with
the larger amplitudes B& and B2 and the smaller wave
number kb—= —pv. These waves have the common fre-
quency co given by Eq. (14) and the phase velocities [in
the (z, t) coordinate frame] V, =colk, = —v and
Vb=co/k&= —2. The signs of the phase velocities are
fixed by the sign of the underlying wave train's velocity
V: From the very beginning it was assumed that V was
close to +1. If V is close to —1, m will be the same,
while the signs of the wave numbers and phase velocities
will be opposite.

0&f «ap . (28)

In terms of the control parameter f, the stability con-
dition (5) takes the form

III. INTERPRETATION IN TERMS
OF THE I- V CHARACTERISTIC

OF A LONG JOSEPHSON JUNCTION
f)f„=(2ap) (29)

1 «o,'p «cz (30)

will be assumed to hold.
Now, it can be readily seen that in the slightly overcrit-

ical region,

0 & (f„f) If„«I, — (31)

the system of Eqs. (23) and (24) has, besides the trivial un-
stable solution A

&
=B

&
=0, the nontrivial one:

The inequalities (28) and (29) are compatible, provided
that cap )&1. At the same time, the compatibility of Eq.
(29) with the underlying assumption (8) gives rise to the
inequality 0! p « 1. Thus the condition

In experiments with LJJ's, a transition from one
branch of a solution of the corresponding SG model to
another manifests itself as a change of the I V(curren-t-
voltage) characteristic. The I Vcharac-teristic is deter-
mined by the dc magnetic field B applied at the edges of
the linear LJJ. In the dimensionless notation, B = (P„),
cf. Eq. (10). Thus to provide the operation of the LJJ in
the regime corresponding to the solution (13), it is neces-
sary to apply a sufficiently strong magnetic field,

(($0)„)—=p, and the dc bias current with the density F
close to the critical value defined by Eq. (5).

Inserting Eqs. (13) and (2) into the definition of the
mean dc voltage across the junction [Eq. (10)],one arrives
at the following expression for the voltage in the overcrit-
ical region f &f„:

B& =2iapA &,

I
~~I'=(2ap) '(f., f)lf., —

IB) I'=(f., f)lf., —
(32)

u =U —p =pv —ao . (34)

Next, inserting Eq. (32) into Eq. (25), it is easy to find the
value of a o corresponding to the stationary solution (32):

The moduli of the complex amplitudes A& and B„as
well as their relative phases, are fixed by Eqs. (32), while
the phase of, say, A, remains arbitrary. Inserting Eq.
(32) into Eq. (22), one finds the amplitude of the second
harmonic for the solution considered:

~'to=(2ap) '(f„—f)lf„. (35)

Substituting Eqs. (27) and (35) into Eq. (34), one con-
cludes that the full I-V characteristic has a break at the
point f =f„:

B2=2i(ap) 2, , ~Bz~ =
—,'(f„f)lf,„. —(33)

u =fla
at f )f„,and

(36a)

The bifurcation that gives rise to the solution (32) at
f =f„is a standard forklike bifurcation, and it is obvi-
ous that the nontrivial solutions generated by the bifurca-
tion are stable at sufficiently small values of (f„f)If„. —
If this parameter is not small, the solution loses its sense:
According to Eqs. (32) and (33), in this case the ampli-
tudes B

&
and B2 are no longer small, while the derivation

of Eqs. (23) and (24) was based on the expansion in
powers of A, and B, .

Finally, it is relevant to interpret the solution given by
Eqs. (32) and (33) in terms of the corresponding wave
form in the physical space [see Eq. (13)]. According to

u =f la (2a'p) '(f„f)lf„— —(36b)

at f &f.,
To describe the peculiarity of this I-V characteristic in

more accurate terms, it is natural to consider the
differential resistance defined by Eq. (11):

dU du
dF df

(37)

Substituting Eqs. (36) into Eq. (37), one concludes that at
the point f =f„, the differential resistance suffers the
discontinuity described by Eqs. (12).
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wave length is commensurable with the spacing of the
underlying ionic lattice (see, e.g., Ref. 4). The results ob-
tained in this work can be directly applied to this model
of the charge-density-wave conductivity, with the
difference that the parameter F in Eq. (1) has the physical
meaning of the dc voltage applied to the system, and the
quantity U tsee Eq. (10)j is the dc current carried by the
CDW.

IV. CONCLUSION

FIG. 1. The schematic I Vchar-acteristic at small f. The
straight line (solid at f &0 and at f)f„, and dashed at
0&f &f,„) is the unperturbed characteristic given by Eq. (36a).
The solid segment in the region 0&(f,„f)lf,„«—1 corre-
sponds to Eq. (36b), and the dotted segment symbolizes the un-
known part of the I- V characteristic (which may be hysteretic).

The full I- V characteristic for small f ( ~f ~
&& ap ) is

shown schematically in Fig. 1. The characteristic is de-
scribed by Eq. (36a) both at f & 0 (the normal regime) and
at f )f„, where the "tachyonic" wave train given by
Eqs. (2) and (4) is stable. At 0&(f„f)If„«1—, the I
V characteristic is described by Eq. (36b), and at f )0,(f„f)/f„—1, —its form is unknown (in particular, it
might be hysteretic).

At last, it is worthy to note that the same model based
on Eq. (1) describes the underdamped dc-driven charge-
density-wave (CDW) system in the case when the CDW's

The analytical investigation reported in this paper was
stimulated by numerical simulations of Ustinov, which
demonstrated that, in the region where the "tachyonic"
wave train is unstable, the I- V characteristic of the model
of the LJJ based on Eq. (1) departs from its usual branch
given by Eq. (2). The break of the I Vchar-acteristic at
f =f„,predicted analytically in the present work, seems
in accord with the results of the simulations. In the re-
gion f )0, (f„f)lf„——1, where the analytical ap-
proach based on the expansion of Eq. (1) in powers of the
disturbance amplitudes is irrelevant, the preliminary
simulations demonstrated chaotic dynamics of the dis-
turbed wave train. It is quite feasible that the bifurcation
considered in this work is but the first link in a chain of
bifurcations leading to dynamical chaos. This issue
deserves further investigation.
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