Lattice instabilities near the critical V-V separation for localized versus itinerant electrons in $\text{LiV}_{1-\nu}M_{\nu}O_2$ (M = Cr or Ti) and $\text{Li}_{1-\nu}VO_2$

J. B. Goodenough, G. Dutta, and A. Manthiram

Center for Materials Science and Engineering, ETC 5. 160, University of Texas at Austin, Austin, Texas 78712-1084

(Received 15 November 1990)

From the compositional dependences of the lattice parameters in the system $\operatorname{LiV}_{1-y}\operatorname{Cr}_y\operatorname{O}_2$, a critical V-V separation $R_c = 2.90 \pm 0.01$ Å has been determined for an array of octahedral-site V³⁺ ions sharing common octahedral-site edges with six like nearest neighbors. A first-order transition on passing from the itinerant-electron regime $R < R_c$ to the localized-electron regime $R > R_c$ was also established. In LiVO₂, the electron instability associated with an $R \approx R_c$ is manifest by V₃ trimer formation at temperatures T < 490 K with $R < R_c$ within a trimer and $R > R_c$ between trimers. Introduction of a mixed valence in $\operatorname{Li}_{1-x}\operatorname{VO}_2$ results in a two-phase mixture in the interval $0 < x \leq 0.12$; the metastable $\operatorname{Li}_{1-x}\operatorname{VO}_2$ phase in the interval $0.12 \leq x \leq 0.33$ disproportionates above a $T_t' \approx 550$ K into LiVO₂ and Li[V₂]O₄. Comparisons are made between the instabilities associated with a $W \approx U$ in the copper oxide superconductors and those in the layered and spinel vanadium oxides. In particular, attention is called to evidences for dynamic charge-density fluctuations that appear to be associated with superconductivity in the copper oxides, but not in the vanadium oxides.

I. INTRODUCTION

LiVO₂ crystallizes in an ordered rocksalt structure with Li^{+} and V^{3+} ions occupying alternate (111) planes. Like the antiferromagnetic semiconductor La_2CuO_4 , the compound LiVO₂ has a half-filled, essentially twodimensional (2D) 3d band. In addition, the on-site correlation energies U are large enough to inhibit the formation of a negative-U charge-density wave (CDW) in any known vanadium or copper oxide. In a negative-UCDW, electrons are transferred from one subset of like cations to another as in BaBiO₃ where $2Bi(IV) \rightarrow Bi_{I}(IV-\delta) + Bi_{II}(IV+\delta)$. On the other hand, La_2CuO_4 has a bandwidth W arising from nearly 180° Cu-O-Cu interactions whereas LiVO₂ has a bandwidth arising from V-V interactions across shared octahedralsite edges.

In the superconductor compositions $La_2CuO_{4+\delta}$ and $La_{2-x}Sr_xCuO_4$, oxidation of the CuO_2 sheets beyond $(CuO_2)^{2-}$ creates a condition $W \approx U$, and it has been conjectured¹ that the origin of the high- T_c superconductivity resides in strong electron-phonon interactions associated with lattice instabilities that inevitably arise where the condition $W \approx U$ is present. Others² have also conjectured that there are inherent lattice instabilities in the superconductive copper oxides, but they attribute them to a Van Hove singularity at, or near, the Fermi energy. Of course, there have been many other speculations concerning the mechanism of high- T_c superconductivity that ignore any role associated with lattice instabilities.³ It is precisely for this reason that we focus attention here on the question of lattice instabilities in compounds with a bandwidth $W \approx U$.

 $LiVO_2$ exhibits a first-order structural transition with an order of magnitude increase in the magnetic susceptibility on increasing the temperature through $T_t \approx 490$ K (Ref. 3); this transition has been interpreted⁴ to be due to formation of a CDW created by a clustering of the V atoms within a V plane into V₃ trimers, and Bongers⁵ has provided experimental evidence to support this interpretation. In this paper we argue that the V-V separation within a basal plane of LiVO₂ is $R \approx R_c$, where R_c is a critical separation corresponding to a $W \approx U$. In LiVO₂ and $Li_{1-x}VO_2$, the lattice displacements that express the instability inherent in a $W \approx U$, i.e., $R \approx R_c$, are static whereas in the copper oxide superconductors they are postulated to be dynamic. Whether this difference is due to metal-metal interactions in the one case and metaloxygen-metal interactions in the other remains an open question. However, recent magnetic-susceptibility⁶ and NMR data⁷ on the spinel system $Li_x Zn_{1-x} [V_2]O_4$ indicate that the V^{3+} ions in $Zn[V_2]O_4$ and Zn-rich regions of $Li_x Zn_{1-x} [V_2]O_4$ may exhibit below 500 K a dynamic V-V clustering with $R \rightarrow R_c$. What we are interested in establishing is the appearance of inherent lattice instabilities associated with a $W \approx U$; we believe these are significant whether they find expression in a static CDW or in dynamic fluctuations with/without superconductivity. If lattice instabilities are an intrinsic aspect of a system with $W \approx U$, then it is not necessary to invoke a Van Hove singularity to account for the high- T_c superconductivity found in the copper oxides with $W \approx U$.

We report here an investigation of the systems $\operatorname{LiV}_{1-y}\operatorname{Cr}_yO_2$ and $\operatorname{LiV}_{1-y}\operatorname{Ti}_yO_2$ to determine a critical V-V separation R_c for the transition from strongly $(R > R_c, W < U)$ to weakly $(R < R_c, W > U)$ correlated electrons in a V 3d band associated with octahedral-site V³⁺ ions sharing common octahedral-site edges with six like nearest neighbors in an oxide. Moreover, we demonstrate that the transition is not smooth, but first-order, in support of the contention that lattice instabilities are implicit in any system where $R \approx R_c$, i.e., $W \approx U$. We also

distinguish the value of R_c obtained for a single-valent system from the value of R at which the transport properties change, in a mixed-valent system, from smallpolaron behavior with a motional enthalpy $\Delta H_m > 0$ to transport where $\Delta H_m = 0$. However, identification of the latter may be complicated by the formation of distinguishable electronic pathways in a system made mixedvalent by doping.

In addition, we demonstrate the existence of a distinguishable low-temperature phase with a different transition temperature T'_t in the system $\text{Li}_{1-x}\text{VO}_2$ obtained by room-temperature extraction of Li from LiVO₂. The transition in LiVO₂ is reversible on thermal cycling through T_t ; heating $\text{Li}_{1-x}\text{VO}_2$ (0. $12 \le x \le 0.33$) through its transition temperature $T'_t \approx 550$ K results in the disproportionation reaction⁸

$$\operatorname{Li}_{1-x} \operatorname{VO}_{2} \rightarrow (1-2x) \operatorname{LiVO}_{2} + x \operatorname{Li}[V_{2}]O_{4}, \qquad (1)$$

which is irreversible. We present the compositional dependences of T_t and T'_t and the enthalpy changes ΔH on crossing T_t and T'_t ; we also argue that they support a model in which T_t and T'_t are determined by the change in lattice energy due to the structural change rather than by the enthalpy ΔH of the transition.

II. EXPERIMENTAL

The $\text{LiV}_{1-\nu}M_{\nu}O_2(M=\text{Ti or Cr})$ samples were obtained by firing an intimate mixture of required quantities of Li₂CO₃, V₂O₅, and Cr₂O₃ or TiO and TiO₂ under flowing H_2 atm first at 770 K for 5 h to release CO_2 and then at 970 K for 15 h. Although this firing schedule leads to single-phase material for y = 0, it also produces traces of impurity phases for y > 0. Therefore all products with y > 0 were further fired in flowing N₂ at 1020 K for 24 h for M = Cr and at 970 K for 15 h for M = Ti; they were then quenched in N₂ atm to ambient temperature. The additional heat treatment yielded single-phase samples for $0 < y \le 0.2$ with M = Ti. The end member LiCrO₂ was prepared by firing required quantities of Li₂CO₃ and Cr_2O_3 under flowing N₂ at 770 K for 5 h, 970 K for 15 h, and finally 1070 K for 24 h. Since commercial Cr₂O₃ is too refractory, a "soft" Cr₂O₃ was used. The soft Cr₂O₃ was obtained by the precipitation of $Cr_2O_3 \cdot xH_2O$ gel from $Cr(NO_3)_3 \cdot \xi H_2O$ with NH₄OH and driving off the water from the gel at 600 °C for 1 h.

The $\text{Li}_{1-x} \text{VO}_2$ samples with $0 \le x \le 0.33$ were obtained by extracting Li from LiVO₂ at room temperature with a calculated amount of Br₂ (0.05 N in chloroform solution).^{8,9} Since oxidants absorbed on the surface of LiVO₂ are known to extract Li from the bulk at ambient temperature,⁸ exposure to air was avoided; the samples were stored in an argon-filled dry box immediately after preparation.

All samples were characterized by x-ray powder diffraction recorded with a Philips diffractometer and Cu $K\alpha$ radiation. The Li content was determined by atomic absorption with a Perkin-Elmer 1100 atomic absorption spectrometer after calibrating the instrument with a lithium carbonate solution of known concentration. Differential scanning calorimetry (DSC) plots were recorded in N_2 atm at 10 °C min⁻¹ with a Perkin-Elmer Series 7 thermal analysis system.

III. A CRITICAL V-V SEPARATION R_c

A. Review of the problem

The V³⁺ ions of LiVO₂ occupy octahedral sites sharing common octahedral-site edges with z = 6 like near neighbors in a close-packed V³⁺-ion plane. Each V³⁺ ion has two 3d electrons; the trigonal crystalline field removes the t_2 -orbital degeneracy to create an empty a_1 orbital normal to the plane and twofold-degenerate e_{π} orbitals directed toward nearest-neighbor V³⁺ ions within a basal plane. Thus the crystal symmetry removes an orbital degeneracy to create a narrow, half-filled, two-dimensional (2D) 3d band of e_{π} parentage. The band is twofolddegenerate, and the bandwidth—in tight-binding theory $W \approx 2zb$ —varies exponentially with the V-V separation R via the matrix element

$$b \equiv (\psi_i, H'\psi_j) \approx \varepsilon(\psi_i, \psi_j) , \qquad (2)$$

where H' is the perturbation of the e_{π} -electron potential at \mathbf{R}_i due to the presence of a neighboring like atom at \mathbf{R}_i , $\hat{\mathbf{\epsilon}}$ is a one-electron energy, and (ψ_i, ψ_i) is an overlap integral. A $(\psi_i, \psi_i) \sim \exp(-R/\rho)$, where ρ is a parameter of units of R, arises from the overlap integral for a V-V interaction across an interatomic distance R. At low temperature $T < T_t$, the formation of V₃ trimers, Fig. 1, would change the translational symmetry so as to split the 2D half-filled V 3d band in two; an $R < R_c$ within a cluster and an $R > R_c$ between clusters would result in the capture of conduction electrons within molecular orbitals. A change in translational rather than point-group symmetry is taken⁴ to signal an $R \leq R_c$ at temperatures $T > T_t$, and a more recent report¹⁰ that strong infrared bands appearing below T_t disappear on crossing T_t supports this view. Bongers³ reported that on increasing the temperature through T_t , the axial c/a ratio (hexagonal basis) decreases from a=2.83, c=14.87 Å to a=2.89, c = 14.48 Å. This observation renders R = 2.89 Å $\lesssim R_c$.

Based on the idea that V_3 trimers are formed below T_t in LiVO₂ because of an $R \leq R_c$ and the observation of localized V^{3+} -ion moments $(R > R_c)$ in the normal spinel $Mn[V_2]O_4$, it was thought possible to determine experimentally the room-temperature value of R_c in the vanadium oxides for an array of octahedral-site V^{3+} ions sharing octahedral-site edges with z = 6 nearest like neighbors.¹¹ In such a determination, it is necessary to distinguish oxides containing vanadium atoms with a singlevalence state from those with vanadium in a mixedvalence state as occurs, for example, in Li[V₂]O₄.

Conceptually, as R decreases to R_c in a single-valent system, the bandwidth W increases and the on-site correlation energy U decreases toward crossover where the compound changes from a magnetic semiconductor with $R > R_c$ and W < U to a metal with $R < R_c$ and W > U.¹² Increased screening of the on-site 3d-electron interactions with decreasing R creates a rapid change in U with R

FIG. 1. Proposed arrangement of atoms in vanadium planes of $LiVO_2$ (a) below T_t and (b) above T_t showing V_3 clustering below T_t .

near $R \approx R_c$, which may cause the change from $R > R_c$ to $R < R_c$ to be discontinuous via a first-order phase change. A demonstration of the character of the changeover would be instructive.

An initial attempt to determine an R_c experimentally involved a study of the normal spinels $A^{2+}[V_2]O_4$, where $A = Mg, Mn, Fe, Co, and Zn.^{11}$ In these normal spinels, an array of octahedral-site V^{3+} ions shares common edges with z = 6 nearest neighbors as in LiVO₂. However, the layered oxide LiVO₂ has a degree of freedom namely, the variation of the c/a ratio—that is not available to the cubic spinels where the $[V_2]O_4$ framework is three dimensional. All the spinels contained localized V 3d electrons, so the study only gave an upper limit of 2.97 Å for R_c , the V-V separation in Co $[V_2]O_4$.

Following the observation¹³ that Li can be inserted at room temperature into the spinel structure $A[B_2]O_4$ without perturbing the $[B_2]O_4$ framework, the ordered rocksalt Li₂[V₂]O₄ was prepared^{8,14,15} by roomtemperature Li insertion into the mixed-valent spinel Li[V₂]O₄. This "soft-chemistry" procedure allowed preparation of a single-valent spinel framework $[V_2^{3+}]O_4$ with a V-V separation R = 2.93 Å. However, Li₂[V₂]O₄ is an antiferromagnetic semiconductor, which renders $R_c < 2.93$ Å. In view of the evidence for V₃ trimer formation in LiVO₂, which has a V-V separation at T_t of 2.89 Å, it was concluded^{8,15} that the critical V-V separation is restricted to the narrow range

$$2.89 \lesssim R_{\circ} < 2.93 \text{ Å}$$
 (3)

for oxides containing octahedral-site V^{3+} ions sharing common octahedral-site edges with z=6 nearest neighbors.

On the other hand, Reuter et al.^{16,17} used infrared spectroscopy to identify a smooth transition from semiconductor to metallic behavior at $x \approx 0.55$ for $A_{1-x} \operatorname{Li}_x [V_2]O_4$ mixed-valent spinels with A = Mg or Zn. The V-V separation at this transition led to an apparent $R_c \approx 2.94$ Å for a $V^{4+/3+}$ mixed-valent system. However, the paramagnetic susceptibility of the metallic end member $\operatorname{Li}[V_2]O_4$ obeys a Curie-Weiss law typical of localized magnetic moments on the vanadium atoms but without undergoing magnetic ordering to lowest temperatures.^{15,18,19} This observation indicates that the electrons remain strongly correlated in metallic $\operatorname{Li}[V_2]O_4$ and that the transition identified by Reuter et al.^{16,17} needs further consideration. Indeed, recent experiments on the system $Li_x Zn_{1-x} [V_2]O_4$ reveal a somewhat more complex behavior. First, although the Seebeck data²⁰ were consistent with a smooth semiconductor-metal transition with increasing x in the range $0.3 < x_c < 0.4$, they could be interpreted in terms of the coexistence of two types of conductive pathways within a single atomic phase: band conduction in one and variable-range hopping in the oth-Second, magnetic-susceptibility²¹ and neutroner. diffraction²² data indicate antiferromagnetic order at lowest temperatures in $Zn[V_2]O_4$ with a V^{3+} -ion atomic moment $\mu_v \approx (0.8 \pm 0.4) \mu_B$ and the appearance of a weak ferromagnetic component (phase) on the initial substitution of Li for Zn. Third, the magnetic-susceptibility data²¹ also revealed two distinguishable paramagnetic temperature domains, T > 500 K and $T_N < T < 500$ K, each with distinguishable Curie-Weiss parameters. For T > 500 K the parameters were typical for localized, mixed-valent V³⁺, V⁴⁺ configurations; for T < 500 K, the Curie constant C and Weiss constant Θ had larger magnitudes in Zn[V2]O4. Moreover, NMR data in the temperature range 10 < T < 300 K (Ref. 7) revealed the presence of two distinguishable electronic pathways (phases) within an atomically single-phase system $Li_x Zn_{1-x} [V_2]O_4$; a metallic pathway associated with mixed-valent V^{4+} , V^{3+} ions neighboring A-site Li⁺ ions and a semiconductor pathway associated with single valent regions of V^{3+} ions neighboring all A-site Zn^{2+} ions. The semiconductor-metal transition observed in $\operatorname{Li}_{r}\operatorname{Zn}_{1-r}[V_{2}]O_{4}$ at a critical Li concentration x_{c} was therefore interpreted to represent a percolation threshold for the metallic pathway (electronic phase). Surprisingly, the NMR data also revealed little electronic crossover between the two phases and a nonmagnetic V^{3+} -ion ground state in the semiconductor pathway (electronic phase). A nonmagnetic ground state below 400 K in the semiconductor pathway implies strong antiferromagnetic ordering within cluster fluctuations within the $[V_2]O_4$ spinel framework. The strong spin pairing within cluster fluctuations is apparently broken up by the introduction of V^{4+} ions, and this breakup of the cluster fluctuations produces a distinguishable electronic pathway that coexists with the spin-paired pathway.

The picture that emerges from these experiments is the existence of an intrinsic electronic instability associated with an $R \rightarrow R_c$ that, in a single-valent system, may be manifest as a static charge-density wave (CDW). In a mixed-valent-system, segregation into two distinguishable electronic phases within an atomically single-phase system may also occur. The two electronic phases may be statically separated where there is a mixed array of counter cations; however, it is also possible to envisage a dynamic segregation via charge-density fluctuations (CDF's) as has been postulated¹ to occur in the high- T_c copper oxide superconductors.

B. Pinpointing R_c

To narrow further the range (3) for R_c , we have returned to LiVO₂ and inquired at what concentration y of Cr in $\operatorname{LiV}_{1-y}\operatorname{Cr}_y O_2$ a transition occurs from $R < R_c$ to $R > R_c$. Figure 2 shows the variation with y of the lattice parameters, c/a ratio, and the cell volume at room temperature and at $250^\circ > T_t$. In the compositional range $0 \le y \le 0.25$, the substitution of a smaller $(r_{\rm Cr} = 0.615 \text{ Å}) \text{ Cr}^{3+}$ ion for a V^{3+} ion $(r_V = 0.64 \text{ Å})$ causes an anomalous increase with y in the room-temperature a parameter and volume; at $T \approx 250^\circ \text{C} > T_t$ these parameters decrease as expected, but more rapidly than in the interval 0.3 < y < 1.0. Note that the strong temperature dependence of the parameters in the region $0 < y \le 0.25$ is due to the traversal of T_t between room temperature and 250°C .

The discontinuity in the variations with y of lattice parameters and cell volume at $y \approx 0.25$ suggests that the compositions with $0 \le y \le 0.25$ belong to a phase electronically distinguishable from the one for compositions with $0.3 \le y \le 1.0$. This conclusion is supported by the fact that, although samples with $0 \le y \le 0.25$ and

FIG. 2. Variations of lattice parameters and cell volume with y for LiV_{1-y}Cr_yO₂; shaded area indicates a two-phase region. The open and solid symbols refer to the data recorded, respectively, at room temperature and 250 °C.

 $0.35 \le y \le 1.0$ could be made easily, the y = 0.3 sample was difficult to obtain as a single-phase material.

An octahedral-site Cr^{3+} ion carries a localized ${}^{4}A_{2g}$ 3*d*-electron configuration $a_{1}^{1}e_{\pi}^{2}e_{\sigma}^{0}$, where the two e_{σ} orbitals are σ bonding whereas the a_1 and e_{π} orbitals have t_2 orbital parentage in the absence of a trigonal component to the crystalline field. The e_{π} - e_{σ} hybridization increases with the strength of the trigonal component of the crystalline field. In LiCrO₂ these localized configurations can be expected to impart a Cr³⁺-ion magnetic moment of approximately $3\mu_B$ with antiferromagnetic Cr-Cr superexchange interactions within a plane; there is no clustering into Cr₃ trimers and the condition $R > R_c$ is applicable in LiCrO₂. In the system $\text{LiV}_{1-y}\text{Cr}_{y}\text{O}_{2}$, the Cr^{3+} ions retain their localized configurations, and the condition $R > R_c$ holds for the Cr-V interactions. Reduction of the mean number \overline{z} of near-neighbor V-V interactions at a V^{3+} ion reduces the tight-binding bandwidth $W \approx 2\overline{z}b$, where b is given by Eq. (2). As a result, R_c decreases with increasing y more rapidly than does the V-V separation R at $T > T_t$; this decrease can be expected to be enhanced by any induced localization of the V 3d electrons at V^{3+} ions neighboring a Cr^{3+} ion. Consequently, the critical V-V separation R_c must be traversed with increasing y at some critical composition $y = y_c$. Therefore we conclude that the phase transition that occurs on crossing the compositional range

$$0.25 \le y_c \le 0.3$$
 (4)

represents a transition from $R < R_c$ to $R > R_c$ at the V³⁺ ion array. The fact that the transition is not smooth, but appears to be separated by a narrow two-phase region, has two important implications:

(i) The localized-electron (strongly correlated) and itinerant electron (weakly correlated) regimes for a single-valent array represent two thermodynamically distinguishable states.

(ii) At $R \approx R_c$, which corresponds to a $W \approx U$, a single-valent system is intrinsically unstable relative to a disproportion into phases with $R < R_c$ and $R > R_c$.

The lattice-parameter variations with y for $y > y_c$ appear to obey a normal Végard's law. Extrapolation of the room-temperature a parameter to y = 0 from the localized-electron domain $0.3 < y \le 1.0$ gives an upper limit for R_c of 2.905 Å. Given a lower limit of 2.89 Å in LiVO₂ itself, we believe the data demonstrate a critical separation distance

$$R_c = 2.90 \pm 0.01 \text{ \AA}$$
 (5)

The volume dilatation predicted to occur on passing from an $R < R_c$ to an $R > R_c$ (Ref. 12) is present, but somewhat obscured by the crystallographic transformation occurring in the $y < y_c$ ($R \gtrsim R_c$) phase; a similar discontinuous volume increase has been found to occur in several copper oxide systems on passing from the superconductor to the antiferromagnetic phase.^{23,24} The large volume expansion on passing from $T < T_t$ to $T > T_t$ reflects the first-order character of that transition; the data suggest that in LiVO₂ the lattice vibrations just above T_t are probably anomalously large at 250 °C in anticipation of the structural transformation.

In the itinerant-electron phase $(0 \le y < y_c)$, the remarkable decrease in the *a* parameter at room temperature from its value at 250 °C reflects not only the anomalous expansion at $T > T_t$, but also an added basal-plane V-V bonding at $T < T_t$. The localized-electron configurations of the Cr³⁺ ions would not share in this basal-plane V-V bonding, so we can anticipate not only an increase in the a parameter with y despite the smaller size of a Cr^{3+} ion, but also a decrease with increasing y of both T_t and of the enthalpy change ΔH at T_t . From the DSC data of Figs. 3 and 4, it is apparent that T_t falls nearly linearly with increasing y to about room temperature at $y \approx 0.2$ whereas ΔH drops much more rapidly, falling to about a tenth of its magnitude in LiVO₂ at $y \approx 0.2$. In fact, although the lattice-parameter variation with y indicates a $T_t > 280$ K for y=0.2, we were unable to detect with DSC a phase transition in any sample with $y \ge 0.2$ down to 77 K. The enthalpy ΔH measures the difference between the change in electronic energy that drives the first-order transition and the elastic-energy change that inhibits it; the transition temperature T_t appears to be controlled by the change in the lattice energy on passing through the tran-

FIG. 3. DSC plots recorded on heating and cooling in N₂ atm at 10 °C min⁻¹ for (a) y = 0.0, (b) y = 0.1, (c) y = 0.15, and (d) y = 0.2 in LiV_{1-y}Cr_yO₂.

FIG. 4. Variations of enthalpy change ΔH and transition temperature T_t with y for $\text{LiV}_{1-y}\text{Cr}_y\text{O}_2$ in the phase $0 \le y < 0.25$.

sition. Consequently T_t remains finite throughout the compositional range $0 \le y < y_c$, disappearing discontinuously on entering the localized-electron phase $y_c < y \le 1.0$. On the other hand, ΔH drops to a small value within the compositional range $0 \le y < y_c$.

Finally, the formation of cation clusters with $R < R_c$ within a cluster (molecular orbitals) and $R > R_c$ between clusters may be considered an internal disproportionation into $R < R_c$ and $R > R_c$ distances via atomic displacements rather than by atomic diffusion. In this sense, formation of V₃ trimers is an expression of the intrinsic instability associated with a phase having $R \approx R_c$, i.e., $W \approx U$.

C. The system $LiV_{1-\nu}Ti_{\nu}O_{2}$

Unlike Cr_2O_3 , which is an antiferromagnetic insulator, Ti₂O₃ contains itinerant 3*d* electrons and exhibits a smooth semiconductor-metal transition associated with a band-edge crossing on raising the temperature.²⁵ Therefore, a Ti³⁺ ion might participate with V³⁺ ions in the formation of cation clusters. However, with only one 3*d* electron per Ti³⁺ ion, any triangular clusters containing Ti³⁺ ions would be electron deficient. Moreover, the difference in electronic potentials at the Ti³⁺ and V³⁺ ions makes less stable the participation of a Ti³⁺ ion in molecular-orbital formation with V³⁺ ions; stronger Ti-Ti interactions could become competitive. Therefore ΔH and T_t can be expected to decrease with y in LiV_{1-y}Ti_yO₂ also, but somewhat less steeply than occurs in LiV_{1-y}Cr_yO₂, and strong Ti-Ti interactions could lim-

FIG. 5. Variations of (a) lattice parameters and cell volume and (b) enthalpy change ΔH and transition temperature T_t with y for LiV_{1-y}Ti_yO₂.

it the range of solid solubility.

Indeed, x-ray powder diffraction revealed that the solid solution of Ti in $\operatorname{LiV}_{1-y}\operatorname{Ti}_y O_2$ is limited to the range $0 \le y \le 0.2 < y_c$. The variation with y of the room-temperature $(T < T_t)$ lattice parameters and cell volume is shown in Fig. 5(a); the variation of T_t and ΔH with y is shown in Fig. 5(b). In this system also, the drop in ΔH with increasing y is much more precipitous than the drop in T_t , but neither of these variables drops as steeply with y as they do in $\operatorname{LiV}_{1-y}\operatorname{Cr}_y O_2$.

Although no direct information on the value of R_c is forthcoming from this system, the data are consistent with an instability for $R \approx R_c$ that extends in this system to y=1; even the end member LiTiO₂ is reported to be contaminated with other phases such as Li₂TiO₃.²⁶

IV. THE SYSTEM LiVO₂-VO₂

DSC plots for the system $\operatorname{Li}_{1-x} \operatorname{VO}_2$ are shown in Fig. 6; the different compositions were obtained by extracting Li from LiVO₂ at room temperature with a Br₂ solution. As observed previously,⁸ the T_t obtained in the first heating cycle increases from 490 K at x = 0 to 550 K at x = 0.125, but it remains constant for all x in the interval $0.125 \le x \le 0.33$ although ΔH , Fig. 7, decreases monotonically with x throughout the range $0 \le x \le 0.33$. The disproportionation reaction (1) above T_t into LiVO₂ and Li[V₂]O₄ returns the observed T_t to 490 K on cooling and on the second heating cycle for all x; the phase Li[V₂]O₄ contributes no signal. Of particular interest for this study is the behavior below T_t in the range 0 < x < 0.125, which has not previously been explored.

On heating, the DSC curves exhibit two peaks in the range 0 < x < 0.125, which indicates the presence of two

FIG. 6. DSC plots recorded on heating and cooling in N₂ atm at 10 °C min⁻¹ for (a) x = 0.0, (b) x = 0.07, (c) x = 0.12, and (d) x = 0.28 in Li_{1-x}VO₂.

FIG. 7. Variations of enthalpy change ΔH and transition temperatures T_i or T'_i with x for $\text{Li}_{1-x}\text{VO}_2$. In the two-phase region 0 < x < 0.12, the ΔH values are not shown.

distinguishable low-temperature phases each with its own value of T_t . We designate them $T_t \approx 490$ K for LiVO₂ and $T'_t \approx 550$ K for $0.12 < x \le 0.33$.

An increase in T_t with decreasing electron concentration in the clusters would seem to be inconsistent with the stabilization of V_3 trimers below T_t in LiVO₂. Therefore, it was postulated⁸ that this anomaly probably reflects the introduction of a ferroelectric-type displacement of V^{4+} ions away from each other across a broken bond in a trimer deficient in two electrons. Such a model requires the capture of two holes per electron-deficient trimer at two vanadyl units $(VO)^{2+}$ in $V(VO_2)$ clusters coexisting with V₃ trimers. In order to test this speculation, room-temperature infrared data for $Li_{0.7}VO_2$ and VO_2 were taken and compared. It is known that the transition below 67 °C in VO2 involves not only the formation of dimers, but also the rocking of the dimers to form vanadyl (VO)²⁺ species.^{12,27} In VO₂, an infrared peak appears near 980 cm⁻¹, the position for the vanadyl ion²⁸; in $Li_{0.7}VO_2$ this peak is absent. Therefore, we seem forced to conclude that there is no vanadyl formation in the oxidized VO₂ planes of Li_{1-x} VO₂, 0.12 < $x \le 0.33$. This conclusion is also consistent with a monotonic decrease in ΔH with x. Thus, these results reinforce the deduction that the transition temperature T_t is controlled more by the lattice-energy change through the distortion than by the ΔH of the transition; indeed, the lowtemperature phases for $LiVO_2$ and $Li_{1-x}VO_2$ with $0.12 < x \le 0.33$ must be structurally distinguishable since they represent distinguishable phases.

These studies, together with the detailed investigation of the $\text{Li}_{1-x}\text{VO}_2$ and $\text{Li}_{1+x}\text{V}_2\text{O}_4$ systems reported previously,⁸ yield the phase diagrams of Figs. 8 and 9 for the system $\text{LiVO}_2\text{-}\text{VO}_2$. LiVO_2 is a line phase—limited solubility range not determined—that is stable to at least 750 °C. It undergoes a structural transformation at $T_t \approx 490$ K. The spinel phase $\text{Li}[\text{V}_2]\text{O}_4$ may also be obtained by high-temperature synthesis,²⁹ but more easily by room-temperature extraction of half of the Li from $LiVO_2$ followed by heating to above 550 K.⁸ The spinel phase undergoes no structural transformation to lowest temperatures. The end member VO_2 is also accessible by high-temperature synthesis; it undergoes a structural transformation at 67 °C.³⁰ This relatively simple phase diagram is given in Fig. 8.

Two distinct metastable phase diagrams may be obtained below 550 K; Fig. 9 is relevant under conditions where Li is extracted from LiVO₂; another (not shown) can be obtained by Li insertion/extraction into/from the spinel $Li[V_2]O_4$. Figure 9 shows a metastable phase in the compositional range $0.12 < x \le 0.33$ that disproportionates above $T'_t = 550$ K into LiVO₂ and Li[V₂]O₄. regions exist for $0 < x \leq 0.12$ and Two-phase 0.33 < x < 0.67. The phase $LI_{0.33-x}VO_2$ is stabilized by an ordered arrangement of one-third of the V atoms in the planes that were originally all Li atoms.³¹ Roomtemperature electrochemical extraction of Li from LiVO₂ (Ref. 32) indicates the presence of phases over the range 0.33 < x < 0.67 whereas the domain $0.125 \le x \le 0.33$ shows an open-circuit voltage V_{oc} varying smoothly with x as for a solid-solution range. Like ΔH , the open-circuit voltage tracks the total number of electrons active in V-V bonding whereas T_t reflects some other parameter presumably the change in lattice energy through the structural transformation.

The metastable phase diagram obtained from Li insertion into $\text{Li}[V_2]O_4$ is much simpler; it yields the solidsolution range $\text{Li}_{1+x}[V_2]O_4$, $0 \le x \le 1$, in which the $[V_2]O_4$ spinel framework stays intact and the Li^+ ions occupy an increasing proportion of octahedral sites with increasing x until, at x = 1, the ordered rocksalt phase $\text{Li}_2[V_2]O_4$ is obtained. What happens on extraction of Li from $\text{Li}[V_2]O_4$ has not been studied carefully. It appears that there is no large solid-solution range between $\text{Li}[V_2]O_4$ and cubic $[V_2]O_4$ —as occurs, for example, in the system $\text{Li}_{1-x}[\text{Mn}_2]O_4$, but rather a conversion to the

FIG. 8. Equilibrium phase diagram for the system LiVO₂-VO₂ prepared above 550 K.

FIG. 9. Phase diagram for the system $LiVO_2$ - VO_2 obtained on heating samples prepared by room-temperature extraction of Li from $LiVO_2$.

layered phase $\text{Li}_{0.33}\text{V}_2\text{O}_4$. It may prove significant that $2.93 > R > 2.91 \gtrsim R_c$ in the range $\text{Li}_2[\text{V}_2]\text{O}_4$ to $\text{Li}[\text{V}_2]\text{O}_4$. Extraction of Li in $\text{Li}_{1-x}[\text{V}_2]\text{O}_4$ forces the condition $R \approx R_c$, which we predict to be unstable.

V. CONCLUSIONS

We have demonstrated that $R_c \approx 2.90 \pm 0.01$ Å for the room-temperature V-V separation in an oxide with an array of V^{3+} ions sharing common octahedral-site edges with z = 6 like near neighbors. We have shown that the condition $R \approx R_c$, which corresponds to a $W \approx U$, is intrinsically unstable. In the single-valent system $LiV_{1-y}Cr_yO_2$, for example, this instability is manifest in a two-phase compositional range separating $R < R_c$ for $y < y_c$ from $R > R_c$ for $y > y_c$. In the system $\text{Li}_{1-x} \text{VO}_2$, the single-valent end member (x = 0) forms V₃ trimers below $T_t \approx 490$ K, and a two-phase region in the interval $0 < x \le 0.12$ separates the single-valent phase from the mixed-valent compositional range. Moreover, the mixed-valent compositions disproportionate above $T_t' = 550$ K into LiVO₂ and the spinel Li[V₂]O₄. We have also shown that the transition temperature T_t below which a CDW is formed is controlled more by the lattice-energy change associated with the structural transformation than by the total enthalpy change ΔH associated with the transition.

Metastable phase diagrams below 550 K have been obtained for the $LiVO_2$ - VO_2 system by room-temperature Li extraction from $LiVO_2$ and by Li insertion or extraction into or from $Li[V_2]O_4$.

Comparisons have been made between the high- T_c copper oxides and the vanadium oxides. In the superconductor copper oxides, the condition $W \approx U$ is also encountered; a large on-site U inhibits the formation of a negative-U CDW, as is also the case in the vanadium oxides discussed. The bandwidth W in the copper oxides is associated with nearly 180° Cu-O-Cu interactions; it is sensitive to the hole concentration in an oxidized CuO₂ layer because the covalent-mixing parameter λ_{σ} reflects a system near crossover from a more ionic to a more co-valent Cu:3d-O:2 p_{σ} bonding.³³ The bandwidth W in the vanadium oxides discussed is associated with V-V interactions that vary exponentially with the V-V separation R across shared octahedral-site edges. In both the copper oxides and the vanadium oxides, intrinsic lattice instabilities appear to be associated with the condition $W \approx U$. These instabilities are manifest as static phase segregations, static charge-density waves, and-it would appear-also as dynamic charge-density fluctuations. Where the dynamic charge-density fluctuations give rise to superconductivity and where they give rise to some other phenomenon represents an open and fascinating field of investigation.

ACKNOWLEDGMENTS

We gratefully acknowledge support for this research by the Robert A. Welch Foundation, Houston, Texas, the National Science Foundation, and the Texas Advanced Research Program. 10 178

- ¹J. B. Goodenough and J.-S. Zhou, Phys. B. 42, 4276 (1986).
- ²R. S. Markiewicz, Superconductivity and its Application (Buffalo, 1990), Proceedings of the Fourth Annual Conference on Superconductivity and its Application, AIP Conf. Proc. No. 219, edited by Yi-Han Kao, Philip Coppens, and Hoi-Sing Kwok (AIP, New York, 1991).
- ³P. F. Bongers, Ph.D. dissertation, University of Leiden, Leiden, The Netherlands, 1957.
- ⁴J. B. Goodeneough, *Magnetism and the Chemical Bond* (Interscience and Wiley, New York, 1963), p. 269.
- ⁵P. F. Bongers, in Crystal Structure and Chemical Bonding in Inorganic Chemistry, edited by C. J. M. Rooymans and A. Rabenau (Elsevier, New York, 1975), Chap. 4.
- ⁶F. Takagi, K. Kawakami, I. Maekawa, Y. Sakai, and N. Tsuda, J. Phys. Soc. Jpn. **56**, 444 (1987).
- ⁷Y. Amako, T. Naka M. Onoda, H. Nagasawa, and T. Erata, J. Phys. Soc. Jpn. **59**, 2241 (1990).
- ⁸A. Manthiram and J. B. Goodenough, Can. J. Phys. 65, 1309 (1987).
- ⁹K. Vidyasagar and J. Gopalakrishnan, J. Solid State Chem. 42, 217 (1982).
- ¹⁰T. A. Hewston and B. L. Chamberland, J. Solid State Chem. 65, 100 (1986).
- ¹¹D. B. Rogers, R. J. Arnott, A. Wold, and J. B. Goodenough, J. Phys. Chem. Solids 24, 347 (1963).
- ¹²J. B. Goodenough, Prog. Solid State Chem. 5, 145 (1971).
- ¹³M. M. Thackeray, W. I. F. David, and J. B. Goodenough, Mater. Res. Bull. **17**, 785 (1982); M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, *ibid.* **18**, 461 (1983).
- ¹⁴L. A. de Picciotto and M. M. Thackeray, Mater. Res. Bull. 20, 1409 (1985).
- ¹⁵J. B. Goodenough, A. Manthiram, A. C. W. P. James, and P. Strobel, in *Solid State Ionics*, edited by F. Nagri, R. A. Muggins, and D. F. Shriner, MRS Symposia Proceedings No. 135

(Materials Research Society, Pittsburgh, PA, 1989), p. 391.

- ¹⁶B. Reuter and J. Jaskowsky, Ber. Bunsten-Ges. Phys. Chem. 70, 189 (1966).
- ¹⁷B. Reuter and K. Müller, Naturwissenschaften 54, 164 (1967).
- ¹⁸H. Kessler and M. Sienko, J. Chem. Phys. 55, 5414 (1971).
- ¹⁹B. L. Chamberland and T. A. Hewston, Solid State Commun. 58, 693 (1986).
- ²⁰K. Kawakami, Y. Sakai, and N. Tsuda, J. Phys. Soc. Jpn. 5, 3174 (1986).
- ²¹Muhtar, F. Takagi, K. Kawakami, and N. Tsuda, J. Phys. Soc. Jpn. 57, 3119 (1988).
- ²²S. Niziol, Phys. Status Solidi A **18**, K11 (1973).
- ²³J. B. Goodenough and A. Manthiram, Physica C 157, 439 (1989).
- ²⁴A. Manthiram, X. X. Tang, and J. B. Goodenough, Phys. Rev. B 42, 138 (1990).
- ²⁵L. L. Van Zandt, J. M. Honig, and J. B. Goodenough, J. Appl. Phys. **39**, 594 (1968).
- ²⁶T. A. Hewston and B. L. Chamberland, J. Solid State Chem. **59**, 168 (1985).
- ²⁷R. Heckingbottom and J. W. Linnet, Nature **194**, 678 (1962).
- ²⁸G. Ladwig, Z. Anorg. Allgem. Chem. 364, 234 (1969).
- ²⁹D. B. Rogers, J. B. Goodenough, and A. Wold, J. Appl. Phys.
 35, 1069 (1964); D. B. Rogers, J. L. Gillson, and I. E. Gier,
 Solid State Commun. 5, 263 (1967).
- ³⁰G. Andersson, Acta Chem. Scand. **10**, 623 (1956).
- ³¹M. M. Thackeray, L. A. de Picciotto, W. I. F. David, P. G. Bruce, and J. B. Goodenough, J. Solid State Chem. 67, 285 (1987).
- ³²L. A. de Picciotto, M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Mater. Res. Bull. **19**, 1497 (1984).
- ³³J.-S. Zhou, J. B. Goodenough, K. Allan, and A. Champion (unpublished).