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A unified treatment of clean Josephson junctions—both tunnel junctions and weak links—is
developed for the static case. The quasiparticle local density of states in Josephson junctions is cal-
culated, and it is found that the energy spectrum depends strongly on the phase difference between
the two superconductors. In the case of tunnel junctions, it is predicted that bound states which are
localized around the tunnel barrier appear in the energy gap. The Josephson current flows via the
bound states. The possibility to observe such current-carrying states by scanning tunneling spec-

troscopy is discussed.

I. INTRODUCTION

The Josephson effect is a phenomenon observed both in
tunnel junctions! and in weak links, 2 but it has been stud-
ied by different theoretical approaches for each case. The
properties of tunnel junctions have been analyzed within
perturbation theory based on models which are composed
of two independent superconductors connected by a tun-
neling Hamiltonian.? This approach separating the sys-
tem into two noninteracting subsystems as an unper-
turbed state is justified by the fact that the tunneling
probability is extremely small. On the other hand, weak
links represent a strongly coupled system. That is, elec-
trons can travel through a metallic link almost freely and
the transmission probability is nearly unity. Thus
higher-order processes, in which several Cooper pairs
move from one superconductor to the other, become im-
portant and cause deviations of the current-phase rela-
tion from a simple sinusoidal function.* Therefore weak
links must be treated not as a composite system but as a
single system.

Recently Arnold extended the tunneling Hamiltonian
method to include higher-order processes and discussed
the proximity effect in the tunneling spectroscopy of tun-
nel junctions.® He obtained an expression of the dc
Josephson current, reproducing the Ambegaokar-
Baratoff result® for tunnel junctions and the Kulik-
Omel’yanchuk result’ for superconductor-orifice-
superconductor junctions, which can be regarded as ex-
tremely thin tunnel junctions. Since his main interest lay
in the current-voltage characteristics of tunnel junctions
rather than the dc Josephson effect, he did not fully dis-
cuss the dc Josephson effect in tunnel junctions, nor that
in weak links.

One of the purposes of this paper is to give an expres-
sion of the dc Josephson current which can be used both
for weak links and for tunnel junctions. In this sense, our
theory may be considered to be an extension of that of
Arnold, but our formulation® is completely different
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from, and simpler than, his. In his theory, the Green’s
function of the total system is obtained as properly com-
posing of those of the subsystems, while we directly ob-
tain it by solving a scattering problem. The other main
purpose -of our work is to clarify the effect of the phase
difference between two superconductors on the local den-
sity of states (LDOS) of weak links and, especially, of tun-
nel junctions. While the LDOS of weak links was evalu-
ated by Ishii* in the simplest case, that of tunnel junc-
tions has not been discussed. This is probably due to the
fact that no drastic change can be expected for ordinary
tunnel junctions where the lowest order process dom-
inates tunneling. However, there exist some junctions
such as point contacts where the higher-order processes
become important. The higher-order processes give rise
to excess current in the case of metal-superconductor
point contacts.”!® In such junctions, it is likely that
some changes occur in the LDOS when the Josephson
current flows. Thus it is clearly of interest to elucidate
the change of the LDOS also in tunnel junctions.

The organization of this paper is as follows. The dc
Josephson current in weak links as well as in tunnel junc-
tions is calculated in a unified way by using a simple
model in Sec. II. The phase dependence of the LDOS is
studied in Sec. III and its relevance to current-carrying
states is discussed. Finally all the results are summarized
in the last section.

II. S-N-S JUNCTION

In this section we describe the superconductor—
normal-material-superconductor (S-N-S) junction as a
model for both types of Josephson junctions. Two super-
conducting electrodes (x <0 and x > D) are linked by a
normal material (0 <x <D), in which impurity scattering
is assumed to be negligibly small, and the system is
translationally invariant along the y and the z axes. The
motion of quasiparticles is governed by the
Bogoliubov—de Gennes equation, !!
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where the diagonal potential is given by
0, x=<0
U(r)=U, 0=x=D (2)
0, 2D,

A(r) is the pair potential, or the order parameter, m is
the effective mass of electrons, and u is the chemical po-
tential. The model can be regarded as a weak link or a
tunnel junction, depending on the value of U. That is to
say, if U is smaller than u, the model corresponds to a
weak link where the normal material is metallic; on the
other hand, if U is larger than u, the model corresponds
to a tunnel junction. So far most works in the literature
have been concerned with the special case of U=0. Ku-
lik'? and Ishii* studied this case, using the same model as
that of the present paper. The case of a periodic S-N ar-
rangement was also investigated by van Gelder,!® and
Biittiker and Klapwijk!'* discussed the effect of the
Aharanov-Bohm flux on the energy spectrum of an S-N
loop.

In principle, the pair potential must be determined
from the gap equation self-consistently, but here we
adopt the simplest form,

Alx)=Ale?rO(—x)+e*"O(x —D)] . 3)

It is assumed that the phonon-mediated attractive in-
teraction between electrons exists only in superconduc-
tors, and spatial variations of the pair potential near the
interfaces, i.e., the proximity effect, are neglected. The
steplike form of the pair potential is a reasonable assump-
tion for tunnel junctions. For weak links, however, its
validity depends on the degree of the proximity effect
near the S-N interfaces. If the Fermi velocities are
different for S and N, and if the temperature is low, the
pair potential is not much reduced in superconductors,
and a proximity effect is not seen. Moreover, when the
length of the normal metal, D, is much longer than the
coherence length, variations of the pair potential can be
neglected. Thus the above form of the pair potential is
physically reasonable in these cases. Otherwise, especial-
ly near the critical temperature, the steplike form is not a
good approximation!® and a self-consistent treatment is
required.

The dc Josephson current can be obtained from the
probability amplitudes of the Andreev reflection®'®
which are obtained by solving the Bogoliubov-de Gennes
equation. By applying the method to our model, the su-
percurrent may be calculated. We do not reproduce de-
tails of the calculation but instead write only its result.

The dc Josephson current, j, per unit area is obtained!’
as
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This expression of the dc Josephson current covers
tunnel junctions and weak links. All the important infor-
mations are included in I', which is the determinant of
the matching equations of wave functions. As we shall
see, I', determines not only the temperature and phase
dependence of the Josephson current but also the energy
spectrum of the quasiparticles.

When the normal material is metallic (U <pu), ky is a
real number for k;=0. Thus behavior of ', is mainly
determined by the first two terms on the right-hand side
of Eq. (6). The characteristic length scale is
Ey="%vy /mkyT. If the normal region is longer than this
characteristic length, Eq. (6) reduces to

kS=

_~_eA2f dk;, 1 8singexp(—2w,D /fvy)
J % 9 (2m) B K2A+(1+K w2 +2KwoQ,
o A%kFosing
D KV N+ (wkp T+ 1k TV
Xexp(—2wkgTD /fivy,) , (6)
where
) 172 5
m
kN0: .ﬁT(‘uz_U) ) UNO:;kNO . (7)

The dc Josephson current depends exponentially on T
and D.

On the other hand, for tunnel junctions (U >pu), ky
and K are imaginary, and the third term dominates T",.
The characteristic length in this case is 1/|kyol. Since
the length of the normal region must be much shorter
than &y, Eq. (6) can be approximately written as
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In the above, we define «, K, and Z by
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Z =(1+K ?)sinh®(kD) .

Equation (8) is essentially the same as the result obtained
by Arnold.> Since Z depends on D exponentially, the dc
Josephson current decreases rapidly as the insulating bar-
rier becomes thicker. It should be noted that the parame-
ter Z is just what was used in the theory of Blonder
et al.,’ who considered superconductor-insulator-normal
metal (S-I-N) point contacts. According to the experi-
mental work by Blonder and Tinkham, 10 there exist some
point contacts for which Z is of the order of unity. Thus
it is natural to expect that a small Z value is realized as
well in some Josephson tunnel junctions.

We show the temperature dependence of the critical
current I in Fig. 1 for various lengths of the normal re-
gion. Every curve is normalized by the value at 7=0 K.
In the numerical calculation we set U=0.5 eV in Fig. 1(a)
and U=1.1 eV in Fig. 1(b). Since we set u=1 eV, the
former figure corresponds to the case where the normal
material is metallic (weak link) and the latter is the case
of an insulating barrier (tunnel junction).

We see that the I-.-T curves for weak links gradually
change according to the length of the normal region D.
When D is longer than £, I~ is an exponentially decreas-
ing function, while it changes similarly as Kulik and
Omel’yanchuk’s result for D being shorter than §,. Since
the profile of the pair potential is assumed to be steplike
regardless of the temperature, the temperature depen-
dence I-(T)« (T, — T)?* argued by de Gennes!® cannot be
reproduced in our theory. It is necessary to determine
the pair potential self-consistently in order to get the
correct temperature dependence near T.

As for the tunnel case, the I-T curves approach the
universal result of the Ambegaokar-Baratoff’s (AB) for-
mula, which almost coincides with the curve of 4 A, as
the length of the barrier increases. This is the reason why
APB’s formula successfully explains many experimental
data of tunnel junctions.

III. LOCAL DENSITY OF STATES

Here we consider the phase dependence of the LDOS
on the phase difference, ¢. As one can see from Eq. (4),
the main contribution of the w, summation arises from
the poles of I'(z), which is analytic continuation of I'",,

[
on the real axis. Thus the Josephson effect is closely re-
lated with energy spectrum, especially, of bound states.

By definition, the LDOS, N (x, E), is obtained from the
imaginary part of the retarded Green’s function. The re-
tarded Green’s function can be evaluated by combining
the out-going solutions of the Bogoliubov-de Gennes
equation.® Neglecting the rapidly oscillating terms like
sin(2kgx) and sin(2kyx), we obtain the LDOS:
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FIG. 1. Temperature dependence of the critical current of
the S-N-S junction: (a) weak link (D=100, 1000, 10 000 A) and
(b) tunnel junction (D=1, 2, and 4 A). We set A(T=0)=1
meV, u=1¢eV, and U=0.5 eV for the weak link, and U=1.1 eV
for the tunnel junction.
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In the above, we define Q and N (0), which is the density

of states per volume at the Fermi surface, by
Q=VE>-A*,

1/2 an
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and 0 is related with ky, vy, and vg of Eq. (6) by
k| =kgosin6 . (12)

The energy of bound states is determined by the condi-
tion
2ED

T(E)=[K?A’—E*1+K?)]cos
fivy

2ED
VN

—(K2—1)(A2—E?)cos(2ky D)+ A%cosp=0 .
(13)
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In the case U=0, this equation reduces to'?
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Discrete energy levels (Andreev levels)*!® are formed for

fixed vy in the normal region surrounded by the off-
diagonal potential barrier, and the degenearcy of the
discrete levels is removed when the phases of the super-
conductors are different from each other. In the case of
S-N superlattices, the discrete levels have dispersion and
the energy spectrum shows a band structure.'® It should
be noted that the factorization of Eq. (14) does not hold
for the general cases of U0, for which the energy spec-
trum becomes more complicated.

In Fig. 2 we show a numerically calculated LDOS of a
weak link both at the midpoint of the normal region and
in the superconductor for ¢ =0 and 7/2. The parameters
chosen are u=1 eV, A(T=0)=1 meV, and U=0.5 eV.
Variation of k; gives rise to a dispersion of the bound
state’s energy, and peaks in the figures correspond to the
discrete levels at k;=0. The figures are slightly different
from those of U=0 which was calculated by Ishii,* since

2ED

fivy

—2KEQcos
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FIG. 2. Local density of states in a weak link at x =D/2 and
x=D+§ with U=0.5 eV for (a) ¢=0 and (b) p=m/2.
A(T=0)=1meV,u=1eV,and D =£=12400 A.
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the normal reflection, such as electron—electron and
hole— hole, at the S-N interfaces was not taken into ac-
count in his calculation.

In actual samples, the electrons are scattered by impur-
ities and the energy spectrum is somewhat changed.
However, as long as the phase of electron wave functions
is coherent in the normal region, these bound states still
exist. The effect of impurity scattering in mesoscopic S-
N-S junctions has been investigated by Al'tshuler et al.?°

As for tunnel junctions, the energy of bound states is,
within the approximation used in Eq. (8), is given by
172

K=A cos’p+Z

1+Z

It is seen from the definition of Z that the bound state en-
ergy gets closer to A as |k;| increases. As compared with
the bound states in weak links, the appearance of bound
states in tunnel junctions is mysterious at first glance;
there are no energy levels in the insulator and the energy
gap opens in the superconductors. However, this can be
understood by the following consideration. Although su-
percurrent is carried by Cooper pairs deep in supercon-
ductors, it flows via quasiparticles near the tunnel barrier.
That is, Cooper pairs approaching the barrier gradually
change into quasiparticles, going through the barrier, and
then they recondense into Cooper pairs; bound states
represent this process. This conversion of a Cooper pair
into quasiparticles and vice versa was demonstrated in
weak links,'* but it has not been recognized in tunnel
junctions. When the phases of two superconductors are
different, the supercurrent flows and the current-carrying
bound states appear in the energy gap; when the super-
current does not flow, these states are all degenerate at
E =A. The result for the case of Z ~1 is shown in Fig. 3.
A peak due to the bound states is clearly seen at the point
B when ¢ =m/2, while the LDOS vanishes in the energy-
gap region when ¢=0.

The formation of bound states in our non-self-
consistent calculations suggests that in a self-consistent
treatment the pair potential decreases near the tunnel
barrier when the supercurrent flows. Thus some quasi-
particles may be trapped in the quantum well, which is
surrounded by the tunnel barrier and the reduced pair
potential, and finally self-consistent calculations may give
results similar to those which we obtain from the steplike
model.

Since there has been no direct method which is ap-
propriate to detect bound states, they have never been ob-
served experimentally in tunnel junctions, nor in weak
links. However, it may become possible to observe them
in the near future. Scanning tunneling spectroscopy
(STS) may be a promising method for this application. In
fact, bound states in vortices of a type-II superconductor
have been successfully observed by STS.?! In our case,
we locate a tip above a Josephson junction and measure
the tunnel conductance dI /dV, which is proportional to
the LDOS,?? between the junction and the tip, while
changing the phase difference controlled by the magni-
tude of the dc Josephson current.

Unfortunately, since Z increases rapidly as a function
of D, the bound states have an energy very close to A in

(15)
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ordinary tunnel junctions, and their contribution is hard-
ly observed separately from that of the continuum of
scattering states. Therefore one must prepare a junction,
probably a point contact, with Z ~ 1, and the experiment
requires high energy resolution and very low tempera-
ture. It is crucial to prepare a clean sample also for weak
links. An extension of our calculation was recently used
to analyze the STS data of a weak link,?® but the
sawtoothlike form of the LDOS has not been observed,
probably because of the dirtiness of the sample surface
and because of thermal smearing.
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FIG. 3. Local density of states in a tunnel junction at
x=0.5D, 2.5D, and D +¢ for r(‘a) ¢=0 and (b) e=7/2.
AMT=0)=1meV, u=1eV, D=2 A, U=1.1 eV, and £=12400
A.
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IV. CONCLUSION

We have obtained an expression of the dc Josephson
current which holds for weak links as well as tunnel junc-
tions. It contains well-known results on the dc Josephson
effect as limiting cases. We have also shown that the en-
ergy spectrum is definitely affected by the phase
difference between the two superconductors. In other
words, the dc Josephson effect is correlated with a change
of the energy spectrum of the system. Especially, the
most interesting finding is that current-carrying bound
states appear even in tunnel junctions and not only in
weak links. This change of the energy spectrum may be
detected by STS. In the case of tunnel junctions, one
must use a junction in which the parameter Z is of the or-
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der of unity so that the LDOS of the bound states can be
detected separately from that of the scattering states. In
the case of weak links, it is necessary to perform experi-
ments with very clean junctions in order not to smear the
structure in the LDOS.
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