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Density dependence of the intramolecular distance in solid H2. A. Spectroscopic determination
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%e present an analysis of the measurements of the roton bands in p-H2 at T=6 K. The
quadrupole-quadrupole interaction gives the dominant anisotropic contribution up to at least 40
GPa and leads to a splitting of the J=0~2 rotational transition into three equally spaced
branches. In the framework of the Van Kranendonk theory, the efFect of the anisotropic interaction
can be accounted for and the remaining variation of the roton frequency is then related to the
change of the bond length of the H& molecule, R;„„,. The present determination of R;„,„, is semi-

quantitatively valid but points to an interesting variation, with a minimum around 30 GPa. By
analogy with measurements done on Iz and Br2, and with ab initio calculations, this demonstrates
the importance of charge-transfer interaction in dense H2, even at pressures which are far from the
regime of molecular dissociation.

It was predicted long ago that a diatomic molecular
solid will progressively lose its molecular character under
pressure, ultimately becoming an atomic metal. ' This
phenomenon, called molecular dissociation, has been ex-
tensively studied in solid I2, and observed in IBr, HI,
and Br2. In these cases, it has been found that the
molecular dissociation is due to a charge transfer from
the intramolecular bond to the intermolecular region
which takes place when the intermolecular distance be-
comes roughly equal to the intramolecular bond length.

Such a transition still remains to be seen in dense solid
H2,' the molecular dissociation of H2 is probably now
within experimental reach. Encouragingly, recently two
groups have reported a phase transition around 150 GPa
in solid H2 (Refs. 6 and 7) which was attributed to the
molecular metallization by band overlap. Optical mea-
surements of reAectivity have been used as evidence of
metallization at 149 GPa, However other measurements
to 230 GPa do not support this contention. Thus, at the
present time there does not exist direct evidence for the
experimental realization of metallic molecular hydrogen.

The knowledge of the structural properties of molecu-
lar H2 at very high density is crucial for detailing the
transition to its high pressure metallic form. The crystal
structure and the equation of state have been measured
up to 31 GPa by x-ray' and neutron" diffraction of sin-
gle crystals of H2 and of D2. The hcp structure was then
shown to remain stable up to 150 GPa, from 77 to 300 K,
by the continuity of the Raman active transverse optical
phonon model. ' But no information could be obtained
on the evolution of the intramolecular bond length,
R;„«,. Direct determinations by x ray, used for I2, IBr,
and Br2, are impossible and neutron diffraction would
require data with an accuracy far beyond what can be ob-
tained in a diamond anvil cell (DAC). Fortunately, due
to its small moment of inertia, the H2 molecule can still

be considered as a free rotor even in its solid phase.
Therefore this paper aims to give a spectroscopic deter™
mination of the intramolecular bond length in solid H2 up
to 40 GPa. Below, we shall analyze the rotational So(0)
(J=0—+2) Raman line of solid parahydrogen (p-H2),
which has been measured at 5 K up to 54 GPa by Silvera
and W'ijngaarden. '

At low pressure in solid p-H2, only the J=O rotational
level is thermally populated and the J =0—+2 rotational
transition is observable. Due to the anisotropic interac-
tion between H2 molecules, this excitation is delocalized
and the coherent rotational motions of the molecules in
solid hydrogen give rise to rotational energy bands. In
solid hcp, 10 roton modes exist for any value of wave vec-
tor K. The even states at K=O are Raman active and
their fivefold degeneracy is partially lifted in the solid.
As a result, the J =0—+2 transitions, called the So(0)+
transitions, can be observed by Raman scattering as three
spectral lines. The low energy level, corresponds to
m =+1, the middle one to m =+2, and the higher one to
m=O. This was first interpreted by Van Kranendonk'
with a first-order perturbation theory by taking into ac-
count the electric quadrupole-quadrupole interaction,
EQQ, which is the only significant anisotropic interaction
at low density, between all pairs of molecules distributed
on an hcp lattice.

The evolution of the three branches, v(So+ (0)), of the
roton band has been measured up to 54 GPa at 5 K by
Silvera and Wijngaarden. ' These measurements on p-H2
have recently been extended to 167 GPa in which an
orientational order transition has been observed at 110
GPa. ' For the purpose of this paper we will only consid-
er the data below 40 GPa, that is in the region where it
seems that the features of the Van Kranendonk theory
are applicable. Here, the molecules are still freely rotat-
ing in an hcp crystal and the perturbation by anisotropic
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v(Sp (0) ) =v+ a c224+c Eppp+ ep2p

+dme222+AEm+AEm . (2)

The e; k is the contribution due to the V;.k term of the an-
isotropic potential. For an ideal rigid hcp lattice, e2o2
and @222 should be equal to zero; nonvanishing contribu-
tions to these terms can be caused by lattice deforma-
tions, either steming from lattice vibrations or from devi-
ations from the ideal c/a ratio. Consequently, these two
terms are expected to be quite small in dense H2 and will
be neglected in the following. At low pressure, the
three-body term hE is due to the energy of quadrupole
induced dipoles, resulting in a small effect with less than
10% splitting between the various m levels. The roton
anharmonicities term, AE, is the leading contribution
of second-order perturbation theory. This term should be
proportional to A&24/B, where B is the rotational con-

interactions splits the So(0) rotational level into three
branches, roughly equally spaced. Also the value of the
splitting at 40 Cxpa (40 cm ') is still much smaller than
the average roton energy level (356 cm ') which means
that there is no appreciable mixing of other J rotational
states, as supported experimentally by the fact that the
orientational order transition takes place at a much
higher pressure, P= 110 GPa.

With increasing pressure, in addition to the EQQ in-
teraction, other components of the anisotropic interac-
tion are expected to become important, mainly that due
to repulsive charge overlap. ' The most general expres-
sion for the anisotropic intermolecular forces between
two hydrogen molecules can be written'

V„(R)= g e, (R) ga Y( (co, )YI (co~) .
i =1I,12 m

Because of the homonuclear character of the molecules,
only even values of I& and l2 occur. The ab initio poten-
tial of Schaefer and Meyer, ' which was fitted to pair
measurements by Schaefer and Kohler, ' was recently
shown to be a very good representation of the anisotropic
H2 interaction. If it is expanded in spherical harmonics
as in Eq. (1), only the terms with l, + Iz (4 are
significant; this expansion can be rewritten in terms of the
eigenfunctions of the total internal rotational angular
momentum and the coefficient V; J k have been tabulated
on a grid of intermolecular distances. ' Van Kranendonk
and collaborators ' have developed a theoretical model to
calculate the effect of such an anisotropic interaction on
the J =0~2 rotational transition. It is sufficient here to
recall the main results of this derivation and the reader is
referred to extensive reviews for more details. ' Many
anisotropic effects can modify the rotational Sp(0) transi-
tion, among which the major contributions are (a) the in-
teraction between a molecule and the crystal field; (b) the
interaction between pairs of molecules; (c) the three-body
interactions between molecules; and (d) the roton anhar-
monicities.

In a perturbation treatment, these various contribu-
tions can be added and one arrives at the following ex-
pression for the roton frequencies:

stant, and it does not lift the degeneracy of the m levels at
K=O. Still, the evolution of AE with density is prob-
lematical. At P=O GPa, AE =0.166 cm ' and since
the EQQ interaction is the dominant term of V2z4, its
evolution should scale as ( Vo/V)' which would give at
40 GPa a value of 33 cm ' which is nearly equal to the
measured total shift of the roton level. This problem was
already pointed out by Wijngaarden because this term,
being inversely proportional to the rotational constant 8,
should also give a strong isotopic difference between H2
and D2 which is not observed experimentally. Probably
with density this term is compensated by higher order
terms of the perturbation expansion. The contribution of
hE and AE are then difficult to estimate with density.
We circumvent this problem by only using low-density
data where these terms do not have a significant impact
on the results.

We can now rewrite Eq. (2) in the simpler following ex-
pression:

v(So+ (0)) vo+a ~224(p)+~ (p) (3)

with a+2=1, a+, = —4, and ap=6. e, (p) is the sum of
@220, AE, and AE which all have a positive sign and so
e, (p) should be a positive increasing function of the den-
sity p. We finally note that in the presence of the com-
plete anisotropic interaction of dense H2, the J=2 roton
is equally split into three branches, as obtained experi-
mentally to a good approximation, up to 40 GPa. '

The mean frequency of the triplet v, is given by

v, =
—,
' g v(Sp (0)) =vp+e (p) .

m= 2, 2

Eo =hcvp is the energy of the Sp(0) rotational level of the
H2 molecule free rotor only perturbed by the isotropic
crystal field. The total width, 6, of the roton branch is
easily obtained from Eq. (3) and amounts to

6=v(Sp (0) )p v(Sp+ (0) )
&

= 10E2p4(p )

6 is thus only related to the V224 term of the anisotropic
potential. From Schaefer and Kohler, ' this term is
essentially dominated by the EQQ interaction which even
at intermolecular separations corresponding to 40 GPa
contributes by 96%%uo of the anisotropic interaction. In this
case, 6 should be proportional to Q~/R 5I, where Q is the
quadrupole moment of the H2 molecule and R& the
nearest-neighbor distance. For rigid quadrupoles, Qo,
the variation of b. should consequently scale as ( Vo/V) ~

and with the experimental x-ray equation of state' one
can easily calculate the evolution of 6 with pressure.
This calculation is compared in Fig. 1 to experimental
data. The agreement is good up to 7 GPa but above this,
the calculation largely overestimates the measurements.
In fact there is a change in the intramolecular distance,
as will be seen below, which should also affect the quad-
rupole moment Q. With the value of the intramolecular
distance obtained below, we have estimated the variation
of the quadrupole moment from the calculations of Poll
and Wolniewicz. The evolution of 5 now scales as
( Vp/V) (Q/Qp) and the agreement with experiment is
improved. Still, above 12 GPa, experimental 6 is small-
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tions, e, (p). This last term is small at low density and its
evolution with pressure is unknown. We can only say
that it is of positive sign. We will make the hypothesis
that this term is negligible over the whole density range
considered here. As will be seen below, Ep

=6h /
(8m. pro), where ro is the mean intramolecular distance
averaged over vibrational state. Consequently the hy-
pothesis of neglecting e, (p) comes down to calculating a
lower bound for the intramolecular distance.

In the following we then assume that the two protons
of an H2 molecule in the domain solid are interacting
through a Morse potential which is a function of three
parameters: the location of the minimum r„ the poten-
tial depth 2), and the range parameter a. The vibrational
and rotational energy levels are then parametrized by the
two quantum numbers v and J and are given by the fol-
lowing expression:

FIG. 1. Pressure dependence of the width, 6, of the rotation-
al So(0j band in solid p-H2 at 5 K. The stars identify the experi-
mental data; the squares the evolution of 6 if we assume that
the anisotropic interaction is due to rigid quadrupoles. The tri-
angles represent the calculation which considers the variation of
the quadrupole moment with the bond length of the H2 mole-

cule. The dots represent the calculations when screening effects
are also considered.

E,J = co( v + —,
'

)
—y, cv( v + —,

'
)

+(B,—a, (v + —,'))J(J+1)
D,J (J+1—) (6)

The energy Eo of the So(0) transition, which corresponds
to tv=0 and AJ =0~2, is expressed by

er. That probably comes from the fact that in dense solid
H2 there exist many-body electronic effects which can
lead to a screening of the EQQ interaction. Such effects
are dificult to calculate but we can try to estimate them
in a mean field way by dividing the EQQ interaction by
the dielectric constant of the medium which was estimat-
ed from the high pressure measurements of the refractive
index n. In this approximation, 6 thus scales as
( Vo/V) (Q/Qo) (no/n)'~ and we can see in Fig. 1 that
the agreement with experimental 6 is reasonably good
over the whole density range considered here.

This validates the above analysis which led to the re-
sult that the V224 term of the anisotropic interaction
(essentially the EQQ interaction) is mainly responsible for
lifting the degeneracy of the I rotational levels into three
branches. This also corroborates two recent works, the
NMR measurements of normal Hz up to 7 GPa (Ref. 26)
and the calculation of the dynamics and phase transition
in dense Hz and D2 up to 100 GPa, which both have
shown that the EQQ interaction dominates the anisotrop-
ic properties of dense H2. In the second paper the effect
of the reduction of the quadrupole moment, which fol-
lows from a shortening of the intramolecular bond, was
taken into account for improving the agreement with ex-
periment. In this paper we show that screening effects
also have to be considered.

The aim of this analysis is to take out the effect of the
anisotropic interaction in order to obtain the So(0) rota-
tional transition of the free H2 rotor. Its energy
Ep hc vo is then directly related to the change of the in-
tramolecular potential due to the isotropic intermolecular
interactions. From Eq. (4) the mean value of the triplet is
equal to vo plus another term due to anisotropic interac-

=6(B,—a, /2) —36D, , (7)

where

and

B,=h/(8vr I, ), I, =pr, , D, =4B, /co

co=a (ZS/p)'~ /2~, y, =hco, /42)

a, =3h iv(1/(ar, )
—1/(ar, ) )/(4)Mr, gl) .

The energy E, of the Q, (0) vibrational transition,
hv =0~1 and AJ=O, is also simply related to the pa-
rameters a and 2) of the Morse potential through the re-
lation

h

2m

1/2
2a 2) ha

2&p

So the measurements of the energy of the Qi(0) vibra-
tional transition in solids of para-H2 and of ortho-D2 are
expressed by two relations given by Eq. (8) with their
respective different reduced masses p, from which the
evolution of the parameters a and 2) can be inverted, as
was done recently by Ashcroft. Knowing that, the equi-
librium intramolecular distance r, is obtained from the
nonlinear equation (7) and the energy level of the rota-
tional Si)(0) transition, Eo, is determined from the experi-
mental values of the triplet, as explained above, that is
from Eq. (4) with e, (p)=0.

Since the period of vibration is very small compared to
the period of rotation, it is plausible to use a mean Bo
value of the rotational constant for the lowest vibrational
states. From Eq. (7), it is given by
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Bo=B,—a, /2= A l(8vr pro ) .

In this case, ro is the mean value of the intramolecular
distance for the lowest vibrational state whereas r, is the
minimum of the intramolecular potential.

In Fig. 2 we show the values of r, and ro, calculated in
the above-described procedure. As expected, the extra-
polation of the two curves to P=O gives values of r, and
ro which are 0.4% greater than the measured values for
the free molecule, in agreement with the fact that in the
low-pressure solid the dispersion forces are known to
stretch the H2 molecule. ' However, the evolution with
pressure of the intramolecular distance is quite surpris-
ing. First, as expected for a molecule compressed by a
crystal field, it starts to decrease with increasing pressure,
but then around 30 GPa its evolution levels off and then
starts to increase again. In the last part of this paper we
will try to understand the physical reasons of such a be-
havior by comparing it to the measurements on other dia-
tomic molecular solids, Iz and Br2, and also to the
ab initio calculations in dense solid H2. Before that, it
should be noted that since the calculated values of r, and
ro are lower bounds of their real values, if e, (p) were not
negligible contrary to what has been assumed above, the
shape of the evolution of R;„„,would still be the same
and its minimum would occur at an even lower pressure.
Also, as seen in Fig. 2, thy difference between ro and r,
increases with pressure and this indicates that the bond-
ing force is becoming more anharmonic under pressure,
in agreement with the quantum Monte Carlo simula-
tions. '

The mean intramolecular distance ro has been mea-
sured for molecular solids I2 and Br2 up to their molecu-
lar dissociation by x-ray diffraction. In x-ray measure-
ments the uncertainty is quite large and amounts to 0.05
A, and so within these error bars no appreciable change
of ro could be detected in both systems. ' However, pre-

0.76
~~~ r0. average over vibration

r, : minimum of potential

liminary energy x-ray absorption fine structure (EXAFS)
measurements on Br2, which should be a very sensitive
method, indicate that ro starts to decrease, hits a plateau,
and then ro increases again, when approaching the
molecular dissociation. Still, the curve obtained in this
preliminary measurement is only qualitatively correct
since the data acquisition and the treatment of the spec-
trum need to be improved for more quantitative results.
Further experiments are planned for the coming year.
These experimental determinations of ro in different
molecular diatomic solids are compared in Fig. 3 to the
present spectroscopic determination of ro in solid p-H2,
the relative variation of ro in arbitrary units is plotted as
function of the reduced density p*=plp, where p is
the density of the molecular dissociation given by the
Herzfeld criterion. ' It is seen that the evolution of ro
in solid Br& is similar to the one determined here in solid
p-Hz. In general, it is expected, from perturbation calcu-
lations, that ro should decrease with increasing density,
that is when the molecule is compressed by the crystal
field. It could happen that with the change of the
anharmonicity of the intramolecular potential, although
the equilibrium bond length, r„ is decreasing, its average
value over vibration, ro, increases. But this is not the
case here since as it can be seen in Fig. 2, r, and ro are
both increasing. In fact, the following explanation
developed for the analysis of the measurements on I2
should also be valid here. On compression of the
molecular solid, the electronic charge density is going
from the intramolecular bond to the intermolecular re-
gion and therefore the bonding of the molecule dimin-
ishes. The evolution of ro is consequently the result of
two competing effects: the compression of the molecule

I& X rays
~~ Br, EXAFS~~~~ H& Spectroscopy

0.75 -'

0.73 —O. 0$ 1.0

0.72 I

i0 20 30
P R~ ss vRv. ((:Pa)

40

FIG. 2. Spectroscopic determination of the intramolecular
distance of H2 in p-H2 solid at 5 K. The dots identify the
minimum of the intramolecular potential and the triangles the
mean value of the lowest vibrational state.

FIG. 3. Qualitative variations of the intramolecular distance
r of various molecules in their dense solids. The relative varia-
tion to the gas value r~ is plotted in arbitrary units versus p, the
density divided by the density of the molecular dissociation.
The dots identify the x-ray measurements of I2 (Ref. 2); the
squares are the EXAFS measurements of Br2 (Ref. 32); the tri-
angles are the present spectroscopic determination.
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FIG. 4. Relative variation of the minimum of the intramolec-
ular potential of H&, r„ to its gas value, r, . The stars identify
the present spectroscopic determination; the dots are the
Hartree-Fock type calculation (Ref. 38); the squares are the
quantum Monte Carlo calculations (Ref. 31); the triangles are
the LDA calculations (Ref. 39).

FIG. 5. Variation of the intramolecular distance of the H2
molecule in the solid under very high pressure. The squares are
the quantum Monte Carlo calculations (Ref. 31); the dots identi-
fy the present spectroscopic determination and the star is a hy-
pothetical value as explained in the text.

which tends to decrease it and the progressive loss of the
intramolecular bonding by charge transfer to the inter-
molecular region which tends to increase it. As seen in
Fig. 3, in solid I2, charge transfer is dominant over the
whole solid density. In solid Br& it becomes important
for reduced densities greater than 0.8. Surprisingly in
solid H2 it appears to be significant for reduced densities
even as low as 0.4, which are quite far from molecular
dissociation. It is also interesting to remark that the
minimum of the intramolecular bond length corresponds
to the maximum of the frequency of the vibronic Q, (0)
mode. The two effects appear to be correlated and re-
lated to charge transfer, which seems to invalidate the re-
cently proposed interpretation of the maximum of the
Q& (0) curve in terms of anharmonic effects.

In Fig. 4 we compare our spectroscopic determination
of the relative variation of r, to its calculation by the
most sophisticated ab initio methods. For pressure
below 20 GPa, the spectroscopic determination is in very
good agreement with the Hartree-Fock type calculation
of Raynor. In this density range the molecule is mainly
compressed by the crystal field and the molecular basis
set of the Hartree-Fock calculation is particularly suited
for that. But at higher pressures, charge transfer efFects
come into play and they are not well described in such a
calculation since it presupposes that the electrons are
principally localized on closed-shell molecular units. Fi-
nally, the large discrepancies between these various
theoretical calculations [Hartree-Fock, 8 quantum Monte
Carlo, ' and local density approximation (LDA) ] stress
the fact that although H2 has the simplest electronic
configuration, its quasiexact description by ab initio
methods is certainly far from being achieved.

In order to extrapolate our determination of ro to
higher pressures, we have made the following assump-
tions: (i) the structure mhcp in which the molecules are
ordered along the c axis is stable near the molecular dis-
sociation, as suggested from recent experimental mea-
surements' and calculations; (ii) the value at the molec-
ular dissociation is taken to be equal to 2 cm /mole,
which is the value given by quantum simulations ' and
the Herzfeld criterion; (iii) the molecular dissociation
occurs when the intramolecular distance is of the same
order as the nearest-neighbor H-H intermolecular dis-
tance. Assuming various c/a ratios between 1.63 and
1.58, the intramolecular distance obtained in this way is
always of the order of 1.02 A, which is plotted in Fig. 5

as a star. The trend of the evolution of r„over the whole
pressure domain of the molecular Hz solid is then very
similar to the one obtained by quantum simulation. '

Ree and Bender' have calculated by the configuration
integral (CI) method the dependence of the Hz-H2 pair
potential on the bond length and obtained that r, should
shrink as the two Hz molecules come closer. The in-
crease of r, observed above 30 GPa apparently contra-
dicts this calculation. However, in dense solid H2 many-
body efFects have to be considered and probably could
resolve this disagreement. Still, it remains to understand
why charge transfer between two H2 molecules is taken
place for such low reduced densities in solid Hz.
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